重庆八中九年级(上)第一次月考数学试卷
- 格式:pdf
- 大小:385.18 KB
- 文档页数:7
重庆市第八中学2023-2024学年九年级上学期数学月考模拟卷(三)(10月份)(答案)一.选择题(共10小题,满分40分,每小题4分)1.(4分)的相反数是()A.B.﹣5C.5D.【答案】A2.(4分)在如图所示标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】B3.(4分)如图,直线AB∥MN,线段AN和线段BM垂直于点Q,若∠ABM=65°,则∠ANM的度数是()A.23°B.25°C.27°D.30°【答案】B4.(4分)估计的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】C5.(4分)如图,△ABC与△DEF是位似图形,点O为位似中心,已知BO:OE=2:1,则△ABC与△DEF的面积之比是()A.1:2B.1:4C.2:1D.4:1【答案】D6.(4分)关于二次函数y=(x+1)2﹣3,下列说法错误的是()A.图象的开口方向向上B.函数的最小值为﹣3C.图象的顶点坐标为(1,﹣3)D.当x<﹣1时,y随x的增大而减小【答案】C7.(4分)要组织一次篮球联赛,赛制为单循环形式(每两个队之间都赛一场),计划安排28场比赛,应邀请()个球队参加比赛.A.6B.7C.8D.9【答案】C8.(4分)在同一平面直角坐标系中,函数y=ax2+k与y=kx+a(a≠0)的图象可能是()A.B.C.D.【答案】D9.(4分)在矩形ABCD中,对角线AC,BD相交于点O,∠BAD的角平分线交BC于点E,若∠AOB=α,则用α表示∠OAE为()A.B.45°﹣C.45°﹣a D.90°﹣α【答案】B10.(4分)对任意代数式,每个字母及其左边的符号(不包括括号外的符号)称为一个数,如:a﹣(b+c)﹣(﹣d﹣e),其中称a为“数1”,b为“数2”,+c为“数3”,﹣d为“数4”,﹣e为“数5”,若将任意两个数交换位置,则称这个过程为“换位运算”,例如:对上述代数式的“数1”和“数5”进行“换位运算”,得到:﹣e﹣(b+c)﹣(﹣d+a),则下列说法中正确的个数是()①代数式a﹣(b+c﹣d﹣e)进行1次“换位运算”后,化简后结果可能不发生改变②代数式(a﹣b)+(c﹣d)﹣e进行1次“换位运算”,化简后只能得到a﹣b+c﹣d﹣e③代数式a+[b﹣(c﹣d﹣e)]进行1次“换位运算”,化简后可能得到7种结果A.0B.1C.2D.3【答案】D二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:2cos30°﹣﹣()﹣2=﹣2﹣4.【答案】见试题解答内容12.(4分)已知二次函数y=(x+1)2﹣4,当﹣2≤x≤2时,函数y的最大值为5.【答案】5.13.(4分)在﹣2,﹣1,3,0四个数中,随机选取一个数作为二次函数y=x2+bx+3中b的值,则该二次函数的对称轴在y轴右侧的概率是.【答案】.14.(4分)如图,扇形OAB以O为圆心,4为半径,圆心角∠AOB=60°,点C为OB的中点,连接AC.以C为圆心,CB为半径画弧,交AC于点D,则图中阴影部分的面积为π﹣2.(结果保留π)【答案】π﹣2.15.(4分)如图,在矩形ABCD中,AD=8,AB=6,对角线AC、BD相交于点E,将△ADE沿着DE翻折到△FDE,连接CF,则CF的长为.【答案】.16.(4分)如图,二次函数y=2bx+c的图象过点A(﹣3,0),对称轴为直线x=﹣1,给出以下结论:①abc <0;②b2﹣4ac>0;③抛物线与x轴的另一个交点的坐标为(1,0);④若B(﹣,y1),C(﹣,y2)为函数图象上的两点,则y1>y2.其中正确的结论是②③.(填写代表正确结论的序号)【答案】②③.17.(4分)若关于y的不等式组至少有4个整数解,且关于x的分式方程有非负整数解,则所有符合条件的整数a的和是2.【答案】2.18.(4分)一个两位正整数n,如果n满足各数位上的数字互不相同且均不为0,那么称n为“异能数”,将n 的两个数位上的数字对调得到一个新数n',把n'放在n的后面组成第一个四位数,把n放在n'的后面组成第二个四位数,我们把第一个四位数减去第二个四位数后再除以11所得的商记为F(n),例如:n=34时,n'=43,,则F(57)=﹣162;若s、t为“异能数”,其中s=10a+b,t=10x+y(1≤b ≤a≤9,1≤x、y≤5,且a,b,x,y为整数)规定:,若F(s)能被7整除,且F(s)+F(t)﹣81y=162,求K(s,t)的最大值为.【答案】﹣162,.三.解答题(共8小题,满分78分)19.(10分)计算:(1)(x+y)(x﹣2y)+(x﹣y)2+3x•2y;(2).【答案】(1)2x2+3xy﹣y2;(2).20.(8分)如图,在四边形ABCD中,DC∥AB,连接BD.(1)尺规作图:作BD的垂直平分线交AB于点E,交CD于点F,交BD于点O(不写作法,保留作图痕迹);(2)连接DE,BF,求证:四边形DEBF是菱形.完成下列填空.证明:∵DC∥AB;∴∠ABD=∠BDC;又∵EF垂直平分BD,∴OD=OB;又∵∠DOF=∠BOE,∴△DOF≌△BOE(ASA);∴DF=BE;∴四边形DEBF是平行四边形;又∵EF⊥BD;∴四边形DEBF是菱形.【答案】(1)见解答;(2)∠ABD=∠BDC,OD=OB,DF=BE,EF⊥BD.21.(10分)某校为丰富同学们的课余生活,全面提高科学素养,提升思维能力和科技能力,开展了“最强大脑”邀请赛,现从七、八年级中各随机抽取了20名学生的初赛成绩(初赛成绩均为整数,满分为10分,9分及以上为优秀)统计、整理如下:七年级抽取的学生的初赛成绩:6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,9,10,10,10.七、八年级抽取的学生的初赛成绩统计表:年级七年级八年级平均数8.38.3中位数a8众数9b方差 1.41 1.61优秀率50%m%根据以上信息,解答下列问题:(1)填空:a=8.5,b=7,m=45;(2)根据以上数据,你认为七、八年级学生在“最强大脑”邀请赛中,哪个年级的学生初赛成绩更好?请说明理由;(写出一条理由即可)(3)若该校八年级有900名学生参加初赛,规定满分才可进入复赛,请估计八年级进入复赛的学生人数.【答案】(1)8.5,7,45;(2)七年级的学生初赛成绩更好;(3)225人.22.(10分)为了改善小区环境,某小区决定在一块一边靠墙(墙长为25m)的空地上修建一个矩形小花园ABCD.小花园一边靠墙,另三边用总长40m的栅栏围住,如图所示.设矩形小花园AB边的长为xm,面积为ym2.(1)求y与x之间的函数关系式;(2)当x为何值时,小花园的面积最大?最大面积是多少?【答案】(1)y与x之间的函数关系式为y=﹣2x2+40x(≤x<20);(2)当x=10时,小花园的面积最大,最大面积是200m2.23.(10分)某动物园熊猫基地D新诞生了一只小熊猫,吸引了大批游客前往观看.由于A、B之间的道路正在进行维护,暂时不能通行,游客由入口A进入园区之后可步行到达点C,然后可以选择乘坐空中缆车从C→D,也可选择乘坐观光车从C→B→D.已知点C在点A的北偏东45°方向上,点D在点C的正东方向,点B在点A的正东方向300米处,点D在点B的北偏东60°方向上,且BD=400米.(参考数据:,,)(1)求CD的长度(精确到个位);(2)已知空中缆车的速度是每分钟200米,观光车的速度是每分钟320米,若游客想尽快到达熊猫基地D,应【答案】(1)446米;(2)乘坐观光车.24.(10分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,点D是BC的中点,动点M从点B出发,沿着折线B→D→A(含端点)运动,速度为每秒1个单位长度,到达A点停止运动,点E,F分别是射线AB,AC上的动点,AE的长度等于点M走的路程,S△AEF=6,设点M的运动时间为t,点M到AB的距离MH为y1,AF的长度为y2.(1)求y1,y2关于t的函数关系式并写出自变量的取值范围;(2)在直角坐标系中画出y1,y2的图象,并写出函数y1的一条性质;(3)根据图形直接估计当y1≥y2时t的取值范围: 3.9≤t≤8.2.(结果保留1位小数,误差不超过0.2)【答案】(1)y1=,;(2)画图见解析,当t=5时,y1有最大值为4(答案不唯一);(3)3.9≤t≤8.2.25.(10分)如图1,在平面直角坐标系中,直线l1:与x轴交于点A,与y轴交于点B,直线l2:y=2x与直线l1交于点C.(1)求线段AB的长度.(2)如图2,点P是射线CA上的任意一点,过点P作PD∥y轴且与l2交于点D,连接OP,当PD=5时,求△PCO的面积.(3)如图3,在(2)的条件下,将△OCP先向右平移2个单位,再向上平移4个单位,点P的对应点为点F,在y轴上确定一点G,使得以点A,F,G为顶点的三角形是等腰三角形,直接写出所有符合条件的点G的坐标.【答案】(1)2;(2);(3)点G的坐标为:(0,40,6)或(0,1.4).26.(10分)已知,在△ABC中,∠C=90°,AC=BC,E是BC边上一点.(1)如图1,点D是AC边上一点,连接DE,将DE绕点E逆时针旋转90°至EF,连接BF.若AC=4,BE =2,求△BEF的面积;(2)如图2,连接AE,将AE绕点E顺时针旋转90°至EM,连接BM,取BM的中点N,连接EN.试探究线段EN,BE,AB之间的数量关系;(3)如图3,连接AE,P为AE上一点,在AP的上方以AP为边作等边△APQ,刚好点Q是点P关于直线AC 的对称点,连接CP,当CP+AP取最小值的条件下,点G是直线PQ上一点,连接CG,将△CGP沿CG所在直线翻折得到△CGK(△CGK与△ABC在同一平面内),连接AK,当AK取最小值时,请直接写出的值.【答案】(1)2;(2)AB=2NE+BE;(3)2a﹣3a。
2022-2023学年重庆八中九年级(上)月考数学试卷(10月份)一、选择题:在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱2.(4分)二十大报告是对过去十年的总结和对未来的展望,总结到全国各类养老服务机构和设施达36万个,36万用科学记数法可以表示为()A.36×104B.3.6×105C.0.36×106D.3.6×1063.(4分)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a+b>0C.a﹣b>0D.|a|>|b|4.(4分)一个正多边形的一个内角是120°,那么这个正多边形的边数是()A.6B.8C.10D.125.(4分)已知AB是半径为2的圆的一条弦,则AB的长不可能是()A.2B.3C.4D.56.(4分)估计(﹣)的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.(4分)下列说法正确的是()A.对角线相等的四边形一定是矩形B.顺次连接矩形各边中点形成的四边形一定是正方形C.对角线互相平分且相等的四边形一定是菱形D.经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分8.(4分)按如图所示的运算程序,能使输出结果为﹣8的是()A.x=3,y=4B.x=4,y=3C.x=﹣4,y=2D.x=﹣2,y=49.(4分)如图,在△ABC中,∠B=30°,∠C=45°,DF⊥AC,垂足为F,DE⊥AB,垂足为E.若DE =DF=1,则△ABD的面积与△ACD的面积之比为()A.B.2C.D.310.(4分)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列结论正确的是()A.abc>0B.a﹣b+c<0C.2a+b>0D.a+b+c>011.(4分)已知二次函数y=ax2﹣4x+6的顶点在第二象限,且关于x的分式方程+﹣1=0有整数解,则符合条件的所有整数a的个数为()A.1B.2C.3D.412.(4分)已知两个多项式A=x2+3x+3,B=x2﹣3x+3,x为实数,将A、B进行加减乘除运算:①若A+B=4,则x=2;②若A×B=0,则关于x的方程无实数根;③若|A﹣B﹣12|+|A﹣B+24|=36,则x的取值范围是﹣4≤x≤2;④若x为正整数,且为整数,则x的取值个数为7个,上面说法中正确的是()A.②③B.③④C.①②④D.②③④二、填空题:(本大题共4个小题,每小题4分,共16分)请将每小题的答案直接填在答墨卡中对应的横线上.13.(4分)若=tan60°,则x﹣1=.14.(4分)一个不透明袋子里装有4个小球(只有编号不同),编号分别为0,1,2,3,从中任意摸出两个球,两球编号之和为奇数的概率是.15.(4分)如图,在Rt△ABC中,∠ACB=90°,BC=2,AC=2,以点C为圆心,BC为半径作圆弧交AC于点D,交AB于点E.则阴影部分的面积为.16.(4分)某车间有A,B,C型的生产线共10条,A,B,C型生产线每条生产线每小时的产量分别为4m,2m,m件,m为正整数,该车间准备增加3种类型的生产线共8条,其中B型生产线增加2条,后改进方案,每条生产线(包括之前的和新增的生产线)每小时的产量将增加3件.统计发现,增加生产线后,该车间每小时的总产量恰比增加生产线前增加了92件,且C型生产线每小时的产量与三种类型生产线每小时的总产量之比为4:13,请问增加生产线后,该车间所有生产线每小时的总产量为件.三、解答题:(本大题共2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答罩卡中对应的位置上.17.(8分)计算:(1)(x﹣3)2﹣x(x﹣6);(2)(a+)÷.18.(8分)如图,在平行四边形ABCD中,对角线AC与BD交于点O.(1)尺规作图:过点O作直线l⊥AC,分别交AD、BC于点E、F(基本作图,保留作图痕迹,不写作法,不下结论);(2)连接CE、AF,求证:四边形AECF为菱形.证明:∵四边形ABCD为平行四边形,且O为平行四边形ABCD对角线交点,∴①.∵l⊥AC,∴AE=EC.∵四边形ABCD为平行四边形,∴②,∴∠CAD=∠ACB.在△AOE与△COF中,,∴△AOE≌△COF(ASA),∴③,∴四边形AECF是平行四边形.又∵④,∴四边形AECF为菱形.19.(10分)在常态化疫情防控工作形势下,某校通过云讲解、云参观、云课堂等方式立体讲解中国首批国家公园,并组织初中全体学生发起了“大美我家园敬畏大自然”的主题教育活动,为了解学生对中国国家公园的了解程度,随机抽取了七年级、八年级学生若干名(抽取的各年级学生人数相同)进行网上问卷测试,并对得分情况进行整理和分析(得分用整数x表示,单位:分),且分为A,B,C三个等级,分别是:优秀为A等级:85≤x≤100,合格为B等级:70≤x<85,不合格为C等级:0≤x<70.分别绘制成如下统计图表,其中七年级学生测试成绩数据的众数出现在A组,A组测试成绩情况分别为:85,85,87,92,95,95,95,95,97,98,99,100;八年级学生测试成绩数据的A组共有个a人.七年级、八年级两组样本数据的平均数、中位数、众数和方差如表所示:成绩平均数中位数众数方差七年级85b c99.5八年级85919695.1根据以上信息,解答下列问题:(1)填空:a=,b=,c=;(2)根据以上数据,你认为该学校哪个年级的测试成绩更好,并说明理由;(3)若该校七、八年级分别有1500人,请估计该校初中七、八年级学生中成绩为优秀的学生共有多少名?