(完整版)数学模型姜启源-第三章(第五版)
- 格式:ppt
- 大小:6.24 MB
- 文档页数:121
数学模型课后答案姜启源【篇一:姜启源《数模》习题选解】方案模型构成:以阈值0,1分别标记“不在”和“在”,记第k次渡河前此岸的人阈值为xk,猫阈值为yk,鸡阈值为zk,米阈值为wk,将四维向量sk=(xk,yk,zk,wk)定义为状态,xk,yk,zk,wk=0,1。
安全渡河条件下的状态集合为允许状态集合,记作s。
以穷举法得到s:s={(1,1,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,0,1,0),(0,1,0,1),(0,0,1,0),( 0,1,0,0),(0,0,0,1),(0,0,0,0)} 记第k次渡船上四个对象(人、猫、鸡、米)的阈值分别为ak,bk,ck,dk,并将四维向量ek=(ak,bk,ck,dk)定义为决策。
允许决策集合记作e={(a,b,c,d)|0≤b+c+d≤1,a=1,b,c,d=0,1}因为k为奇数时,船从此岸驶向彼岸,k为偶数时船由彼岸驶向此岸,所以,状态sk随决策ek变化的规律是sk+1=sk+(-1)kek该式称状态转移律,该问题就转换成多步决策模型:求决策∈?? ??=1,2,?,?? ,使状态∈??按照转移律,由初始状态s1=(1,1,1,1)经有限步n到达状态sn+1=(0,0,0,0)。
模型求解:本解答试尝用图解法,由于无法利用平面来表达四维坐标系,所以采取其投影即三维空间的方法来构建模型。
把人的阈值xk抽离出来,分别标记0系坐标系(即当xk=0时,(yk,zk,wk)的空间坐标),和1系坐标系,可允许状态点如下标示(红色点):由于a=1是恒成立的,所以,决策是0系坐标系和1系坐标系的点集间的连接,而非任意坐标系内部的连接。
如图1所示,两正方体中心重合,且对应顶点的连线通过中心,称为二合正方体(四维空间不具有包性,即a/b两正方体并没有包含的关系)。
二合正方体的一个顶点为(a,b),称为共顶点,即二合正方体共有8个共顶点。
超市员工安排及运营问题摘要在一些大型服务机构中,不同的时间段内需要的服务量有着显着的不同,从而主管单位在不同的时段雇佣工作人员的人数往往也不同。
因此对于既要满足需要,又要尽量减少劳务开支是管理者必须思考的决策问题。
本文我院某校内超市员工安排问题为例,据已给定的各个时间段所需的服务员人数和两个班次与休息时间安排表、职员工资及其他给定的限制,建立整数规划优化模型,得出最优安排,使得既满足超市对职工的需要,又使超市的劳务开支最少。
另外本文进一步讨论在已有班次的基础上,对增加更多的班次后的人员安排及劳务支出的变化,以便此超市根据最少的劳务开支做出最优选择。
由问题给出的时间和班次安排表,在8:00——17:00和12:00——21:00中每隔一个小时安排吃饭时间,根据班次安排的人数列出线性不等式,根据月支出来列出目标函数,然后设计线性规划模型,用LINGO.8解出人数和最优劳务支出。
由此解决了本问题要讨论的最少人数和最优劳务支出。
关键词:优化设计,劳务开支,临时员工安排。
一问题重述在一些大型服务机构中,不同的时间段内需要的服务量有显著的不同。
例如,交通管理人员、医院医护人员、宾馆服务人员、超市卖场营销人员等。
在不同的时段劳务需求量不同,主管单位在不同时段雇佣的临时职工数量往往也不同。
因此对于既要满足需要,又要尽量节约劳务开支是管理者必须思考的决策问题。
现就我院校内某超市临时员工的班次安排问题建立一个数学模型来进行优化设计,使其既满足超市的营业需要,又能够使超市的劳务开支最少。
超市的营业时间为11:00到22:OO,根据学生的购买情况,以一小时为一时段,各时段内所需的服务人员数如表1。
此超市员工由临时工和正式员工构成,正式职工两名,主要负责管理工作,每天需要工作8小时,临时工若干名,每天工作4小时。
已知一名正式员工11:00开始上班,工作4小时后休息1小时,而后再工作4小时;另一名正式职工13:00开始上班,工作4小时后休息1小时,而后再工作4小时,工作、休息时间安排如表2。