高中数学课件_第2章_第2节_《函数的定义域和值域》
- 格式:ppt
- 大小:1.33 MB
- 文档页数:39
第2讲 函数的定义域和值域1.常见函数定义域的求法 (1)分式函数中分母不等于零.(2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域为R .(4)y =a x (a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R .(5)y =tan x 的定义域为{x |x ≠k π+π2,k ∈Z }.2.基本初等函数的值域(1)y =kx +b (k ≠0)的值域是R . (2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎩⎨⎧⎭⎬⎫y |y ≥4ac -b 24a ; 当a <0时,值域为⎩⎨⎧⎭⎬⎫y |y ≤4ac -b 24a . (3)y =kx(k ≠0)的值域是{y |y ≠0}.(4)y =a x (a >0且a ≠1)的值域是{y |y >0}. (5)y =log a x (a >0且a ≠1)的值域是R . (6)y =sin x ,y =cos x 的值域是[-1,1]. (7)y =tan x 的值域是R . [做一做] 1.(2015·浙江杭州模拟)函数y =16-4x 的值域是( ) A .[0,+∞)B .[0,4]C .[0,4)D .(0,4) 解析:选C.∵4x >0,∴0≤16-4x <16,∴0≤y <4.2.函数y =x +1+12-x的定义域为________.答案:[-1,2)∪(2,+∞)1.求函数定义域应注意的四点(1)如果没有特别说明,函数的定义域就是能使解析式有意义的所有实数x 的集合. (2)不要对解析式进行化简变形,以免定义域发生变化.(3)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合.(4)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接. 2.求函数值域的六种基本方法(1)观察法:一些简单函数,通过观察法求值域. (2)配方法:“二次函数类”用配方法求值域.(3)换元法:形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且a ≠0)的函数常用换元法求值域,形如y =ax +a -bx 2的函数用三角函数代换求值域.(4)分离常数法:形如y =cx +dax +b(a ≠0)的函数可用此法求值域.(5)单调性法:函数单调性的变化是求最值和值域的依据,根据函数的单调区间判断其增减性进而求最值和值域.(6)数形结合法:利用函数所表示的几何意义,借助于图象的直观性来求函数的值域.[做一做]3.函数y =1log 2(x -2)的定义域是( )A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞) 答案:C4.若x -4有意义,则函数y =x 2-6x +7的值域是________.解析:∵x -4有意义,∴x -4≥0,即x ≥4.又∵y =x 2-6x +7=(x -3)2-2,∴y min =(4-3)2-2=1-2=-1.∴其值域为[-1,+∞). 答案:[-1,+∞)考点一__求函数的定义域(高频考点)____________函数的定义域是高考的重点内容,考查时多以选择题和填空题形式出现,一般难度较小,高考对定义域的考查主要有以下四个命题角度: (1)求分式型函数的定义域; (2)求无理型函数的定义域; (3)求对数型函数的定义域; (4)求抽象函数的定义域.(1)(2015·广东惠州第二次调研)函数f (x )=log 2(3x -1)的定义域为( ) A .[1,+∞) B .(1,+∞)C .[0,+∞) D .(0,+∞)(2)函数f (x )=1-|x -1|x -1的定义域为____________.(3)(2015·山东莱芜模拟)已知函数f (x )的定义域为[3,6],则函数y =f (2x )log 12(2-x )的定义域为( )A.⎣⎡⎭⎫32,+∞B.