四、解答题:(本大题共7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上20.(10分)反比例函数y1=(k≠0)与一次函数y2=ax+b(a≠0)交于A(4,1),B(1,m)两点.(1)求出一次函数y2的解析式,并在网格中画出一次函数y2的图象;(2)结合图象,直接写出当x>0时不等式ax+b≤的解集;(3)点C与点A关于原点对称,过点A作直线AD∥x轴,交直线BC于点D,求△ABD的面积.21.(10分)如图,某小区A栋楼在B栋楼的南侧,两楼高度均为82m,楼间距为MN,春分日正午,太阳光线与水平面所成的角为60°,A栋楼在B栋楼墙面上的影高为DM;冬至日正午,太阳光线与水平面所成的角为45°,A栋楼在B栋楼墙面上的影高为CM,已知CD=32m,(参考数据≈1.41,≈1.73)(1)求楼间距MN;(结果保留根号)(2)王老师家住B栋3楼,点M处为地面1楼,楼房层高2.8米,问王老师家能否照到春分日正午的太阳?并说明理由.22.(10分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23.(10分)对任意一个三位自然数m,若m满足百位数字与个位数字之差等于十位数字与1的差,且各位数字都不为零,那么称这个三位数为“差一数”,将这个“差一数”的百位数字移动到剩余两位数的右侧形成一个新的三位数m′,规定f(m)=.例如自然数m=652,6﹣2=5﹣1,所以m为“差一数”,将m的百位数字6移动到剩余两位数52的右侧得到新的三位数m'=526,所以f(652)==14.(1)判断752,863是否是“差一数”,并说明理由;如果是,求出对应的f(m)的值;(2)自然数m是“差一数”,若f(m)是能被5整除,同时f(m)除以4余3,求所有满足条件的m.24.(10分)如图,抛物线y=﹣x2﹣2x+3与x轴交于点A,B(点A在点B左侧),与y轴交于点C,连接AC.(1)求线段AC的长;(2)点P为直线AC上方抛物线上一点,求四边形P ABC面积的最大值及此时点P的坐标;(3)将原抛物线沿射线AC方向平移个单位长度得到抛物线y′,y′与原抛物线交于点M,点N在直线AC上,在平面直角坐标系中是否存在点R,使以点A、M、N、R为顶点的四边形是以AM为边的菱形,若存在,请直接写出点R的坐标,并选择其中一个点写出求解过程;若不存在,请说明理由.25.(10分)如图,在△ABC中,∠BAC=90°,AB=AC.(1)如图1,点D为△ABC内一点,连接AD,过点A作AE⊥AD,AD=AE,连接DE,BD,CE,已知AB=,AD=1,当B、D、E三点共线时,求ABCE的面积;(2)如图2,在AC上取点D,连接BD,过点A作AE⊥BD于点F,AE=BD,取BC中点G,连接GE,ED,在AB上取点M,过点M作MN∥DE交BC于点N,MN=GE,求证:BN=DC;(3)如图3,在AC上取点D,连接BD,将△ABD沿BD翻折至ABDE处,在AC上取点F,连接BF,过点E作EG⊥BF于点G,GE交BF于点H,连接AH,若GE:BF=:2,AB=2,求AH的最小值.参考答案一、选择题:在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.A;2.B;3.D;4.A;5.D;6.A;7.D;8.C;9.C;10.D;11.A;12.D;二、填空题:(本大题共4个小题,每小题4分,共16分)请将每小题的答案直接填在答墨卡中对应的横线上.13.;14.;15.+;16.130;三、解答题:(本大题共2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答罩卡中对应的位置上.17.(1)9;(2).;18.OA=OC;AD∥BC;AE=CF(或OE=OF);AE=EC;19.13;86;95;四、解答题:(本大题共7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上20.(1)y2=﹣x+5;(2)0<x≤1或x≥4;(3)9.;21.(1)(16+16)m;(2)能,理由详见解答.;22.;23.(1)752不是“差一数”,863为“差一数”;(2)满足条件的m为:762,964.;24.(1)3;(2),P点坐标为(﹣,);(3)存在,(3,8)或(1,6)或(1,2).;25.(1)3;(2)见解答过程;(3).。
重庆市第八中学2024-2025学年九年级上学期数学第一阶段月考模拟试卷一、单选题1.15-的相反数是( ) A .5 B .5- C .15 D .15- 2.下列音符中,是中心对称图形的是( )A .B .C .D . 3.已知反比例函数k y x =的图象经过点(2,-2),则k 的值为 A .4 B .12- C .-4 D .-24.4月23日为世界读书日,为了解八年级1000学生的阅读时间,从中抽取100名学生进行调查,下列说法正确的是( )A .样本容量是100名B .每个学生是个体C .100名学生是总体的一个样本D .1000名学生的阅读时间是总体 5.如图,ABC V 和A B C '''V 是以点O 为位似中心的位似图形,点A 在线段OA '上.若:1:2OA AA '=,则ABC V 和A B C '''V 的周长之比为( )A .1:2B .1:4C .4:9D .1:36.下列图形都是用同样大小的梅花图案按一定规律组成,其中第①个图形中有4朵梅花,第②个图形中有8朵梅花,第③个图形中有14朵梅花,第④个图形中有22朵梅花.按此规律摆放下去,则第⑦个图形中梅花朵数为( )A .44B .58C .74D .927.二次函数y =2x 2﹣1的图象的顶点坐标是( )A .(﹣1,0)B .(1,0)C .(0,1)D .(0,﹣1) 8.设m m 的值应在( )A .7-和6-之间B .6-和5-之间C .5-和4-之间D .4-和3-之间 9.如图,已知四边形ABCD 为正方形,E 为对角线AC 上一点,连接BE , 过 点E 作EF BE ⊥,交DA 的延长线于点F,AE =2AF =, 则BE 的长为( )A.B.C .6 D.10.给定一列数,我们把这列数中第一个数记为1a ,第二个数记为2a ,第三个数记为3a ,以此类推,第n 个数记为n a (n 为正整数).已知1,)0(1a x x x =≠≠,并规定:11n n n a a a +-=,123n n T a a a a =⋅⋅K ,123n n S a a a a =++++L ,下列说法:①215a a =;②123202421T T T T x +++⋯+=+;③对于任意正整数k ,都有()31332323132k k k k k k T S S T T T ++-++-=⋅-成立.其中正确的个数是( )A .0个B .1个C .2个D .3个二、填空题11.计算:01cos60()2+o =. 12.正八边形的一个内角的度数是 度.13.在Rt ABC △中,90C ∠=︒,5tan 12A =,则cos A 的值是. 14.某学校组织学生到社区开展公益宣传活动,成立了“垃圾分类”“文明出行”“低碳环保”三个宣传队,如果小华和小丽每人随机选择参加其中一个宣传队,则她们恰好选到同一个宣传队的概率是.15.如图,在Rt ABC △中, 90ACB ∠=︒,点D 为AB 的中点,连接CD ,过点B 作BE CD ⊥于点E ,点F 为AC 上一点,CDF CBA ∠=∠,若1BC =,2AB =,则EF 的长为 .16.若关于x 的不等式组341227x x a x +⎧-≥⎪⎨⎪->⎩无解,且关于y 的分式方程3122y a y y y +=---的解为非负整数,则符合条件的所有整数a 的和为.17.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,将矩形ABCD 沿对角线BD 折叠,点C 的对应点为点E ,BE 分别交AD ,AC 于点P ,Q .若4AB =,BE AC ⊥,则PQ 的长为 .18.如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足2a b c d ++=,那么称这个四位数为“和方数”.例如:四位数2613,因为22613++=,所以2613是“和方数”;四位数2514,因为22514++≠,所以2514不是“和方数”.若354a 是“和方数”,则这个数是;若四位数M 是“和方数”,将“和方数”M的千位数字与百位数字对调,十位数字与个位数字对调,得到新数N ,若M N +能被33整除,则满足条件的M 的最大值是.三、解答题19.化简:(1)()()()2223x y y x x y -+--; (2)2542111--⎛⎫++÷ ⎪--⎝⎭x x x x x x . 20.重庆实验外国语学校举行了“书香文化节”知识竞赛,从中随机抽取男生、女生各20名同学的竞赛成绩(满分50分)进行整理和分析,得分用x 表示.共分成四组: A :4244x <≤;B :4446x <<;C :4648x <≤;D :4850x <≤;下面给出了部分信息:男生在C 组的数据个数为5个,20名女生的竞赛成绩为: 50,50,48,44,46,50,46,49,50,48,45,50,50,50,49,48,50,46,50,50.根据以上信息,解答下列问题:(1)填空:a =,b =,m =;(2)根据以上数据,你认为该校女生与男生的竞赛成绩谁更好?请说明理由;(3)若该校有3000名男生和3200名女生,估计该校竞赛成绩为满分的人数.21.在ABC V 中 ,AB AC =,AD BC ⊥ 于点D ,点 E 为线段AD 上一点,连接BE ,CE .用直尺和圆规,在BC 的下方作CBF ∠,使得B CBF E C =∠∠,交AD 的延长线于点F ,连接CF .小明想要研究两底角顶点B 、,C 底边高线上的点E ,及该点关于底边的对称点F 所形成的四边形BFCE 的形状,请根据他的思路完成以下填空:证明:AB AC =Q ,AD BC ⊥,BD ∴= ,又CBF BCE ∠=∠Q ,BDF CDE =∠∠,BDF CDE ∴V ≌,BF ∴= ,CBF BCE ∠=∠Q ,∴,∴四边形BFCE 是平行四边形.又EF BC ⊥Q ,∴四边形BFCE 是菱形.小明进一步研究发现,任意等腰三角形均有此特征.请你依照题意完成下面命题:在等腰三角形中, .22.中秋节,又称祭月节、月光诞、月夕、秋节、团圆节等,是中国民间传统节日.中秋节这天人们都要吃月饼以示“团圆”.商家购甲,乙两种月饼礼盒,已知每盒乙月饼礼盒进价比甲月饼礼盒进价多40元,用8000元购进甲月饼礼盒和用10000元购进乙月饼礼盒的数量相同.(1)求甲、乙月饼礼盒的进价各为多少元?(2)甲月饼礼盒每盒售价为210元,每天可卖出30盒;乙月饼礼盒每盒售价为260元,每天可卖出15盒.在销售过程中为了增大甲月饼礼盒的销量,商家决定对甲月饼礼盒进行降价销售,在现有售价的基础上,每降价1元,可多售出2盒.为更大程度让利顾客,每盒甲月饼礼盒售价多少元时,商家日盈利可达到3000元?23.如图,在ABC V 中,6AB =,8BC =,点P 为AB 上一点,AP x =,过点P 作PQ BC ∥交AC 于点Q .点P ,Q 的距离为1y ,ABC V 的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2) 24.如图,甲、乙两艘货轮同时从A 港出发,分别向B ,D 两港运送物资,最后到达A 港正东方向的C 港装运新的物资.甲货轮沿A 港的东南方向航行40海里后到达B 港,再沿北偏东60︒方向航行一定距离到达C 港.乙货轮沿A 港的北偏东60︒方向航行一定距离到达D 港,再沿南偏东30︒方向航行一定距离到达C 港. 1.41≈ 1.73≈ 2.45≈)(1)求A ,C 两港之间的距离(结果保留小数点后一位);(2)若甲、乙两艘货轮的速度相同(停靠B 、D 两港的时间相同),哪艘货轮先到达C 港?请通过计算说明.25.如图,在平面直角坐标系中,抛物线22y ax bx =+-与x 轴交于点()40A ,和点()10B -,,与y 轴交于点C ,连接AC BC 、.(1)求抛物线的表达式;(2)如图1,点P 是直线AC 下方抛物线上的一动点,过点P 作直线PD AC ∥交x 轴于点D ,过点P 作PE AC ⊥于点E ,求出PE AD +的最大值及此时点P 的坐标;(3)如图2,在(2)的条件下,连接OP 交AC 于点Q ,将原抛物线沿射线CA单位得到新抛物线1y ,在新抛物线1y 上存在一点M ,使OQC MAC BCO ∠-∠=∠,请直接写出所有符合条件的点M 的横坐标.26.如图,在ABC V 中,45BAC ∠=︒,CD AB ⊥于点D ,E 为AD 上一点,连接CE .(1)如图1,若CE 平分ACD ∠,3CD =,求线段AE 的长;(2)如图2,过点E 作FE CE ⊥交CB 的延长线于点F ,连接AF ,G 为AF 的中点,连接GE ,若EF EC =,猜想线段GE ,AE ,AC 之间的数量关系,并证明你的猜想;(3)如图3,过点D 作AC 的垂线交AC 于点H ,点P 是直线DH 上一动点,连接AP ,将AP 绕A 点顺时针旋转60︒得'AP ,连接DP ',CP ',CP '与直线AP 交于点Q ,当AQ 最小时,请直接写出ADP PAHS S '△△的值.。
2019-2020学年重庆八中九年级(上)第一次月考数学试卷一、填空题(每小题3分,共18分)1.(3分)(2019秋•沙坪坝区校级月考)一元二次方程22137x x -=的二次项系数为 ,一次项系数为 ,常数项为 .2.(3分)(2014•淄博)已知ABCD ,对角线AC ,BD 相交于点O ,请你添加一个适当的条件,使ABCD 成为一个菱形,你添加的条件是 .3.(3分)(2014•泉州)如图,Rt ABC ∆中,90ACB ∠=︒,D 为斜边AB 的中点,10AB cm =,则CD 的长为 cm .4.(3分)(2019秋•沙坪坝区校级月考)若1x 与2x 一元二次方程26150x x --=的两根,则12x x += ,12x x = .5.(3分)(2015•温州)一个不透明的袋中只装有1个红球和2个蓝球,它们除颜色外其余均相同.现随机从袋中摸出两个球,颜色是一红一蓝的概率是 .6.(3分)(2011•黄冈)如图:矩形ABCD 的对角线10AC =,8BC =,则图中五个小矩形的周长之和为 .二、选择题(每小题只有一个正确选项,每小题4分,共32分) 7.(4分)(2017•红桥区三模)方程22x x =的解是( )A .2x =B .12x =,20x =C .1x =20x =D .0x =8.(2016秋•天水期中)方程||(2)310m m x mx -++=是关于x 的一元二次方程,则( ) A .2m =±B .2m =C .2m =-D .2m ≠±9.(4分)(2013•兰州)用配方法解方程2210x x --=时,配方后得的方程为( )A .2(1)0x +=B .2(1)0x -=C .2(1)2x +=D .2(1)2x -=10.(4分)(2011•无锡)菱形具有而矩形不一定具有的性质是( ) A .对角线互相垂直 B .对角线相等 C .对角线互相平分D .对角互补11.(4分)(2017春•和平区期末)顺次连接矩形ABCD 各边中点所得四边形必定是()A .平行四边形B .矩形C .正方形D .菱形12.(4分)(2013•衡阳)某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x ,根据题意列方程得( ) A .2168(1)128x += B .2168(1)128x -= C .168(12)128x -=D .2168(1)128x -=13.(4分)(2015秋•深圳期末)如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,AE BD ⊥于E ,若24OAE ∠=︒,则BAE ∠的度数是( )A .24︒B .33︒C .42︒D .43︒14.(4分)(2014•孝感)如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点(5,3)D 在边AB 上,以C 为中心,把CDB ∆旋转90︒,则旋转后点D 的对应点D '的坐标是( )A .(2,10)B .(2,0)-C .(2,10)或(2,0)-D .(10,2)或(2,0)-三、解答题(本大题共9小题,共70分)15.(5分)(2019秋•沙坪坝区校级月考)解下列方程 (1)26180x x --=;(2)7(52)6(52)+=+.x x x16.(6分)(2018•莘县二模)已知:如图,在矩形ABCD中,点E,F分别在AB,CD 边上,BE DF=,连接CE,AF.求证:AF CE=.17.(8分)(2019秋•沙坪坝区校级月考)如图,矩形ABCD的对角线AC的垂直平分线EF 与AD、AC、BC分别交于点E、O、F.(1)求证:四边形AFCE是菱形;(2)若5AB=,12EF=,求菱形AFCE的面积.BC=,618.(8分)(2015•李沧区一模)小明、小芳做一个“配色”的游戏.右图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其它情况下不分胜负.(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;(2)此游戏的规则,对小明、小芳公平吗?试说明理由.19.(7分)(2014•新疆)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?20.(9分)(2019秋•沙坪坝区校级月考)某超市销售一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能销售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:(1)每千克涨价x元,那么销售量表示为千克,涨价后每千克利润为元(用含x的代数式表示.)(2)要使得月销售利润达到8000元,又要“薄利多销”,销售单价应定为多少?这时应进货多少千克?21.(6分)(2017秋•惠城区期末)已知关于x的方程220++-=.x ax a(1)证明:不论a取任何实数,该方程都有两个不相等的实数根;(2)当1a=时,求该方程的根.22.(8分)(2019秋•沙坪坝区校级月考)如图,在ABC∆中,点O是AC边上的一动点,过O作直线//∠的外角平分线于点F.∠的平分线于点E,交BCAMN BC,设MN交BCA(1)求证:EO FO=;(2)当O点运动到何处时,四边形AECF是矩形?并证明你的结论.23.(8分)(2016秋•江都区期中)阅读下面的例题:解方程2||20x x --=解:当0x …时,原方程化为220x x --=,解得:12x =,21x =-(不合题意,舍去); 当0x <时,原方程化为220x x +-=,解得:11x =,(不合题意,舍去)22x =-;∴原方程的根是12x =,22x =-.请参照例题解方程2|1|10x x ---=.2019-2020学年重庆八中九年级(上)第一次月考数学试卷参考答案与试题解析一、填空题(每小题3分,共18分)1.(3分)(2019秋•沙坪坝区校级月考)一元二次方程22137x x -=的二次项系数为 2 ,一次项系数为 ,常数项为 .【解答】解:由22137x x -=得到:227130x x --=,所以该方程的二次项系数为 2,一次项系数为7-,常数项为13-. 故答案是:2;7-;13-.2.(3分)(2014•淄博)已知ABCD ,对角线AC ,BD 相交于点O ,请你添加一个适当的条件,使ABCD 成为一个菱形,你添加的条件是 AD DC = . 【解答】解:邻边相等的平行四边形是菱形,∴平行四边形ABCD 的对角线AC 、BD 相交于点O ,试添加一个条件:可以为:AD DC =;故答案为:AD DC =.3.(3分)(2014•泉州)如图,Rt ABC ∆中,90ACB ∠=︒,D 为斜边AB 的中点,10AB cm =,则CD 的长为 5 cm .【解答】解:90ACB ∠=︒,D 为斜边AB 的中点,1110522CD AB cm ∴==⨯=. 故答案为: 5 .4.(3分)(2019秋•沙坪坝区校级月考)若1x 与2x 一元二次方程26150x x --=的两根,则12x x += 6 ,12x x = . 【解答】解:根据题意得: 126x x +=,1215x x =-,故答案为:6,15-.5.(3分)(2015•温州)一个不透明的袋中只装有1个红球和2个蓝球,它们除颜色外其余均相同.现随机从袋中摸出两个球,颜色是一红一蓝的概率是 23. 【解答】解:画树状图得:共有6种等可能的结果,随机从袋中摸出两个球,颜色是一红一蓝的有4种情况,∴随机从袋中摸出两个球,颜色是一红一蓝的概率是:4263=. 故答案为:23. 6.(3分)(2011•黄冈)如图:矩形ABCD 的对角线10AC =,8BC =,则图中五个小矩形的周长之和为 28 .【解答】解:由勾股定理,得6AB ==,将五个小矩形的所有上边平移至AD ,所有下边平移至BC ,所有左边平移至AB ,所有右边平移至CD ,∴五个小矩形的周长之和2()2(68)28AB BC =+=⨯+=.故答案为:28.二、选择题(每小题只有一个正确选项,每小题4分,共32分) 7.(4分)(2017•红桥区三模)方程22x x =的解是( )A .2x =B .12x =,20x =C .1x =20x =D .0x =【解答】解:220x x -=, (2)0x x -=, 0x =或20x -=,所以10x =,22x =. 故选:B .8.(2016秋•天水期中)方程||(2)310m m x mx -++=是关于x 的一元二次方程,则( ) A .2m =±B .2m =C .2m =-D .2m ≠±【解答】解:方程||(2)310m m x mx -++=是关于x 的一元二次方程, ||2m ∴=,且20m -≠.解得:2m =-. 故选:C .9.(4分)(2013•兰州)用配方法解方程2210x x --=时,配方后得的方程为( ) A .2(1)0x +=B .2(1)0x -=C .2(1)2x +=D .2(1)2x -=【解答】解:把方程2210x x --=的常数项移到等号的右边,得到221x x -=, 方程两边同时加上一次项系数一半的平方,得到22111x x -+=+ 配方得2(1)2x -=. 故选:D .10.(4分)(2011•无锡)菱形具有而矩形不一定具有的性质是( ) A .对角线互相垂直 B .对角线相等 C .对角线互相平分D .对角互补【解答】解:A 、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B 、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求;C 、菱形和矩形的对角线都互相平分;故本选项不符合要求;D 、菱形对角相等;但菱形不具备对角互补,故本选项不符合要求;故选:A .11.(4分)(2017春•和平区期末)顺次连接矩形ABCD 各边中点所得四边形必定是()A .平行四边形B .矩形C .正方形D .菱形【解答】解:如图:E ,F ,G ,H 为矩形的中点,则AH HD BF CF ===,AE BE CG DG ===,在Rt AEH ∆与Rt DGH ∆中,AH HD =,AE DG =,AEH DGH ∴∆≅∆, EH HG ∴=,同理,AEH DGH BEF CGF DGH ∆≅∆≅∆≅∆≅∆, EH HE GF EF ∴===,EHG EFG ∠=∠,∴四边形EFGH 为菱形.故选:D .12.(4分)(2013•衡阳)某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x ,根据题意列方程得( ) A .2168(1)128x += B .2168(1)128x -= C .168(12)128x -=D .2168(1)128x -=【解答】解:根据题意得:2168(1)128x -=, 故选:B .13.(4分)(2015秋•深圳期末)如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,AE BD ⊥于E ,若24OAE ∠=︒,则BAE ∠的度数是( )A .24︒B .33︒C .42︒D .43︒【解答】解:AE BD ⊥,90AEO ∴∠=︒,9066AOE OAE ∴∠=︒-∠=︒,四边形ABCD 是矩形, 12OA OC AC ∴==,12OB OD BD ==,AC BD =, OA OB ∴=,1(18066)572OAB OBA ∴∠=∠=︒-︒=︒,33BAE OAB OAE ∴∠=∠-∠=︒;故选:B .14.(4分)(2014•孝感)如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点(5,3)D 在边AB 上,以C 为中心,把CDB ∆旋转90︒,则旋转后点D 的对应点D '的坐标是()A .(2,10)B .(2,0)-C .(2,10)或(2,0)-D .(10,2)或(2,0)-【解答】解:点(5,3)D 在边AB 上, 5BC ∴=,532BD =-=,①若顺时针旋转,则点D '在x 轴上,2OD '=, 所以,(2,0)D '-,②若逆时针旋转,则点D '到x 轴的距离为10,到y 轴的距离为2, 所以,(2,10)D ',综上所述,点D '的坐标为(2,10)或(2,0)-. 故选:C .三、解答题(本大题共9小题,共70分)15.(5分)(2019秋•沙坪坝区校级月考)解下列方程 (1)26180x x --=; (2)7(52)6(52)x x x +=+. 【解答】解:(1)2618x x -=,269189x x ∴-+=+,即2(3)27x -=,则3x -=±,13x ∴=+23x =-(2)7(52)6(52)0x x x +-+=,(52)(76)0x x ∴+-=,则520x +=或760x -=, 解得125x =-,267x =. 16.(6分)(2018•莘县二模)已知:如图,在矩形ABCD 中,点E ,F 分别在AB ,CD边上,BE DF =,连接CE ,AF .求证:AF CE =.【解答】证明:四边形ABCD 是矩形,//DC AB ∴,DC AB =,//CF AE ∴,DF BE =,CF AE ∴=,∴四边形AFCE 是平行四边形,AF CE ∴=.17.(8分)(2019秋•沙坪坝区校级月考)如图,矩形ABCD 的对角线AC 的垂直平分线EF 与AD 、AC 、BC 分别交于点E 、O 、F .(1)求证:四边形AFCE 是菱形;(2)若5AB =,12BC =,6EF =,求菱形AFCE 的面积.【解答】解:(1)四边形ABCD 是矩形,//AE FC ∴,EAO FCO ∴∠=∠, EF 垂直平分AC ,AO CO ∴=,FE AC ⊥,又AOE COF ∠=∠,()AOE COF AAS ∴∆≅∆,EO FO ∴=,∴四边形AFCE 为平行四边形,又FE AC ⊥,∴平行四边形AFCE 为菱形;(2)在Rt ABC ∆中,由5AB =,12BC =,根据勾股定理得:13AC ===,132OA ∴=, EAO ACB ∠=∠,tan tan EAO ACB ∴∠=∠, ∴EO AB AO BC=,即513122EO =, 6524EO ∴=, 6512EF ∴= ∴菱形AFCE 的面积116584513221224S AC EF ==⨯⨯=18.(8分)(2015•李沧区一模)小明、小芳做一个“配色”的游戏.右图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,或者转盘A 转出了蓝色,转盘B 转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其它情况下不分胜负.(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;(2)此游戏的规则,对小明、小芳公平吗?试说明理由.【解答】解:(1)用列表法将所有可能出现的结果表示如下:所有可能出现的结果共有12种.(2)不公平.上面等可能出现的12种结果中,有3种情况可能得到紫色,故配成紫色的概率是312,即小明获胜的概率是14;但只有2种情况才可能得到绿色,配成绿色的概率是212,即小强获胜的概率是16.而1146>,故小芳获胜的可能性大,这个“配色”游戏对双方是不公平的.19.(7分)(2014•新疆)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【解答】解:设AB的长度为x米,则BC的长度为(1004)x-米.根据题意得(1004)400x x-=,解得120x=,25x=.则100420x-=或100480x-=.8025>,25x∴=舍去.即20AB =,20BC =.答:羊圈的边长AB ,BC 分别是20米、20米.20.(9分)(2019秋•沙坪坝区校级月考)某超市销售一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能销售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:(1)每千克涨价x 元,那么销售量表示为 (50010)x - 千克,涨价后每千克利润为 元(用含x 的代数式表示.)(2)要使得月销售利润达到8000元,又要“薄利多销”,销售单价应定为多少?这时应进货多少千克?【解答】解:(1)由题意可知:销售量为(50010)x -千克,涨价后每千克利润为:504010x x +-=+(千克)故答案是:(50010)x -;(10)x +;(2)210(20)9000y x =--+,即销售单价每涨价20元,售价为502070+=元时,月销售利润最高利润为9000元;(3)由题意可列方程:(10)(50010)8000x x +-=,整理,得:2403000x x -+=解得:110x =,230x =,因为又要“薄利多销”所以30x =不符合题意,舍去.答:销售单价应涨价10元.21.(6分)(2017秋•惠城区期末)已知关于x 的方程220x ax a ++-=.(1)证明:不论a 取任何实数,该方程都有两个不相等的实数根;(2)当1a =时,求该方程的根.【解答】(1)证明:△2224(2)48(2)4a a a a a =--=-+=-+.2(2)0a -…,2(2)40a ∴-+>,即△0>,∴不论a 取任何实数,该方程都有两个不相等的实数根;(2)解:当1a =时,原方程为210x x +-=,△2141(1)5=-⨯⨯-=,1x ∴,2x =. 22.(8分)(2019秋•沙坪坝区校级月考)如图,在ABC ∆中,点O 是AC 边上的一动点,过O 作直线//MN BC ,设MN 交BCA ∠的平分线于点E ,交B C A ∠的外角平分线于点F .(1)求证:EO FO =;(2)当O 点运动到何处时,四边形AECF 是矩形?并证明你的结论.【解答】(1)证明://MN BC ,CE 平分ACB ∠,CF 平分ACD ∠, BCE ACE OEC ∴∠=∠=∠,OCF FCD OFC ∠=∠=∠,OE OC ∴=,OC OF =,OE OF ∴=.(2)解:当O 运动到AC 中点时,四边形AECF 是矩形,AO CO =,OE OF =,∴四边形AECF 是平行四边形,12ECA ACF BCD ∠+∠=∠, 90ECF ∴∠=︒,∴四边形AECF 是矩形.23.(8分)(2016秋•江都区期中)阅读下面的例题:解方程2||20x x --=解:当0x …时,原方程化为220x x --=,解得:12x =,21x =-(不合题意,舍去); 当0x <时,原方程化为220x x +-=,解得:11x =,(不合题意,舍去)22x =-; ∴原方程的根是12x =,22x =-.请参照例题解方程2|1|10x x ---=.【解答】解:当10x -…即1x …时,原方程化为2(1)10x x ---= 即20x x -=, 解得10x =,21x =,1x …,1x ∴=;当10x -<即1x <时,原方程化为2(1)10x x +--= 即220x x +-=, 解得12x =-,211x x =<,2x ∴=-,∴原方程的根为11x =,22x =-.。