⎣⎡⎭⎫32,2C.⎝⎛⎭⎫32,+∞D.⎣⎡⎭⎫12,2 [解析] (1)要使函数有意义,必须满足3x -1>0,解得x >0,故选D. (2)由⎩⎨⎧1-|x -1|≥0x ≠1⇒⎩⎨⎧0≤x ≤2x ≠1⇒0≤x <1或1<x ≤2.(3)要使函数y =f (2x )log 12(2-x )有意义,需满足⎩⎪⎨⎪⎧3≤2x ≤6log 12(2-x )>0⇒⎩⎪⎨⎪⎧32≤x ≤30<2-x <1⇒32≤x <2.故选B.[答案] (1)D (2)[0,1)∪(1,2] (3)B本例(2)变为函数f (x )=1-|x -1|a x -1(a >0且a ≠1),结果如何?解:由⎩⎪⎨⎪⎧1-|x -1|≥0a x -1≠0⇒⎩⎨⎧0≤x ≤2x ≠0⇒0<x ≤2,故所求函数的定义域为(0,2].[规律方法] 简单函数定义域的类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解.(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)已知f (x )的定义域是[a ,b ],求f (g (x ))的定义域,是指满足a ≤g (x )≤b 的x 的取值范围,而已知f (g (x ))的定义域是[a ,b ],指的是x ∈[a ,b ].1.(1)(2013·高考山东卷)函数f (x )=1-2x +1x +3的定义域为( ) A .(-3,0] B .(-3,1] C .(-∞,-3)∪(-3,0] D .(-∞,-3)∪(-3,1](2)函数y =lg (2-x )12+x -x 2+(x -1)0的定义域是__________. (3)(2015·广东佛山模拟)已知f (x 2-1)的定义域为[0,3],则函数y =f (x )的定义域为__________.解析:(1)由题意知⎩⎪⎨⎪⎧1-2x≥0,x +3>0,解得-3<x ≤0,所以函数f (x )的定义域为(-3,0],故选A.(2)由⎩⎪⎨⎪⎧2-x >0,12+x -x 2>0x -1≠0,得⎩⎪⎨⎪⎧x <2,-3<x <4,x ≠1,所以-3<x <2且x ≠1,故所求函数的定义域为{x |-3<x <2且x ≠1}.(3)∵0≤x ≤3,∴0≤x 2≤9, ∴-1≤x 2-1≤8,∴函数y =f (x )的定义域是[-1,8].答案:(1)A (2){x |-3<x <2且x ≠1} (3)[-1,8] 考点二__求函数的值域________________________求下列函数的值域.(1)y =x 2+2x (x ∈[0,3]);(2)y =1-x 21+x 2;(3)y =x +4x (x <0);(4)f (x )=x -1-2x . [解] (1)(配方法)y =x 2+2x =(x +1)2-1, ∵y =(x +1)2-1在[0,3]上为增函数,∴0≤y ≤15, 即函数y =x 2+2x (x ∈[0,3])的值域为[0,15].(2)y =1-x 21+x 2=21+x 2-1,∵1+x 2≥1,∴0<21+x 2≤2.∴-1<21+x2-1≤1.即y ∈(-1,1].∴函数的值域为(-1,1]. (3)∵x <0,∴x +4x=-⎝⎛⎭⎫-x -4x ≤-4,当且仅当x =-2时等号成立, ∴y ∈(-∞,-4].∴函数的值域为(-∞,-4]. (4)法一:(换元法)令1-2x =t ,则t ≥0且x =1-t 22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是⎝⎛⎦⎤-∞,12. 法二:(单调性法)f (x )的定义域为⎝⎛⎦⎤-∞,12,容易判断f (x )为增函数,所以f (x )≤f ⎝⎛⎭⎫12=12,即函数的值域是⎝⎛⎦⎤-∞,12. [规律方法] 求函数值域,应根据解析式的结构特点,选择适当的方法,而常用的方法有:(1)观察法;(2)配方法;(3)换元法;(4)分离常数法;(5)单调性法;(6)数形结合法.在求函数值域时,除了上述常用的方法外,还有很多方法,应注意选择最优的解法.总之,求函数值域的关键是重视对应法则的作用,还要特别注意定义域对值域的制约.2.