重庆市第八中学校2021-2022学年九年级上学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.数2的倒数是( ) A .2- B .2 C .12-D .122.若分式2xx -有意义,则x 的取值范围是( ) A .2x >B .0x ≠C .0x ≠且2x ≠D .2x ≠3.计算62a a ÷的结果是( ) A .2aB .3aC .4aD .5a4.如图,ABC 与DEF 位似,点O 是它们的位似中心,其中3OE OB =,则ABC 与DEF 的面积之比是( )A .1:2B .1:4C .1:3D .1:95 )A .5B .C .D .6.对于抛物线()213y x =+﹣,下列结论:①抛物线的开口向下;②对称轴为直线1x =;③顶点坐标是()1,3--;④1x >-时,y 随x 的增大而减小.其中正确结论的个数为( ) A .1B .2C .3D .47.下列命题是真命题的是( ) A .对角线相等的四边形是平行四边形 B .对角线互相平分且相等的四边形是矩形 C .对角线互相垂直的四边形是菱形D .对角线互相垂直平分的四边形是正方形8.点()112,P y -,()221,P y -,()335,P y 均在二次函数221y x x =-++的图象上,则1y ,2y ,3y 的大小关系是( )A .321y y y >>B .312y y y >>C .123y y y >>D .213y y y >>9.一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离乙地的距离y (单位:km )与慢车行驶时间x (单位:h )的函数关系如图,则两车先后两次相遇的间隔时间是( )hA .52B .94C .2110D .210.如图,某大楼AB 正前方有一栋小楼ED ,小明从大楼顶端A 测得小楼顶端E 的俯角为45度,从大楼底端B 测得小楼顶端E 的仰角为24度,小楼底端D 到大楼前梯坎BC 的底端C 有90米,梯坎BC 长65米,梯坎BC 的坡度1:2.4i =,则大楼AB 的高度为( )(结果精确到1米,参考数据:sin 240.41︒≈,cos240.91︒≈,tan 240.45︒≈)A .217B .218C .242D .24311.若关于x 的一元一次不等式组()31212x x x a ⎧-<+⎨≤+⎩的解集为4x <,且关于y 的分式方程2422y a ay y++=--的解是非负整数解,则所有满足条件的整数a 的值之和是( ) A .5 B .7 C .13 D .1512.如图,在直角坐标系中,四边形OABC 为正方形,且边BC 与y 轴交于点M ,反比例函数k y x =()0k ≠的图像经过点A ,若2CM BM =且135OBM S =△,则k 的值为( )A .185-B .165C .185D .365二、填空题13.2021年9月17日,神舟十二号载人飞船返回舱在东风着陆场成功着陆,中国空间站阶段首次载人飞行任务取得圆满成功,此次任务总时长为129600分钟,将数129600用科学记数法表示为______.14()0cos301︒+︒-=______.15.如图,Rt ABC 中,90BAC ∠=︒,5BC =,4cos 5C =,将CAB △绕A 点按顺时针方向旋转后得到EAD ,且点D 点刚好落在BC 上,则BD =______.16.四张背面相同的卡片,分别标记有1-,1,2,3的数字,洗匀后背面朝上,先从中抽取一张,把抽到的点数记为a ,不放回,再从剩下的卡片中抽取一张,把抽到的数记为c ,使得抛物线2y ax c =+的图像与x 轴有交点的概率为______.17.如图,Rt ABC 中,90ACB ∠=︒,点D 为边AB 的中点,连接CD ,将BDC 沿直线CD 翻折至ABC 所在平面内,得EDC △,连接BE ,分别与边CD 交于点O ,与AC 交于点F .若AEF CEF S S =△△,6AB =,则点E 到BC 的距离为______.18.某商店销售A 、B 、C 三种产品,七月份A 和B 两种产品销售数量之比为2:1,已知C 产品每件售价为30元,每件利润率为50%,且C 产品每件的成本比A 产品每件的成本少10元,比B 产品每件的成本少15元八月份C 产品销售量与七月份一样,A 产品销售量比七月份增加50%,B 产品销售量是七月份的三倍,且八月份三种产品的总销售量比七月份多了300件.八月份A 产品的成本和售价保持不变,8月份B 产品成本增加了1元,售价增加了5元,8月份C 产品成本不变,售价减少了2元,发现7月份C 产品的销售额占7月份总销售额的75%,A 产品两个月总利润是C 产品两个月总利润的518,那么在8月份销售8件A 产品的利润比销售1件B 产品的利润多______元.三、解答题 19.计算:(1)()()()2a b ab b a b +++﹣; (2)24816455x x x x x x +-+⎛⎫++÷ ⎪--⎝⎭. 20.为了庆祝新中国成立72周年,某校学生处在七年级和八年级开展了“迎国庆·弘扬中华传统文化”知识竞赛活动,并从七、八年级各随机抽取了40名同学的知识竞赛成绩数据,并将数据进行整理分析(竞赛成绩用x 表示,共分为四个等级:A .70x <, B .7080x ≤<,C .8090x ≤<, D .90100x ≤≤) 下面给出了部分信息:七年级C 等中全部学生的成绩为:86,87,83,89, 84,89,86,89,89,85. 八年级D 等中全部学生的成绩为:92,95,98,98, 98,98,100,100,100,100. 七、八年级抽取的学生知识竞赛成绩统计表根据以上信息,解答下列问题:(1)直接写出上述表中a,b,c,m的值;(2)根据以上数据,你认为该校七、八年级的知识竞赛,哪个年级的成绩更好,并说明理由(写出一条理由即可);(3)该校七年级的1800名学生和八年级的2500名学生参加了此次知识竞赛,若成绩在90分(包含90分)以上为优秀,请你估计两个年级此次知识竞赛中优秀的人数.21.如图,在平行四边形ABCD中,AC为对角线.(1)用尺规完成以下基本作图:过点A作BC边的垂线交BC于点E.(保留作图痕迹,不写作法,只下结论)(2)在(1)所作的图形中,若12tan5B=,24AE=,30AC=,求边AD的长.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数621xyx-=+的性质及其应用的部分过程,请按要求完成下列各小题.(1)请把如表补充完整,并在给出的图中补全该函数的大致图象;(2)请根据这个函数的图象,写出该函数的一条性质;(3)已知函数3y x 的图象如图所示.根据函数图象,直接写出不等式6231xx x -+>+的解集.(近似值保留一位小数,误差不超过0.2)23.巫溪某村民承包土地发展李子种植,2020年开始大量投产增收,其中早熟李种植面积亩数是晚熟李种植面积亩数的3倍,早熟李、晚熟李分别收益60000元和40000元,而早熟李平均每亩收益比晚熟李少1000元.(1)2020年早熟李、晚熟李种植面积分别有多少亩?(2)在扶贫专家小组的精准帮助下,优化管理,淘汰了部分低产李子林改种其他经济作物增加收益,2021年,早熟李、晚熟李的种植面积比2020年分别降低了1%3a 和%a ,然而平均每亩早熟李和晚熟李的收益在2020年基础上分别增加了%a 和1%2a ,2021年两种李子的总收益与2020年两种李子总收益相等,求a 的值.24.如果一个四位自然数M ,如果它的千位加上百位等于十位加上个位且每个数位上的数字均不为零,我们称这个四位数为“欣欣向荣数”.我们把M 的千位和十位、千位和个位、百位和十位、百位和个位组成的四个两位数的和再除以11的商记为()F M ,例如:四位数1524,1524+=+,∴1524+=+,∴1524是“欣欣向荣数”,那么()121452541211F M +++==.(1)判断2332和2544是不是“欣欣向荣数”,并说明理由;(2)一个四位数自然数N 是“欣欣向荣数”,它的个位与千位之和为9且自然数N 能被13整除,求出()F N 的值.25.如图,直线y =x 轴、y 轴分别交于A 、B 两点,抛物线2y ax bx c=++()0a ≠经过A 、B 两点,与x 轴交于点C ,若tan BCA ∠=(1)求抛物线的解析式;(2)点P 为直线BC 上方抛物线上一点,连接PC ,PB ,求四边形OBPC 面积的最大值及此时点P 的坐标;(3)把抛物线2y ax bx c =++()0a ≠向右平移12物线,点M 是新抛物线上一点,点N 是原抛物线对称轴上一点,直接写出所有使得以点B ,C ,M ,N 为顶点的四边形是平行四边形的点N 的坐标,并把求其中一个点N 的坐标的过程写出来.26.在锐角ABC 中,AB AC =,点D 是线段BC 上一动点,连接AD ,将AD 绕着点A 顺时针旋转至AE ,使得2DAE BAC ∠=∠,连接DE ,交线段AB 于点F .在线段AC 上有一点G ,连接DG 使得180EDG DAE ∠+∠=︒.(1)如图1当60BAC ∠=︒,45BAD ∠=︒时,2BD =,求AG 的长;(2)如图2,连接FG ,猜想EF ,FG ,GD 的数量关系,并证明你的猜想;(3)如图3,以线段AD ,AE 为边构造平行四边形ADPE ,若P ,D ,G 三点共线,连接EG ,当ED 最小时,2DG ,请直接写出PEG △的周长.参考答案1.D 【分析】直接利用倒数的定义求2的倒数是12; 【详解】解:2的倒数是12; 故选:D . 【点睛】本题考查倒数;熟练掌握倒数的求法是解题的关键. 2.D 【分析】根据分式有意义时分母不为0 即可解答问题. 【详解】 解:若2xx - 有意义,则20x -≠, 即2x ≠ . 故选:D . 【点睛】本题考查了分式有意义的条件,掌握分式的分母不能为0 是解题的关键. 3.C 【分析】直接利用同底数幂的除法运算法则计算得出答案. 【详解】 解:624a a a ÷=. 故选:C . 【点睛】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键. 4.D 【分析】由位似三角形的含义可得:1,3BC OB EF OE ==再利用位似图形的面积比等于位似比的平方可得答案. 【详解】 解: 3OE OB =1,3OB OE ∴=ABC 与DEF 位似,点O 是它们的位似中心,1,3BC OB EF OE ∴== 21.9ABC DEFS BC SEF ⎛⎫∴== ⎪⎝⎭ 故选:D 【点睛】本题考查的是位似三角形的含义,位似三角形的性质,掌握“位似三角形的面积之比等于位似比的平方”是解题的关键. 5.C 【分析】根据二次根式的运算,求解即可. 【详解】故选C 【点睛】此题考查了二次根式的乘法和加法运算,熟练掌握二次根式的有关运算法则是解题的关键. 6.A 【分析】根据二次函数的性质对各小题分析判断即可得解. 【详解】解:①∵a =1>0,∴抛物线的开口向上,故本小题错误; ②对称轴为直线x =-1,故本小题错误; ③顶点坐标为(-1,3),正确;④∵x >-1时,y 随x 的增大而增大,∴x >1时,y 随x 的增大而增大,故本小题错误;综上所述,结论正确的个数是③共1个.故选:A .【点睛】本题考查了二次函数的性质,主要利用了抛物线的开口方向、对称轴、顶点坐标,以及二次函数的增减性.7.B【分析】A 、根据平行四边形的判定定理作出判断;B 、根据矩形的判定定理作出判断;C 、根据菱形的判定定理作出判断;D 、根据正方形的判定定理作出判断.【详解】解:A 、对角线互相平分的四边形是平行四边形;故本选项错误,不符合题意;B 、对角线互相平分且相等的四边形是矩形;故本选项正确,符合题意;C 、对角线互相垂直的平行四边形是菱形;故本选项错误,不符合题意;D 、对角线互相垂直平分且相等的四边形是正方形;故本选项错误,不符合题意; 故选:B .【点睛】本题综合考查了正方形、矩形、菱形及平行四边形的判定.解答此题时,必须理清矩形、正方形、菱形与平行四边形间的关系.8.D【分析】先求出抛物线的对称轴方程,然后根据二次函数的性质,通过比较三个点到对称轴的距离大小可得到y 1,y 2,y 3的大小关系.【详解】二次函数y =-x 2+2x + c 的图象的对称轴为直线x =()221⨯- =1,a =-1<0,开口向下; ∵P 1(-2,y 1)和P 2(-1,y 2)、P 3(5,y 3)到直线x =1的距离分别为3和2、4; ∴y 2>y 1>y 3,故选D.【点睛】本题考查了二次函数的性质,掌握二次函数的性质是解题的关键.. 9.B【分析】根据图象得出,慢车的速度为540=609km h,快车的速度为540=1803km h利用方程思想即可分别求出两次相遇时间;从而得出答案.【详解】解,设第一次相遇的时间为慢车出发后a h,由题可知, 60a=180(a-3)解得:a=9 2设第二次相遇时间为慢车出发后b h,由题可知, 60b=180(9-b)解得:b=27 4∴2799 424-=h故选:B【点睛】本题主要考查了函数图像的分析能力,分析图像得到正确的有效数据是解题的关键.10.B【分析】延长AB交DC于H,作EG⊥AB于G,设BH=x米,则CH=2.4x米,在Rt△BCH中,BC=65米,由勾股定理得出方程,解方程求出BH=25米,CH=60米,得出EG的长度,在Rt△GBE 中,利用正切函数得出BG的长度,证明△AEG是等腰直角三角形,得出AG=EG=150米,即可得出大楼AB的高度.