求下列函数的值域:(1)y =x -3x +1; (2)y =x 2-x x 2-x +1; (3)y =log 3x +log x 3-1(x >1).解:(1)法一:y =x -3x +1=x +1-4x +1=1-4x +1.因为4x +1≠0,所以1-4x +1≠1,即函数的值域是{y |y ∈R ,y ≠1}.法二:由y =x -3x +1,得yx +y =x -3.解得x =y +31-y ,所以y ≠1,即函数的值域是{y |y ∈R ,y ≠1}.(2)y =x 2-x +1-1x 2-x +1=1-1x 2-x +1,∵x 2-x +1=⎝⎛⎭⎫x -122+34≥34,∴0<1x 2-x +1≤43,∴-13≤y <1,即函数的值域为⎣⎡⎭⎫-13,1. (3)y =log 3x +1log 3x -1,令log 3x =t ,则y =t +1t -1(t ≠0),x >1,t >0,y ≥2t ·1t -1=1,当且仅当t =1t即log 3x =1,x =3时,等号成立,故函数的值域是[1,+∞).考点三__与函数定义域、值域有关的参数问题__若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是( )A .(0,34]B .(0,34)C .[0,34]D .[0,34)[解析] 要使函数的定义域为R ,则mx 2+4mx +3≠0恒成立.①当m =0时,得到不等式3≠0,恒成立;②当m ≠0时,要使不等式恒成立,须⎩⎪⎨⎪⎧m >0,Δ=(4m )2-4×m ×3<0,即⎩⎨⎧m >0m (4m -3)<0或⎩⎪⎨⎪⎧m <0,Δ<0,即⎩⎪⎨⎪⎧m <0,m (4m -3)<0.解得0<m <34.由①②得0≤m <34.故选D.[答案] D[规律方法] 求解定义域为R 或值域为R 的函数问题时,都是依据题意对问题进行转化,转化为不等式恒成立问题进行解决,而解决不等式恒成立问题,一是利用判别式法,二是利用分离参数法,有时还可利用数形结合法.3.已知函数f (x )=4|x |+2-1的定义域是[a ,b ](a ,b ∈Z ),值域是[0,1],则满足条件的整数数对(a ,b )共有________个.解析:由0≤4|x |+2-1≤1,即1≤4|x |+2≤2,得0≤|x |≤2,满足整数数对的有(-2,0),(-2,1),(-2,2),(0,2),(-1,2),共5个.答案:5,[学生用书P 18])考题溯源——求函数的定义域(2014·高考山东卷)函数f (x )=1(log 2x )2-1的定义域为( )A.⎝⎛⎭⎫0,12 B .(2,+∞)C.⎝⎛⎭⎫0,12∪(2,+∞) D.⎝⎛⎦⎤0,12∪[2,+∞) [解析] 由题意知⎩⎪⎨⎪⎧x >0,(log 2x )2>1,解得x >2或0<x <12.故选C.[答案] C[考题溯源] 本题源于教材人教A 必修1P 73,练习第2题,“求下列函数的定义域.(2)y =1log 2x ,(4)y =log 3x ”.1.函数f (x )=ln (x +1)-x 2-3x +4的定义域为__________.解析:要使函数有意义,必须且只需⎩⎪⎨⎪⎧x +1>0-x 2-3x +4>0,即⎩⎪⎨⎪⎧x >-1(x +4)(x -1)<0,解不等式组得-1<x <1.因此函数f (x )的定义域为(-1,1).答案:(-1,1)2.若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.解析:函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥1,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0. 答案:[-1,0]1.已知a 为实数,则下列函数中,定义域和值域都有可能是R 的是( )A .f (x )=x 2+aB .f (x )=ax 2+1C .f (x )=ax 2+x +1D .f (x )=x 2+ax +1解析:选C.当a =0时,f (x )=ax 2+x +1=x +1为一次函数,其定义域和值域都是R . 2.函数f (x )=10+9x -x 2lg (x -1)的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10] 解析:选D.要使函数有意义,则x 需满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,lg (x -1)≠0,即⎩⎪⎨⎪⎧(x +1)(x -10)≤0,①x >1,x ≠2,解①得-1≤x ≤10.所以不等式组的解集为(1,2)∪(2,10].故选D. 3.函数y =2--x 2+4x 的值域是( )A .[-2,2]B .[1,2]C .[0,2]D .[-2,2] 解析:选C.-x 2+4x =-(x -2)2+4≤4,0≤-x 2+4x ≤2,-2≤--x 2+4x ≤0,0≤2--x 2+4x ≤2,所以0≤y ≤2.4.若函数y =f (x )的定义域是[0,2 016],则函数g (x )=f (x +1)x -1的定义域是( )A .[-1,2015]B .[-1,1)∪(1,2015]C .[0,2016]D .[-1,1)∪(1,2016] 解析:选B.令t =x +1,则由已知函数y =f (x )的定义域为[0,2 016]可知f (t )中0≤t ≤2 016,故要使函数f (x +1)有意义,则0≤x +1≤2 016,解得-1≤x ≤2 015,故函数f (x +1)的定义域为[-1,2 015].所以函数g (x )有意义的条件是⎩⎪⎨⎪⎧-1≤x ≤2 015,x -1≠0解得-1≤x <1或1<x ≤2015.故函数g (x )的定义域为[-1,1)∪(1,2 015].5.设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ).,则f (x )的值域是( )A .[-94,0]∪(1,+∞)B .[0,+∞)C .[-94,+∞)D .[-94,0]∪(2,+∞)解析:选D.令x <g (x ),即x 2-x -2>0,解得x <-1或x >2.令x ≥g (x ),即x 2-x -2≤0,解得-1≤x ≤2.故函数f (x )=⎩⎪⎨⎪⎧x 2+x +2(x <-1或x >2),x 2-x -2(-1≤x ≤2).当x <-1或x >2时,函数f (x )>f (-1)=2;当-1≤x ≤2时,函数f (12)≤f (x )≤f (-1),即-94≤f (x )≤0.故函数f (x )的值域是[-94,0]∪(2,+∞).6.下表表示y 是x 的函数,则函数的值域是________.解析:函数值只有四个数2,3,4,5,故值域为{2,3,4,5}. 答案:{2,3,4,5}7.已知函数f (x )=1x +1,则函数f [f (x )]的定义域是__________.解析:根据题意可得f [f (x )]=11x +1+1,要使函数有意义,只需⎩⎨⎧x +1≠0,1x +1+1≠0,解得x ≠-1且x ≠-2,故函数f [f (x )]的定义域为{x |x ≠-1且x ≠-2}.答案:{x |x ≠-1且x ≠-2}8.(2015·温州模拟)若函数f (x )=1x -1在区间[a ,b ]上的值域为⎣⎡⎦⎤13,1,则a +b =________.解析:∵由题意知x -1>0,又x ∈[a ,b ],∴a >1.则f (x )=1x -1在[a ,b ]上为减函数, 则f (a )=1a -1=1且f (b )=1b -1=13,∴a =2,b =4,a +b =6.答案:69.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),求a ,b 的值.解:∵f (x )=12(x -1)2+a -12,∴其对称轴为x =1.即函数f (x )在[1,b ]上单调递增.∴f (x )min =f (1)=a -12=1,①f (x )max =f (b )=12b 2-b +a =b .②又b >1,由①②解得⎩⎪⎨⎪⎧a =32,b =3.∴a ,b 的值分别为32,3.10.已知函数f (x )的值域为[38,49],求函数g (x )=f (x )+1-2f (x )的值域.