【详解】解:如图,延长AB交DC于H,作EG⊥AB于G,则四边形GHDE为矩形,∴GH=DE,EG=DH,∵梯坎坡度i=1:2.4,∴BH:CH=1:2.4,设BH=x米,则CH=2.4x米,在Rt△BCH中,BC=65米,由勾股定理得:x2+(2.4x)2=652,解得:x=25(负值已舍),∴BH=25米,CH=60米,∴EG=DH=CH+CD=60+90=150(米),在Rt△GBE中,∠BEG=24°,∴BG=EG tan24︒=150⨯0.45=67.5(米),在Rt△GAE中,∠EAG=90°-45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=150(米),∴AB=AG+BG=150+67.5≈218(米);故选:B.【点睛】本题考查了解直角三角形的应用-坡度、俯角问题;通过作辅助线运用勾股定理求出BH,得出EG是解决问题的关键.11.C【分析】先计算不等式组的解集,根据“同小取小”原则,得到24a +≥解得2a ≥,再解分式方程得到8=3a y -,根据分式方程的解是非负整数解,得到8a ≤,且8a -是3的倍数,据此解得所有符合条件的整数a 的值,最后求和.【详解】解不等式()3121x x -<+得,4x <,2x a ≤+不等式组的解集为:4x <24a ∴+≥2a ∴≥ 解分式方程2422y a a y y++=--得 2422y a a y y +-=-- 24(2)y a a y ∴+-=- 整理得8=3a y -, 20,y -≠ 则82,3a -≠ 2,a ∴≠分式方程的解是非负整数解,803a -∴≥ 8a ∴≤,且8a -是3的倍数,28a ∴<≤,且8a -是3的倍数,∴整数a 的值为58,5813∴+=故选:C .【点睛】本题考查解含参数的一元一次不等式、解分式方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.12.D【分析】设BM =a 则CM =2a ,作BH ⊥y 轴,AD ⊥x 轴,证明△OMC ∽△BMH ,利用三边对应成比例可求BH ,再借助135OBM S =△求出a 的值,从而求出△OMC 的三边长,证明△OMC ∽△OAD ,求出OD 、AD 的值,再求出k 得值.【详解】设BM =a 则CM =2a ,∴CB =CO =OA =3a, OM =作BH ⊥y 轴,AD ⊥x 轴∵∠C =∠BHM =90°,∠CMO =∠HMB∴△OMC ∽△BMH∴HB MB CO MO= 即3HB a =∴HB ∵135OBM S =△ ∴11325BH OM ⨯⨯=∴11325=解得:a = ∵∠COM +∠MOA =∠MOA +∠AOD∴∠COM =∠AOD∵∠C =∠ADO =90°∴△OCM ∽△ODA∴CO CM OM OD AD AO ==即32a a OD AD ==OD AD ∴==== ∴k=OD ×AD =365 故答案选:D【点睛】本题考查了相似三角形的性质及判定以及反比例函数解析式的确定,其中相似三角形的性质及判定是解题的关键.13.51.29610⨯【分析】根据科学记数法的表示形式为a ×10n 的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:129600用科学记数法表示为51.29610⨯.故答案为:51.29610⨯.【点睛】本题主要考查了科学记数法的表示方法,熟练掌握科学记数法的表示形式为a ×10n 的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值是解题的关键. 14.2【分析】分别计算特殊角的三角函数值零指数幂,化简后再进行计算.【详解】()030cos30112︒+︒-=, 故答案是:2.【点睛】本题考查了特殊角的三角函数值,零指数幂,熟悉相关性质是解题的关键.15.185【分析】先求出4AC =,3AB =,作AF ⊥BC 于点F ,利用旋转的性质和等腰三角形的性质得到125AF =,再求出95DF =,即可得到答案. 【详解】解:根据题意,∵Rt ABC 中,90BAC ∠=︒,5BC =, ∴4cos 5AC C BC ==, ∴4AC =;由勾股定理,则3=AB ;将CAB △绕A 点按顺时针方向旋转后得到EAD ,且点D 点刚好落在BC 上,作AF ⊥BC 于点F ,如图:∴AD =AB =3,∠AFC =90°,BF =DF =12BD , ∵1122BC AF AB AC •=•, ∴1153422AF ⨯•=⨯⨯, ∴125AF =,∴95DF ==, ∴918255BD =⨯=; 故答案为:185. 【点睛】 本题考查了三角函数,旋转的性质,勾股定理解直角三角形,等腰三角形的性质,解题的关键是掌握所学的知识,正确的作出辅助线进行解题.16.12## 【分析】当抛物线2y ax c =+的图像与x 轴有交点,可得()00,ac a ≤≠再利用列表的方法得到()00ac a ≤≠的情况数有6种,所有的等可能的结果有12种,从而可得答案.【详解】 解: 抛物线2y ax c =+的图像与x 轴有交点,2040,ac ∴=-≥ 即()00,ac a ≤≠而,a c 的取值列表如下:一共有12种等可能的情况,使()00ac a ≤≠有6种,所以:使得抛物线2y ax c =+的图像与x 轴有交点的概率为:61.122= 故答案为:1.2【点睛】本题考查的是二次函数与x 轴的交点问题,等可能事件的概率,掌握“列表法求解概率与0≥时,二次函数的图象与x 轴有交点”是解题的关键.17 【分析】过点E 作EG BC ⊥的延长线,交BC 于点G ,根据Rt ABC 中,90ACB ∠=︒,6AB =,可得3AD BD CD ===,再根据BDC 沿直线CD 翻折得EDC △,易得3AD BD ED ===,则有ABE △是直角三角形,并有:点A ,E ,C ,B 四点在以点D 为圆心的圆上;AEF CEF S S =△△,可得AF FC =,2AC FC =,根据CEF CAE ∠=∠,ECF ACE ∠=∠,可证ECF ACE ,则有EC FCAC EC =,可求出EC =,CB CE =,再利用勾股定理,可得FC得BC =AC =设OD x =,则3OC x =-,利用折叠得性质和勾股定理可得1OD =,2OC =,并可得22AE OD ==,EB =1122BC EG EB OC =,求解后可得点E 到BC 的距离.【详解】解:如图示,过点E 作EG BC ⊥的延长线,交BC 于点G ,∵Rt ABC 中,90ACB ∠=︒,6AB =,点D 为边AB 的中点,∴3AD BD CD ===,又∵将BDC 沿直线CD 翻折得EDC △,∴C BDC ED ≅,∴3ED BD ==,CE CB =,∴3AD BD ED ===,∴ABE △是直角三角形,90AEB =︒∠,并有:点A ,E ,C ,B 四点在以点D 为圆心的圆上,∵AEF CEF S S =△△,且AEF ,CEF △同高,∴AF FC =,2AC FC =∵CE CB =∴CEF CAE ∠=∠∵ECF ACE ∠=∠∴ECF ACE ∴EC FC AC EC=, ∴2222EC FC AC FC FC FC ===即:EC = ∴CB CE =在Rt ABC 中,222AC BC AB +=∴())22226FC +=, 解之得:FC ∴BC EC ==,2AC FC ==∵BDC 沿直线CD 翻折得EDC △,点B 的对称点是点E ,对称轴CD∴EB CD ⊥,OE OB =,设OD x =,则3OC x =-,则有2222CE OC ED OD -=-,即:(()222233x x --=- 解之得:1x =,∴1OD =,312OC =-=,又∵OE OB =,AD BD =,∴OD 是AEB △的中位线,∴22AE OD ==在Rt ABE 中,222EB AB AE =-∴EB =在BCE 中,1122BC EG EB OC =即: 422EB OC EG BC ==. 【点睛】 本题主要考查相似三角形的判定与性质,圆周角定理,折叠的性质,勾股定理的应用等知识点,能作出辅助线,灵活运用等面积法,是解题的关键.18.91【分析】设七月份A 产品的售价为m 元,B 产品的售价为n 元,根据题中的等量关系,求得,m n 的关系式,即可求解. 【详解】解:设七月份B 销售数量为x ,C 产品的销售数量为y ∵已知七月份A 和B 两种产品销售数量之比为2:1 ∴A 产品的销售数量为2x又∵已知八月份C 产品销售量与七月份一样,A 产品销售量比七月份增加50%,B 产品销售量是七月份的三倍∴八月份A 产品销售量为3x ,B 产品销售量为3x ,C 产品的销售数量为y 又∵已知八月份三种产品的总销售量比七月份多了300件 ∴6(3)300x y x y +-+=,解得100x = 设七月份C 产品的成本为z 元,∵已知C 产品每件售价为30元,每件利润率为50% ∴3050%z z -=⨯,解得20z =C 产品每件的成本比A 产品每件的成本少10元,比B 产品每件的成本少15元∴七月份A 产品每件的成本为30元,B 产品每件的成本为35元,C 产品每件的成本为20元∵八月份A 产品的成本保持不变,8月份B 产品成本增加了1元,8月份C 产品成本不变 ∴八月份A 产品每件的成本为30元,B 产品每件的成本为36元,C 产品每件的成本为20元设七月份A 产品的售价为m 元,B 产品的售价为n 元,C 产品的售价为30元 ∵八月份A 产品的售价保持不变, B 产品售价增加了5元, C 产品售价减少了2元 ∴八月份A 产品每件的售价为m 元,B 产品的售价为5n +元,C 产品的售价为28元 已知7月份C 产品的销售额占7月份总销售额的75%,A 产品两个月总利润是C 产品两个月总利润的518,则: 3075%(20010030)5(30)200(30)300[(3020)(2820)]18y m n y m m y y =⨯++⎧⎪⎨-⨯+-⨯=-+-⎪⎩, 化简得:2010(30)100y m ny m =+⎧⎨=-⨯⎩,可得3008n m += 8月份销售8件A 产品的利润为8(30)m -元, 销售1件B 产品的利润为53631n n +-=-元那么在8月份销售8件A 产品的利润比销售1件B 产品的利润多 8(30)(31)820991m n m n ---=--=元故答案为91 【点睛】此题考查了一次方程的应用,解题的关键是根据题中的等量关系,求得,m n 的关系式. 19.(1)2a 2ab +;(2)44x x +- 【分析】(1)根据整式的乘法以及加减运算,求解即可; (2)根据分式的加减乘除运算,求解即可. 【详解】(1)解:原式222222a b ab b a ab =-++=+ (2)解:原式()()()()()()()2244544545444x x x x x x x x x x x +++-+--+=⋅==---- 【点睛】此题考查了整式和分式的加减乘除运算,熟练掌握相关运算法则是解题的关键. 20.(1)10a =,89=b ,25c =,10m =;(2)七年级,见解析;(3)七年级810人,八年级625人 【分析】(1)根据七年级C 等中有10名学生,可求出C 等学生占总体的比例,而得到c 的值;根据扇形统计图各部分所占的百分比,可求出a ;七年级学生中,D 等学校占中45%,即有.4045%18⨯=.人,将七年级C 等中全部学生的成绩按从小到大排列后,可得七年级学生成绩的中位数b ;根据八年级学生中满分有4人,可求出满分率,可得 m ; (2)根据中位数,满分率解答即可,(3)根据七、八年级样本中的优秀率,分别用1800和2500相乘即可求出结果. 【详解】解:(1)∵根据题意可知,七年级C 等中有10名学生, ∴C 等学生占总体的:10100%25%40⨯=, ∴25c =,∴10045252010a =---=∵七年级C 等中全部学生的成绩为:86,87,83,89,84,89,86,89,89,85, 按从小到大排列后是:83,84,85,86,86, 87, 89, 89, 89,89, ∵七年级学生中,D 等学校占中45%,即有4045%18⨯=人, ∴七年级抽取的学生中,中位数是:8989892+=, ∵八年级D 等中全部学生的成绩为:92,95,98,98,98,98,100,100,100,100,满分有4人,∴八年级D 等中全部学生的成绩满分率为:4%100%10%40m =⨯= ∴10m =综上所述,10a =,89=b ,25c =,10m =;(2)七年级更好,平均数相同,但中位数,满分平均7年级更高; (3)七年级中优秀的人数是:45%1800810⨯=, ∵八年级D 等学生有10人, ∴八年级中优秀的人数是:102500250025%62540⨯=⨯=. 【点睛】本题考查扇形统计图、中位数、众数、平均数、利用数据进行决策等知识点,熟悉掌握相关知识点是正确解答的关键. 21.(1)见解析;(2)28 【分析】1)利用基本作图,过A 点作BC 的垂线得到E 点;(2)利用正切的定义得到BE 的长,在Rt △ACE 中,利用勾股定理求出CE 的长,根据平行四边形的性质即可求解. 【详解】解:(1)如图,AE 为所作;(2)∵AE ⊥BC , ∴∠AEB =∠AEC =90°, 在Rt △ABE 中, ∵tan ∠B =AE BE =125,AE =24, ∴BE =10,在Rt △ACE 中,AC =30,AE =24,∴18CE ==, ∵四边形ABCD 是平行四边形, ∴AD =BC =BE +CE =28. 【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了解直角三角形和平行四边形的性质.22.(1)见解析;(2)见解析;(3)31x -<<-或0.6x > 【分析】(1)利用函数解析式分别求出对应的函数值即可;利用描点法画出图象即可; (2)观察图象可到函数的性质; (3)利用图象即可解决问题. 【详解】(1)把表格补充完整如下:(2)函数621xyx-=+的图象如图所示:①该函数图象是轴对称图形,对称轴是y轴;②该函数在自变量的取值范围内,有最大值,当x=0时,函数取得最大值6;③当x<0时,y随x的增大而增大;当x>0时,y随x的增大而减小(以上三条性质写出一条即可);(3)由图象可知,不等式6231xxx-+>+的解集为:31x-<<-或0.6x>.【点睛】本题考查函数图象和性质,能够从表格中获取信息,利用描点法画出函数图象,并结合函数图象解题是关键.23.(1)早熟李种60亩,晚熟李种20亩;(2)50.【分析】(1)设晚熟李、早熟李两个品种种植面积分别是x亩和3x亩;根据题意列出方程组即可得到结论.(2)根据题意列方程式可得到结论.【详解】解:(1)设2020年晚熟李种植面积有x亩,则早熟李种植面积为3x亩,根据题意,得40006000010003x x -= , 解方程,得20x ,经检验,20x是分式方程式得解,360x ∴= ,即2020年早熟李、晚熟李种植面积分别有60亩、20亩.(2)由(1)可得: 2020年早熟李、晚熟李种植面积分别有60亩、20亩,2020年早熟李平均每亩收益为60000100060=元,晚熟李平均每亩收益为40000200020=元, 由题意可得:2021 年早熟李、晚熟李种植面积分别有1601%3a ⎛⎫- ⎪⎝⎭ 亩、()201%a -亩,2021 年早熟李平均每亩收益为()10001%a + 元,晚熟李平均每亩收益为120001%2a ⎛⎫+ ⎪⎝⎭元,由2021 年两种李子的总收益与2020 年两种李子总收益相等,得, ()()11601%10001%201%20001%600004000032a a a a ⎛⎫⎛⎫-⨯++-⨯+=+ ⎪ ⎪⎝⎭⎝⎭令%t a =,则()()11600001140000111000032t t t t ⎛⎫⎛⎫-++-+= ⎪ ⎪⎝⎭⎝⎭,()()()()31125t t t t -++-+= ,223225t t t t +-+--=, 220t t -=,()210t t -=,0t =或0.5=t ,0a =(舍),50a =.答:50a =. 【点睛】本题考查了一元二次方程的应用,正确的理解题意是解答的关键. 24.(1)2332是,2544不是;见解析;(2)16,20,24. 【分析】(1)根据新定义,仿照样例进行解答便可;(2)根据新定义与已知条件,令四位数N 的千位为a ,百位为b ,十位为c ,个位为d ,可得N abcd =,且a b c d +=+,则()22F M a b =+,然后根据:它的个位与千位之和为9且自然数N 能被13整除,分步讨论求解即可.【详解】解:(1)由题意知:2332+=+, ∴2332是“欣欣向荣”; ∵2544+≠+,∴2544不是“欣欣向荣”.(2)令四位数N 的千位为a ,百位为b ,十位为c ,个位为d . 且19a ≤≤,19b ≤≤,19c ≤≤,19d ≤≤,且a ,b ,c ,d 为整数.∴N abcd =.且a b c d +=+()101010101111ac ad bc cd a c a d b c b dF M ++++++++++==()()2020220202221111a b c d a b a b a b ++++++===+千位与百位之和为9,即99d a d a +=⇒=-.a b c d+=+,即9a b c a +=+-,29c a b =+-. ∴()()299101911081N ab a b a a b =+--=+-.N 能被13整除.∴10191108156378861313a b a b a b +-+-=+-+.290a b +-≠,90a -≠.∴9a ≠,9b ≠.∴18a ≤≤,18b ≤≤;291a b +-≥,210a b +≥. ∴856385a b ≤+-≤.∴56313a b +-=,26,39,52,65,78.①563135610a b a b +-=⎧⎨+=⎩,∴12b a =⎧⎨=⎩,210a b +≥,∴舍.②563265629a b a b +-=⎧⎨+=⎩,∴41b a =⎧⎨=⎩,210a b +≥,∴舍.③563395642a b a b +-=⎧⎨+=⎩,∴26b a =⎧⎨=⎩,()12416F N =+=.④563525655a b a b +-=⎧⎨+=⎩,∴55b a =⎧⎨=⎩,()101020F N =+=.⑤563655668a b a b +-=⎧⎨+=⎩,∴103a b =⎧⎨=⎩(舍),48a b =⎧⎨=⎩,()81624F N =+=.⑤563785681a b a b +-=⎧⎨+=⎩(舍).综上:()F N 的值为16,20,24. 【点睛】本题为新定义题型,根据题干中所给的新定义及运算规则来完成相关计算,能根据题目要求,进行分类讨论解答,是解题得关键.25.(1)2y x =(2)32P ⎛- ⎝⎭;(3)N ⎛- ⎝⎭,(1,-,(1,--,见解析【分析】(1)先利用y =+A 、B 坐标,利用正切三角函数求出点C 坐标,利用待定系数法求抛物线解析式即可;(2)过P 作//PQ y 轴交BC 于Q ,利用待定系数法求出BC 的解析式为y =,设P(m .2,根据PQ ∥y 轴,求出Q (m , ,求出PQ =2,求出四边形面积并配方变为顶点式即S 四边形OBPC = S △BOC + S △CPB =232m ⎫=+⎪⎝⎭当m =32-时,OBPC S 四最大(3)把原函数配方为顶点式)2y x 1=+2y =+确定四点坐标2,M m ⎛ ⎝,()1,N n -,(B ,()3,0C -,分类讨论①BC 对角线,②BN 对角线,③BM 对角线,利用平行四边形的性质找出横坐标之间关系与纵坐标之间关系即可求解. 【详解】解:(1)A ,B 为y =x 轴,y 轴交点,∴当x=0时, y =y=0时,0=,1x =,∴1,0A,(B .∵OBtan BCA ∠,∴tan OB BCA OC∠==∴3OC ==, ∴()3,0C -.∵2y ax bx c =++,经过A 、B 、C 三点,将坐标代入抛物线解析式得:0930c a b c a b c ⎧=⎪++=⎨⎪-+=⎩解得c a b ⎧⎪=⎪⎪=⎨⎪⎪==⎪⎩∴)221y x =++(2)过P 作//PQ y 轴交BC 于Q , 设BC 的解析式为1y kx b =+, 将B 、C 两点坐标代入解析式得:1130b k b ⎧=⎪⎨-+=⎪⎩解得1b k ⎧=⎪⎨=⎪⎩∴BC的解析式为y =, 设P (m. 2, ∵PQ ∥y 轴,∴点P 与点Q 的横坐标相同,∴Q (m ,∴PQ =2++⎝=2S △BOC =11322OB OC ⋅==S △CPB =2211322PQ CO ⎛⎫⋅=⨯= ⎪ ⎪⎝⎭∴S 四边形OBPC = S △BOC + S △CPB =2232m ⎫=+⎪⎝⎭,∴当m =32-时,OBPC S 四最大 223322⎫⎛⎫=--⎪ ⎪⎝⎭⎝⎭点P 32⎛- ⎝⎭;(3)∵把抛物线)2y x 1=+12∴新抛物线2112y x ⎫=+-⎪⎝⎭ 212y x ⎫=+⎪⎝⎭=22,M m ⎛ ⎝,()1,N n -,(B ,()3,0C -,①BC 对角线,则B C N M B C N Mx x x x y y y y +=+⎧⎨+=+⎩,20310m n -=-+⎧⎛=- ⎝,解得2m n =-⎧⎪⎨=⎪⎩N ⎛- ⎝⎭;②BN 对角线,则B N C M BN C M x x x x y y y y +=+⎧⎨+=+⎩,20130m n -=-+⎧⎪=+解得2m n =⎧⎪⎨=⎪⎩则(2,M,(1,N -;③BM 对角线,则B M C N BM C N x x x x y y y y +=+⎧⎨+=+⎩,20310m n +=--⎧⎪+,解得4m n =-⎧⎪⎨=-⎪⎩则(4,M --,(1,N --.综上点N的坐标为⎛- ⎝⎭,(1,-.(1,--. 【点睛】本题考查一次函数与两轴交点问题,待定系数法求抛物线解析式,利用线段函数表示面积并求最值,抛物线平移变换,平行四边形的性质,本题难度大,系数为无理数增大难度,要求计算能力强,绘图能力高,熟练掌握二次函数的知识,准确画出图形,灵活应用分类讨论思想和数形结合思想是解题关键.26.(1)AG =(2)EF FG GD =+,见解析;(3)10+【分析】(1)在EF 上截取EM =DG ,连接AM ,作DH ⊥AB 于H ,作AI ⊥ED 于I ,得出△AEM ≌△ADG ,得出AM =AG ,利用勾股定理求出DH =AI =MA = (2)在EF 上截取EM =DG ,连接AM .得出△AEM ≌△ADG ,再证△AFM ≌△AFG 即可;(3)由P ,D ,G 三点共线,得出60°,利用勾股定理和含30°角的直角三角形求解即可.【详解】解:(1)在EF 上截取EM =DG ,连接AM ,作DH ⊥AB 于H ,作AI ⊥ED 于I ,∵180E EDA DAE ∠+∠+∠=︒,∵180EDG DAE ∠+∠=︒,∴EDG E EDA ∠=∠+∠,∴ADG E ∠=∠,∵AE =AD ,∴△AEM ≌△ADG ,∴AM =AG ,MAE GAD ∠=∠,∵60BAC ∠=︒,AB AC =,∴2120DAE BAC ∠=∠=︒,60B ∠=︒,∴30E EDA ∠=∠=︒,∵2BD =,DH ⊥AB ,∴1BH =,DH ,∵45BAD ∠=︒,∴DH AH =DA =∵AI ⊥ED ,30EDA ∠=︒,∴AI = ∵604515MAE GAD ∠=∠=︒-︒=︒,∴45DMA E EAM ∠=∠+∠=︒,∴AI IM ==MA =∴AG =(2)在EF 上截取EM =DG ,连接AM .∵180E EDA DAE ∠+∠+∠=︒,∵180EDG DAE ∠+∠=︒,∴EDG E EDA ∠=∠+∠,∴ADG E ∠=∠,∵AE =AD ,∴△AEM ≌△ADG ,∴AM =AG ,MAE GAD ∠=∠,∴2MAG EAD BAC ∠=∠=∠,∴MAF GAF ∠=∠,∵AF =AF ,∴△AFM ≌△AFG ,∴FM =FG ,∴EF FM EM FG GD =+=+.(3)由(1)得,ADE ADG ∠=∠,ADE AED ∠=∠,∵AE ∥PD ,∴AED EDP ∠=∠,又P ,D ,G 三点共线,∴60PDE ADE ADG ∠=∠=∠=︒,∴60EAD ∠=︒,30BAC ∠=︒,∴DE AD =.当AD BC ⊥时,ED 最小,此时30GDC ∠=︒,∵AB AC =, ∴180-30=752C ︒︒∠=︒, ∴2DG DC ==.Rt ADC 中,15DAC ∠=︒.在AD 上取点L ,使AL =CL ,可得,30CLD ∠=︒,CL =4,勾股定理得DL =∴4AD DP EP =+=.作EN ⊥PD 于N ,∵60EAD P ∠=∠=︒,同理可得,2PN =,3EN =+4GN PD DG PN =+-=EG∴4610PEG C =+++△【点睛】本题考查了全等三角形的性质与判定,等边三角形的性质和判断,勾股定理等知识,解题关键是准确把握已知,得出正确信息,恰当作辅助线利用勾股定理和全等三角形知识解决问题.。
2020-2021学年重庆八中九年级(上)第一次月考模拟数学试卷一、选择题(共12小题).1.sin45°的值是()A.B.C.D.12.如图是由5个大小相同的小正方体摆成的立体图形,它的俯视图是()A.B.C.D.3.在Rt△ABC中,∠C=90°,tan A=,则cos A等于()A.B.C.D.4.下列命题中,是真命题的是()A.对角线相等的平行四边形是菱形B.一组邻边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.四个角相等的四边形是菱形5.估计的值应在()之间.A.0和1B.1和2C.2和3D.3和46.二次函数y=2x2﹣4x﹣6的最小值是()A.﹣8B.﹣2C.0D.67.按如图所示的运算程序,能使输出y值为的是()A.α=60°,β=45°B.α=30°,β=45°C.α=30°,β=30°D.α=45°,β=30°8.如图,已知抛物线y=ax2+bx+c(a≠0)经过点(﹣2,0),对称轴为直线x=1,下列结论中正确的是()A.abc>0B.b=2a C.9a+3b+c<0D.8a+c=09.如图,已知在平面直角坐标系中,Rt△ABC的顶点A(0,3),B(3,0),∠ABC=90°,AC=,函数y=(x>0)的图象经过点C,则k的值为()A.3B.4C.6D.910.如图,为了测量旗杆AB的高度,小明在点C处放置了高度为2米的测角仪CD,测得旗杆顶端点A的仰角∠ADE=50.2°,然后他沿着坡度为i=的斜坡CF走了20米到达点F,再沿水平方向走8米就到达了旗杆底端点B.则旗杆AB的高度约为()米.(参考数据:sin50.2°≈0.77,cos50.2°≈0.64,tan50.2°≈1.2).A.8.48B.14C.18.8D.30.811.如果关于x的不等式组有且只有两个奇数解,且关于y的分式方程﹣=1的解为非负整数,则符合条件的所有整数a的和为()A.8B.16C.18D.2012.如图,在等腰Rt△ABC中∠C=90°,AC=BC=2.点D和点E分别是BC边和AB边上两点,连接DE.将△BDE沿DE折叠,得到△B′DE,点B恰好落在AC的中点处设DE与BB交于点F,则EF=()A.B.C.D.二、填空题(共6小题).13.万众瞩目的重庆来福士广场开业当天,游客数量突破了350000人,比成都来福士广场开业首日游客数量和杭州来福士广场开业首日游客数量的总和还要多,将数据350000用科学记数法表示为.14.计算:|﹣4|+(﹣2)2+cos60°=.15.抛物线y=x2+bx+c的顶点为(1,2),则它与y轴交点的坐标为.16.现有4张完全相同的卡片分别写着数字﹣2,1,3,4.将卡片的背面朝上并洗匀,从中任意抽取一张,将卡片上的数字记作a.再从余下的卡片中任意抽取一张,将卡片上的数字记作c,则抛物线y=ax2+4x+c与x轴有交点的概率为.17.一艘轮船和一艘快艇分别从甲、乙两个港口同时出发(水流速度不计)相向而行,快艇匀速航行到达甲港后,立即原速返回乙港(掉头时间忽略不计),在返回途中追上轮船时刚好到达一个景点,轮船靠岸1小时供游客观赏游玩,然后继续以原速航行到乙港,两船到达乙港均停止航行,轮船和快艇之间的距离y(千米)与轮船出发时间x(小时)之间的函数图象如图所示,当快艇返回到乙港时,轮船距乙港还有千米.18.重阳佳节来临之际,某糕点店对桂圆味,核桃味、绿豆味重阳糕(分别记为A、B、C)进行混装,推出了甲、乙两种盒装重阳糕,盒装重阳糕的成本是盒中所有A、B、C的成本与盒装包装成本之和,每盒甲装有6个A,2个B,2个C,每盒乙装有2个A,4个B,4个C,每盒甲中所有A、B、C的成本之和是1个A成本的15倍,每盒乙的盒装包装成本是每盒甲的盒装包装成本的倍.每盒乙的利润率为20%,每盒乙的售价比每盒甲的售价高20%.当该店销售这两种盒装重阳糕的总销售额为31000元,总利润率为24%时,销售甲种盒装重阳糕的总利润是元.三、解答题(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.19.化简:(1)(2m﹣n)2﹣n(2m+n);(2)(x+2﹣)÷.20.如图,在矩形ABCD中,点E是边BC上的点,AD=DE,AF⊥DE于点F.(1)求证:AF=CD;(2)若CE=12,tan∠ADE=,求EF的长.21.为了加快推进农村电子商务发展,积极助力脱贫攻坚工作,A,B两村的村民把特产“小土豆”在某电商平台进行销售(每箱小土豆规格一致),该电商平台从A,B两村各抽取15户进行了抽样调查,并对每户每月销售的土豆箱数(用x表示)进行了数据整理、描述和分析,下面给出了部分信息:A村卖出的土豆箱数为40≤x<50的数据有:40,49,42,42,43B村卖出的土豆箱数为40≤x<50的数据有:40,43,48,46土豆箱数<3030≤x<4040≤x<5050≤x<60≥60A村03552B村1a45b 平均数、中位数、众数如表所示村名平均数中位数众数A村48.8m59B村47.44656根据以上信息,回答下列问题:(1)表中a=;b=;m=;(2)你认为A,B两村中哪个村的小土豆卖得更好?请说明理由;(3)在该电商平台进行销售的A,B两村村民共210户,若该电商平台把每月的小土豆销售量x在45<x<60范围内的村民列为重点培养对象,估计两村共有多少户村民会被列为重点培养对象?22.小帆根据学习函数的过程与方法,对函数y=x|ax+b|(a>0)的图象与性质进行探究.已知该函数图象经过点(2,1),且与x轴的一个交点为(4,0).(1)求函数的解析式;(2)在给定的平面直角坐标系中:①补全该函数的图象;②当2≤x≤4时,y随x的增大而(在横线上填增大或减小);③当x<4时,y=x|ax+b|的最大值是;①直线y=k与函数y=x|ax+b|有两个交点,则k=.23.