解:∵38≤f (x )≤49,∴13≤1-2f (x )≤12,令t =1-2f (x ),则f (x )=12(1-t 2),令y =g (x ),∴y =-12(t 2-1)+t .∴当t =13时,y 有最小值79,当t =12时,y 有最大值78.∴g (x )的值域为⎣⎡⎦⎤79,78.1.(2015·河南漯河模拟)已知A ,B 是非空数集,定义A ⊕B ={x |x ∈A ∪B ,且x ∉A ∩B }.若A ={x |y =x 2-3x },B ={y |y =3x },则A ⊕B =( )A .[0,3)B .(-∞,3)C .(-∞,0)∪(3,+∞)D .[0,3]解析:选B.分析得到A =(-∞,0]∪[3,+∞),B =(0,+∞),A ∪B =R ,A ∩B =[3,+∞),所以A ⊕B =(-∞,3).2.设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若对任意的x ∈[a ,b ],都有|f (x )-g (x )|≤1成立,则称f (x )和g (x )在[a ,b ]上是“亲密函数”,区间[a ,b ]称为“亲密区间”.若f (x )=x 2+x +2与g (x )=2x +1在[a ,b ]上是“亲密函数”,则其“亲密区间”可以是( )A .[0,2]B .[0,1]C .[1,2]D .[-1,0]解析:选B.在同一坐标系中作出函数f (x )及g (x )的图象,如图所示.由题意作出与g (x )=2x +1的距离为1的平行线y =2x +2的图象,由图并结合“亲密函数”的定义可知其“亲密区间”可以是[0,1].3.已知函数f (x )的定义域为[0,1],值域为[1,2],则函数f (x +2)的定义域为________,值域为________.解析:由已知可得x +2∈[0,1],故x ∈[-2,-1],所以函数f (x +2)的定义域为[-2,-1].函数f (x )的图象向左平移2个单位得到函数f (x +2)的图象,所以值域不发生变化,所以函数f (x +2)的值域仍为[1,2].答案:[-2,-1] [1,2]4.若函数y =kx 2-6kx +(k +8)的值域为[0,+∞),则k 的取值范围是________.解析:当k =0时,原函数可化为y =8=22,此时值域不是[0,+∞),从而k ≠0. 当k ≠0时,想满足题意,则有⎩⎪⎨⎪⎧k >0,Δ=(-6k )2-4×k ×(k +8)≥0.解得k ≥1,从而k 的取值范围为[1,+∞). 答案:[1,+∞)5.已知函数f (x )=x 2+4ax +2a +6.(1)若函数f (x )的值域为[0,+∞),求a 的值;(2)若函数f (x )的函数值均为非负数,求g (a )=2-a |a +3|的值域. 解:(1)∵函数的值域为[0,+∞), ∴Δ=16a 2-4(2a +6)=0⇒2a 2-a -3=0⇒a =-1或a =32.(2)∵对一切x ∈R 函数值均为非负,∴Δ=8(2a 2-a -3)≤0⇒-1≤a ≤32.∴a +3>0.∴g (a )=2-a |a +3|=-a 2-3a +2=-⎝⎛⎭⎫a +322+174⎝⎛⎭⎫a ∈⎣⎡⎦⎤-1,32. ∵二次函数g (a )在⎣⎡⎦⎤-1,32上单调递减, ∴g ⎝⎛⎭⎫32≤g (a )≤g (-1),即-194≤g (a )≤4. ∴g (a )的值域为⎣⎡⎦⎤-194,4. 6.(选做题)已知函数g (x )=x +1,h (x )=1x +3,x ∈(-3,a ],其中a 为常数且a >0,令函数f (x )=g (x )·h (x ).(1)求函数f (x )的表达式,并求其定义域;(2)当a =14时,求函数f (x )的值域.解:(1)f (x )=x +1x +3,x ∈[0,a ](a >0).(2)当a =14时,函数f (x )的定义域为⎣⎡⎦⎤0,14, 令x +1=t ,则x =(t -1)2,t ∈⎣⎡⎦⎤1,32, f (x )=F (t )=t t 2-2t +4=1t +4t -2,当t =4t时,t =±2∉⎣⎡⎦⎤1,32, 又t ∈⎣⎡⎦⎤1,32时,t +4t单调递减,F (t )单调递增,F (t )∈⎣⎡⎦⎤13,613. 即函数f (x )的值域为⎣⎡⎦⎤13,613.。