如果在一个多位自然数n中,各数位上的数字之和恰好等于10,则称这个数为“十全十美数”,并将它各数位上的数字之积记为F(n).例如在数1234中,因为1+2+3+4=10,所以数1234是“十全十美数”,且F(1234)=1×2×3×4=24.(1)若在一个自然数中的任意两个相邻数位上,左边数位上的数字大于或等于右边数位上的数字,则称这个自然数为“降序数”例如:在数32210中,因为3>2=2>1>0,所以数32210是“降序数”,已知四位自然数a既是“十全十美数”又是“降序数”,它的千位上的数字是5,F(a)=0.将数a千位上的数字减1,个位上的数字加1,得到数b,F(b)=24.求出数a;(2)“十全十美数”P是三位自然数,将数p百位上的数字与个位上的数字交换得到数q,若10p+q=2882,求F(p)的最大.24.柚子糖度高、酸味低,有益身体健康,深受大家喜爱.某水果店在去年8月份购进福建蜜柚和泰国青柚共900个,福建蜜柚进价为6元/个,泰国青柚进价为20元个,两种柚子的总进价不超过12400元.(1)该水果店去年8月份购进福建蜜柚最少多少个?(2)今年8月份,该水果店用和去年8月份相同的进价购进两种柚子,福建蜜柚购进数量为去年8月份购进数量的最小值,售价为16元/个.泰国青柚购进数量为去年8月份购进数量的最大值,售价为30元/个,两种柚子全部卖出.今年9月份,该水果店购进与上个月数量相同,进货单价相同的福建蜜柚.为了进一步占领市场份额,水果店对福建蜜柚进行了降价促销,它的售价在上个月的基础上先降价a%,再“买三送一”(每买3个就免费赠送1个,即4个装成一袋,一袋以3个的价格出售,但消费者只能整袋购买).受各种因素的影响,与上个月相比,泰国青柚的进价下降40%,进货量下降a%,售价上涨2a%.两种柚子卖完后,该水果店今年9月份销售两种柚子的总利润比上个月上涨,求a的值.25.己知抛物线与x轴交于点A(﹣2,0)、B(3,0),与y轴交于点C(0,4).(1)求抛物线的解析式;(2)如图1,点P是抛物线上位于第一象限内的一点,当四边形ABPC的面积最大时,求出四边形ABPC的面积最大值及此时点P的坐标.(3)如图2,将抛物线向右平移个单位,再向下平移2个单位.记平移后的抛物线为y',若抛物线y'与原抛物线对称轴交于点Q.点E是新抛物线y'对称轴上一动点,在(2)的条件下,当△PQE是等腰三角形时,求点E的坐标.参考答案一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C.D的四个答案,其中只有--个是正确的,请将答题卡上题号右侧正确答案所对应的框涂黑.1.sin45°的值是()A.B.C.D.1解:sin45°=.故选:B.2.如图是由5个大小相同的小正方体摆成的立体图形,它的俯视图是()A.B.C.D.解:从上面看易得第一层有2个正方形,第二层有2个正方形.故选:D.3.在Rt△ABC中,∠C=90°,tan A=,则cos A等于()A.B.C.D.解:如图:设BC=5x,∵tan A=,∴AC=12x,AB==13x,∴cos A===.故选:D.4.下列命题中,是真命题的是()A.对角线相等的平行四边形是菱形B.一组邻边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.四个角相等的四边形是菱形解:A、对角线相等的平行四边形是矩形,故错误,不符合题意;B、一组邻边相等的平行四边形是菱形,故错误,不符合题意;C、对角线互相垂直的平行四边形是菱形,正确,是真命题,符合题意;D、四个角相等的四边形是矩形,故原命题错误,不符合题意,故选:C.5.估计的值应在()之间.A.0和1B.1和2C.2和3D.3和4解:=﹣3,∵3<<4,∴0<﹣3<1,故选:A.6.二次函数y=2x2﹣4x﹣6的最小值是()A.﹣8B.﹣2C.0D.6解:y=2x2﹣4x﹣6=2(x﹣1)2﹣8,因为图象开口向上,故二次函数的最小值为﹣8.故选:A.7.按如图所示的运算程序,能使输出y值为的是()A.α=60°,β=45°B.α=30°,β=45°C.α=30°,β=30°D.α=45°,β=30°解:A、α=60°,β=45°,α>β,则y=sinα=;B、α=30°,β=45°,α<β,则y=cosβ=;C、α=30°,β=30°,α=β,则y=sinα=;D、α=45°,β=30°,α>β,则y=sinα=;故选:C.8.如图,已知抛物线y=ax2+bx+c(a≠0)经过点(﹣2,0),对称轴为直线x=1,下列结论中正确的是()A.abc>0B.b=2a C.9a+3b+c<0D.8a+c=0解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=1,∴﹣=1,∴b=﹣2a>0,∵抛物线交y轴的正半轴,∴c>0,∴abc<0,故A、B错误;∵抛物线的对称轴为直线x=1,而点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∴当x=3时,y=9a+3b+c>0,故C错误;∵抛物线y=ax2+bx+c经过点(﹣2,0),∴4a﹣2b+c=0,∵b=﹣2a,∴4a+4a+c=0,即8a+c=0,故D正确,故选:D.9.如图,已知在平面直角坐标系中,Rt△ABC的顶点A(0,3),B(3,0),∠ABC=90°,AC=,函数y=(x>0)的图象经过点C,则k的值为()A.3B.4C.6D.9解:过点C作CD⊥x轴,垂足为D,∵A、B的坐标分别是(0,3)、(3、0),∴OA=OB=3,在Rt△AOB中,AB2=OA2+OB2=18,又∵∠ABC=90°,∴∠OAB=∠OBA=45°=∠BCD=∠CBD,∴CD=BD,∴BC2=2CD2,∵AC=,在Rt△ABC中,AB2+BC2=AC2,∴18+2BD2=20,∴CD=BD=1,∴C(4,1),代入函数y=(x>0)得:k=4,故选:B.10.如图,为了测量旗杆AB的高度,小明在点C处放置了高度为2米的测角仪CD,测得旗杆顶端点A的仰角∠ADE=50.2°,然后他沿着坡度为i=的斜坡CF走了20米到达点F,再沿水平方向走8米就到达了旗杆底端点B.则旗杆AB的高度约为()米.(参考数据:sin50.2°≈0.77,cos50.2°≈0.64,tan50.2°≈1.2).A.8.48B.14C.18.8D.30.8解:如图,延长AB交水平线于M,作FN⊥CM于N,延长DE交AM于H.在Rt△CFN中,∵=,CF=20米,∴FN=BM=12米,CN=16米,∴DH=CM=16+8=24米,在Rt△ADH中,AH=DH•tan50.2=24×1.2=28.8米,∴AB=AM﹣BM=AH+HM=BM=28.8+2﹣12=18.8米,故选:C.11.如果关于x的不等式组有且只有两个奇数解,且关于y的分式方程﹣=1的解为非负整数,则符合条件的所有整数a的和为()A.8B.16C.18D.20解:不等式组整理得:,解得:<x≤6,由不等式组有且只有两个奇数解,得到1≤<3,解得:2≤a<10,即整数a=2,3,4,5,6,7,8,9,分式方程去分母得:3y+a﹣10=y﹣2,解得:y=,由分式方程解为非负整数,得到a=2,6,8,之和为16,故选:B.12.如图,在等腰Rt△ABC中∠C=90°,AC=BC=2.点D和点E分别是BC边和AB边上两点,连接DE.将△BDE沿DE折叠,得到△B′DE,点B恰好落在AC的中点处设DE与BB交于点F,则EF=()A.B.C.D.解:∵在等腰Rt△ABC中∠C=90°,AC=BC=2,∴AB=AC=4,∠A=∠B=45°,过B′作B′H⊥AB与H,∴△AHB′是等腰直角三角形,∴AH=B′H=AB′,∵AB′=AC=,∴AH=B′H=1,∴BH=3,∴BB′===,∵将△BDE沿DE折叠,得到△B′DE,∴BF=BB′=,DE⊥BB′,∴∠BHB′=∠BFE=90°,∵∠EBF=∠B′BH,∴△BFE∽△BHB′,∴=,∴=,∴EF=,故答案为:.故选:C.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.万众瞩目的重庆来福士广场开业当天,游客数量突破了350000人,比成都来福士广场开业首日游客数量和杭州来福士广场开业首日游客数量的总和还要多,将数据350000用科学记数法表示为 3.5×105.解:350000=3.5×105,故答案为:3.5×105.14.计算:|﹣4|+(﹣2)2+cos60°=8.5.解:|﹣4|+(﹣2)2+cos60°=4+4+0.5=8.5故答案为:8.5.15.抛物线y=x2+bx+c的顶点为(1,2),则它与y轴交点的坐标为(0,3).解:∵抛物线y=x2+bx+c的顶点为(1,2),∴抛物线为y=(x﹣1)2+2=x2﹣2x+3,令x=0得:y=3,∴与y轴的交点坐标为(0,3),故答案为:(0,3).16.现有4张完全相同的卡片分别写着数字﹣2,1,3,4.将卡片的背面朝上并洗匀,从中任意抽取一张,将卡片上的数字记作a.再从余下的卡片中任意抽取一张,将卡片上的数字记作c,则抛物线y=ax2+4x+c与x轴有交点的概率为.解:画树状图如下由树状图知,共有12种等可能结果,其中能使△=42﹣4ac≥0,即ac≤4的有10种结果,∴抛物线y=ax2+4x+c与x轴有交点的概率为=,故答案为:.17.一艘轮船和一艘快艇分别从甲、乙两个港口同时出发(水流速度不计)相向而行,快艇匀速航行到达甲港后,立即原速返回乙港(掉头时间忽略不计),在返回途中追上轮船时刚好到达一个景点,轮船靠岸1小时供游客观赏游玩,然后继续以原速航行到乙港,两船到达乙港均停止航行,轮船和快艇之间的距离y(千米)与轮船出发时间x(小时)之间的函数图象如图所示,当快艇返回到乙港时,轮船距乙港还有65千米.解:设轮船的速度为x千米/小时,快艇的速度为y千米/小时,依题意得:,解得,150﹣15×(300÷45﹣1)=65(千米).答:当快艇返回到乙港时,轮船距乙港还有65千米.故答案为:6518.重阳佳节来临之际,某糕点店对桂圆味,核桃味、绿豆味重阳糕(分别记为A、B、C)进行混装,推出了甲、乙两种盒装重阳糕,盒装重阳糕的成本是盒中所有A、B、C的成本与盒装包装成本之和,每盒甲装有6个A,2个B,2个C,每盒乙装有2个A,4个B,4个C,每盒甲中所有A、B、C的成本之和是1个A成本的15倍,每盒乙的盒装包装成本是每盒甲的盒装包装成本的倍.每盒乙的利润率为20%,每盒乙的售价比每盒甲的售价高20%.当该店销售这两种盒装重阳糕的总销售额为31000元,总利润率为24%时,销售甲种盒装重阳糕的总利润是2500元.解:设A的单价为x元,B的单价为y元,C的单价为z元,每盒甲的盒装包装成本为k,则每盒乙的盒装包装成本是k,当销售这两种盒装重阳糕的销售利润率为24%时,该店销售甲的销售量为a盒,乙的销售量为b盒,甲每盒装的重阳糕的成本是:15x=6x+2y+2z,化简得:y+z=4.5x,乙每盒装的重阳糕的成本是:2x+4y+4z=2x+4(y+z)=2x+4×4.5x=20x,∵=,∴乙每盒的成本是甲每盒的成本的,设甲每盒的成本为m,则乙每盒的成本为m,乙每盒的售价为:m(1+20%)=1.6m,∵每盒乙的售价比每盒甲的售价高20%,∴甲每盒的售价为:=m,根据甲乙的利润得:(m﹣m)a+(1.6m﹣m)b=(ma+b)×24%,化简得:0.28ma=0.16mb,∴b=a,∵ma+1.6mb=31000,∴ma+1.6m×a=31000,解得:ma=7500,∴销售甲种盒装重阳糕的总利润是:ma﹣ma=ma=×7500=2500(元),故答案为:2500.三、解答题(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上. 19.化简:(1)(2m﹣n)2﹣n(2m+n);(2)(x+2﹣)÷.解:(1)原式=4m2﹣4mn+n2﹣2mn﹣n2=4m2﹣6mn;(2)原式=÷=•=.20.如图,在矩形ABCD中,点E是边BC上的点,AD=DE,AF⊥DE于点F.(1)求证:AF=CD;(2)若CE=12,tan∠ADE=,求EF的长.解:(1)∵AF⊥DE.∴∠AFE=90°.∵在矩形ABCD中,AD∥BC,∠C=90°.∴∠ADF=∠DEC,∠AFD=∠C=90°.∵AD=DE.∴△ADF≌△DEC(AAS),∴AF=DC.(2)∵tan∠ADE=,∠ADE=∠CED,∴Rt△CDE中,tan∠CED==,∴CD=CE=9,∴DE===15,∵△ADF≌△DEC,∴DF=CE=12,∴EF=DE﹣DF=15﹣12=3.21.为了加快推进农村电子商务发展,积极助力脱贫攻坚工作,A,B两村的村民把特产“小土豆”在某电商平台进行销售(每箱小土豆规格一致),该电商平台从A,B两村各抽取15户进行了抽样调查,并对每户每月销售的土豆箱数(用x表示)进行了数据整理、描述和分析,下面给出了部分信息:A村卖出的土豆箱数为40≤x<50的数据有:40,49,42,42,43B村卖出的土豆箱数为40≤x<50的数据有:40,43,48,46土豆箱数<3030≤x<4040≤x<5050≤x<60≥60A村03552B村1a45b 平均数、中位数、众数如表所示村名平均数中位数众数A村48.8m59B村47.44656根据以上信息,回答下列问题:(1)表中a=4;b=1;m=49;(2)你认为A,B两村中哪个村的小土豆卖得更好?请说明理由;(3)在该电商平台进行销售的A,B两村村民共210户,若该电商平台把每月的小土豆销售量x在45<x<60范围内的村民列为重点培养对象,估计两村共有多少户村民会被列为重点培养对象?解:(1)由B村的中位数为46,即中间第8个为46,∴1+5+b=7,∴b=1,∴a=15﹣1﹣4﹣5﹣1=4,A村的中位数为第8个数49,即m=49;故答案为:4;1;49;(2)A,B两村中A村的小土豆卖得更好;理由如下:①A村的平均数比B村大;②A村的中位数比B村大;③A村的众数比B村大;(3)A,B两村抽取的15户中每月的小土豆销售量x在45<x<60范围内的村民有8﹣2=6户,210×=91(户);答:估计两村共有91户村民会被列为重点培养对象.22.小帆根据学习函数的过程与方法,对函数y=x|ax+b|(a>0)的图象与性质进行探究.已知该函数图象经过点(2,1),且与x轴的一个交点为(4,0).(1)求函数的解析式;(2)在给定的平面直角坐标系中:①补全该函数的图象;②当2≤x≤4时,y随x的增大而减小(在横线上填增大或减小);③当x<4时,y=x|ax+b|的最大值是1;①直线y=k与函数y=x|ax+b|有两个交点,则k=0或1.解:(1)将点(2,1),(4,0)代入y=x|ax+b|,得到a=﹣1,b=4或a=1,b=﹣4,∵a>0,∴a=1,b=﹣4,∴y=x|x﹣4|;(2)①如图所示:②由图可知,当2≤x≤4时,y随x的增大而减小;故答案为减小;③当x<4时,由图象可知,当x=2时,y=x|x﹣4|有最大值,此时y=1,故答案为1;④直线y=k与函数y=x|x﹣4|有两个交点,由图象可知,k=0或k=1;故答案0或1.23.如果在一个多位自然数n中,各数位上的数字之和恰好等于10,则称这个数为“十全十美数”,并将它各数位上的数字之积记为F(n).例如在数1234中,因为1+2+3+4=10,所以数1234是“十全十美数”,且F(1234)=1×2×3×4=24.(1)若在一个自然数中的任意两个相邻数位上,左边数位上的数字大于或等于右边数位上的数字,则称这个自然数为“降序数”例如:在数32210中,因为3>2=2>1>0,所以数32210是“降序数”,已知四位自然数a既是“十全十美数”又是“降序数”,它的千位上的数字是5,F(a)=0.将数a千位上的数字减1,个位上的数字加1,得到数b,F(b)=24.求出数a;(2)“十全十美数”P是三位自然数,将数p百位上的数字与个位上的数字交换得到数q,若10p+q=2882,求F(p)的最大.解:(1)设四位数a的百位上数字是m,十位上数字是n,∵F(a)=0,∴个位上数字是0,∴m+n=5,∵数a千位上的数字减1,个位上的数字加1,得到数b,∴b的千位上数字是4,个位上数字是1,∵F(b)=24,∴mn=6,∵m≥n,∴m=3,n=2,∴a是5320;(2)设p的百位数是x,十位数是y,个位数是z,则p=100x+10y+z,q=100z+10y+x,∵10p+q=1001x+110y+110z,∵x+y+z=10,∴1001x+110y+110z=1001x+110(10﹣x)=1100+1001x﹣110x=2882,∴x=2,∴y+z=8,∴p是208,217,226,235,244,253,262,271,280,∴F(208)=F(280)=0,F(217)=F(271)=14,F(226)=F(262)=24,F (235)=F(253)=30,F(244)=32,∴F(p)的最大值为32.24.柚子糖度高、酸味低,有益身体健康,深受大家喜爱.某水果店在去年8月份购进福建蜜柚和泰国青柚共900个,福建蜜柚进价为6元/个,泰国青柚进价为20元个,两种柚子的总进价不超过12400元.(1)该水果店去年8月份购进福建蜜柚最少多少个?(2)今年8月份,该水果店用和去年8月份相同的进价购进两种柚子,福建蜜柚购进数量为去年8月份购进数量的最小值,售价为16元/个.泰国青柚购进数量为去年8月份购进数量的最大值,售价为30元/个,两种柚子全部卖出.今年9月份,该水果店购进与上个月数量相同,进货单价相同的福建蜜柚.为了进一步占领市场份额,水果店对福建蜜柚进行了降价促销,它的售价在上个月的基础上先降价a%,再“买三送一”(每买3个就免费赠送1个,即4个装成一袋,一袋以3个的价格出售,但消费者只能整袋购买).受各种因素的影响,与上个月相比,泰国青柚的进价下降40%,进货量下降a%,售价上涨2a%.两种柚子卖完后,该水果店今年9月份销售两种柚子的总利润比上个月上涨,求a的值.解:(1)设该水果店去年8月份购进福建蜜柚x个,则购进泰国青柚(900﹣x)个,依题意,得:6x+20(900﹣x)≤12400,解得:x≥400.答:水果店去年8月份购进福建蜜柚最少400个.(2)由(1)可知:今年8月份,该水果店购进福建蜜柚400个、泰国青柚500个.依题意,得:[16(1﹣a%)×﹣6]×400+[30(1+2a%)﹣20×(1﹣40%)]×500(1﹣a%)=[(16﹣6)×400+(30﹣20)×500]×(1+),整理,得:90a﹣3.6a2=0,解得:a1=25,a2=0(不合题意,舍去).答:a的值为25.25.己知抛物线与x轴交于点A(﹣2,0)、B(3,0),与y轴交于点C(0,4).(1)求抛物线的解析式;(2)如图1,点P是抛物线上位于第一象限内的一点,当四边形ABPC的面积最大时,求出四边形ABPC的面积最大值及此时点P的坐标.(3)如图2,将抛物线向右平移个单位,再向下平移2个单位.记平移后的抛物线为y',若抛物线y'与原抛物线对称轴交于点Q.点E是新抛物线y'对称轴上一动点,在(2)的条件下,当△PQE是等腰三角形时,求点E的坐标.解:(1)∵抛物线与x轴交于点A(﹣2,0)、B(3,0),∴可设抛物线的解析式为:y=a(x+2)(x﹣3)(a≠0),把C(0,4)代入y=a(x+2)(x﹣3)(a≠0)中,得4=﹣6a,∴a=﹣,∴抛物线的解析式为:y=﹣,即y=﹣+;(2)设P点的坐标为(t,),过点P作PM⊥x轴,与BC交于点M,如图1,设直线BC的解析式为y=kx+b(k≠0),则,解得,∴直线BC的解析式为:y=﹣,∴M(t,),∴,∴=﹣t2+3t,,,∴S四边形ABPC=S△AOC+S△BOC+S△BPC=,∴当t=时,S四边形ABPC取最大值,∴此时P点的坐标为(,);(3)∵将抛物线向右平移个单位,再向下平移2个单位.记平移后的抛物线为y',∴y′的解析式为y=,即y=﹣,∴抛物线y′的对称轴为x=1,∵抛物线y=﹣,∴抛物线y=﹣+的对称轴为直线x=,把x=代入y=﹣中,得y=2,∴Q点的坐标为(,2),①当∠PEQ=90°,且PE=QE时,过E作x轴的平行线,与过Q作x的垂线交于点M,与过P作x轴的垂线交于点N,如图2,则∠QME=∠ENP,ME=1﹣,∴∠QEM+∠PEN=∠PEN+∠EPN=90°,∴∠QEM=∠EPN,∵QE=EP,∴△QEM≌△EPN(AAS),∴,∵P(,),∴E点的纵坐标为,∵点E是新抛物线y'对称轴上一动点,∴E点的坐标为(1,4);②当∠PQE=90°,且PQ=QE时,过Q作y轴的平行线,与过P作y轴的垂线交于点M,与过E作y轴的垂线交于点N,如图3,则MQ=,NE=1﹣,按①的方法可证明,△PMQ≌△QNE,∴MQ=NE,即,这显然不成立,∴∠PQE=90°,且PQ=QE不成立;③当∠QPE=90°,且PQ=PE时,过点P作y轴的平行线,与过E点作y轴的垂线交于点M,与过Q点作y轴的垂线交于点N,如图4,则EM=,PN=,按①的方法可证明,△PME≌△QNP,∴EM=PN,即,这显然不成立,∴∠QPE=90°,且PQ=PE不成立;综上,当△PQE是等腰三角形时,点E的坐标为(1,4).。
2020-2021学年重庆八中九年级(上)第一次月考数学试卷一、选择题(本大题共12小题,共48.0分)1.sin30°的值是()A. 12B. √22C. √32D. 12.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.3.下列计算中,正确的是()A. 2x−y=−xyB. x2+x2=x4C. x−2x=−xD. (x−1)2=x2−14.如图是一个边长为1的正方形组成的网格,△ABC与△A1B1C1都是格点三角形(顶点在网格交点处),并且△ABC∽△A1B1C1,则△ABC与△A1B1C1的面积比是()A. 1:2B. 1:4C. 4:9D. 2:35.抛物线y=2(x−3)2+1的顶点坐标是()A. (3,1)B. (3,−1)C. (−3,1)D. (−3,−1)6.一个多边形的内角和是1260°,这个多边形的边数是()A. 7B. 8C. 9D. 107.估计√3×√6−1的值应在()A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间8.已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(−1,0),对称轴为直线x=1,下列结论中正确的是()A. b<0B. c<0C. a−b+c>0D. 4a+2b+c>09.如图,在某居民楼AB楼顶有一广告牌BC,在距楼底A点左侧水平距离30m的D点处有一个山坡,山坡DE的坡度(或坡比)i=1:2.4,山坡坡底D点到坡顶E点的距离DE=26m,在坡底D点处测得居民楼楼顶B点的仰角为45°,在坡顶E点处测得居民楼楼顶广告牌上端C点的仰角为27°,居民楼AB,广告牌BC与山坡DE的剖面在同一平面内,则广告牌BC的高度约为()(结果精确到0.1,参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A. 4.5mB. 4.8mC. 7.1mD. 7.5m10.若关于x的不等式组{2(x−1)≤2+2x+1>a有解,且关于y的分式方程12=2y−ay−2的解为非负数,那么满足条件的所有整数a的值之和为()A. 6B. 10C. 11D. 1511.如图,在平面直角坐标系中,反比例函数y=kx(x>0,k>0)的图象经过矩形ABCD 的顶点C,D,∠BAO=60°,且A(1,0),B点横坐标为−1,则k的值为()C. 2√3D. 2√6A. √2B. 5√3412.如图,在三角形纸片ABC中,点D是BC边上的中点,连接AD,把△ABD沿着AD,则△AEC的面积为()翻折,得到△AED,连接CE,若BC=6,tan∠ECB=√52D. 2√5A. √2B. 2C. 5√54二、填空题(本大题共6小题,共24.0分)13.2020年第三季度,重庆市“蓝天白云、繁星闪烁”天数持续增加,获得环境空气质量生态补偿资金6090000元,6090000用科学记数法表示为______.)−1−tan45°=______.14.√9+(−1315.抛物线y=(k+1)x2−2x+1与x轴有交点,则k的取值范围是______ .16.有4张正面分别标有数字−2,−3,0,5的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,数记为a,不放回,再从剩余卡片中随机抽取一张,数记为b,则使a+b能被5整除的概率为______.17.一条笔直的公路上顺次有A,B,C三地,甲车从B地出发匀速向C地行驶,同时乙车从B地出发匀速向A地行驶,到达A地并在A地停留0.5小时后,调头将速度提高了5向C地行驶,两车到达C地均停止运动.在两车行驶的过程中,甲乙两车9之间的距离s(千米)与行驶时间t(小时)之间的函数图象如图所示,当甲乙两车第一次相遇时,距A地的距离为______千米.18. 双节期间,某超市推出的“彩云追月”“众星拱月”“花好月圆”三种月饼礼盒热销,“彩云追月”礼盒含有摩卡月饼4个,芝士月饼8个,“众星拱月”礼盒含有摩卡月饼3个,芝士月饼8个,虫草月饼1个,“花好月圆”礼盒含有摩卡月饼2个,芝士月饼6个,虫草月饼1个,已知摩卡月饼每个20元,芝士月饼每个15元,虫草月饼每个100元,中秋节当天销售这三种礼盒共9440元,其中摩卡月饼的销售额为2320元,则虫草月饼的销售量为______个. 三、解答题(本大题共8小题,共78.0分) 19. 计算(1)(2a −b)(2a +b)+b(3a +b); (2)(m +1m−2)÷m 2−m m−2.20. 如图,在矩形ABCD 中,E ,F 分别在边DA 和边BC 的延长线上,连接BE ,DF ,且满足∠E =∠F . (1)求证:四边形EDFB 为平行四边形;(2)若EB =ED =5,sinE =910,求平行四边形EDFB 的面积.21.“立德树人奋进担当,教育扶贫托举希望”,多年来,重庆八中积极探索教育扶贫的有效途径,走出了一条富有八中特色的帮扶之路,谱写着中国最美的教育诗歌.重庆八中为了鼓励更多年轻人参与到教育扶贫志愿活动来,面向全市招募志愿者,甲乙两所大学组织参与了志愿者选拔活动(选拔分为笔试和面试两个环节),两所学校各有600名志愿者进入面试环节.为了了解两所大学志愿者的整体情况,从两所大学进入面试环节的志愿者中分别随机抽取了20名志愿者的笔试成绩,相关数据(成绩)整理统计如下:收集数据:甲校:59,70,71,73,75,75,75,75,76,77,79,79,80,80,81,83,85,86,87,94.乙校:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:分析数据:应用数据:(1)由上表填空:a=______,b=______,c=______,d=______.(2)请估计在两所学校通过笔试的1200名志愿者中,笔试成绩在90分以上的共有多少人?(3)你认为哪个学校的志愿者笔试成绩的总体水平较好,请说明理由.22.在初中阶段的学习中,我们经历了列表、描点、连线画函数图象,并结合函数图象研究函数性质的过程.某数学兴趣小组根据学习函数的经验,对函数y=x4−2x2−2的图象和性质进行了探究,下面是小组的探究过程,请补充完整:(1)请把下表补充完整,并在图中补全该函数图象:x…−2−32−1−23−12−13______1312231322…y…6−2316−3−21881______ −17981______ −17981−3916−21881−3−23166…(2)结合函数图象,写出该函数的一条性质:______;(3)已知y=34x−3图象如图所示,结合你所画函数图象,直接写出34x−3≥x4−2x2−2的解集(保留1位小数,误差不超过0.2).23.一个四位正整数,若其千位上与百位上的数字之和等于十位上与个位上的数字之和,都等于k,那么称这个四位正整数为“k类诚勤数”.例如:2534,因为2+5=3+ 4=7,所以2534是“7类诚勤数”.(1)请判断7441和5436是否为“诚勤数”并说明理由;(2)若一个四位正整数A为“5类诚勤数”且能被13整除,请求出A的所有可能取值.24.某大型文具超市销售的A型画笔和B型画笔都很受消费者的欢迎,其中A型画笔售价24元/支,B型画笔售价16元/支.第一周A型画笔的销量比B型画笔多200支,且这两种画笔的总销售额为12800元.(1)第一周A型画笔、B型画笔的销量为多少支?(2)该文具超市第二周继续销售这两种画笔,第二周A型画笔售价降价13a%,销量比第一周增加了43a%,B型画笔售价不变,销量比第一周增加了15a%,结果这两种画笔第二周的总销售额比第一周的总销售额增加了35a%,求a的值.25. 如图1,在平面直角坐标系中,已知抛物线y =ax 2+bx +c(a ≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,其中A(−1,0),OB =4OA ,tan∠CAB =3,连接AC 、BC . (1)求该抛物线的解析式;(2)如图2,过A 作AD//BC ,交抛物线于点D ,点P 为直线BC 下方抛物线上任意一点,连接DP ,与BC 交于点E ,连接AE ,当△APE 面积最大时,求点P 的坐标及△APE 面积的最大值;(3)如图3,在(2)的条件下,将抛物线先向右平移12个单位,再向上平移3个单位后与x 轴交于点F 、G(点F 在点G 的左侧),点Q 为直线AC 上一点,连接QP 、QG 、PG ,当△QPG 是以PG 为腰的等腰三角形时,请直接写出点Q 的坐标.26. 在Rt △ABC 中,∠ACB =90°,点D 是边AB 上一点,连接CD ,CE 平分∠ACD 交AB 于点E ,∠BEC =45°.(1)如图1,当∠DCE =15°,CB =2时,求CE 的长;(2)如图2,过点E 作EF ⊥AB ,且EF =EB ,连接FD ,求证:CD =√22FD ;(3)在(2)的条件下,当tanF =13时,直接写出FECE 的值.答案和解析1.【答案】A.【解析】解:sin30°=12故选:A.直接根据特殊角的三角函数值进行计算即可.本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.2.【答案】D【解析】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.根据轴对称图形的概念对各选项分析判断利用排除法求解.本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【答案】C【解析】解:A、2x与−y不能合并,所以A选项错误;B、原式=2x2,所以B选项错误;C、原式=−x,所以C选项正确;D、原式=x2−2x+1,所以D选项错误.故选:C.利用合并同类项对A、B、C进行判断;根据完全平方公式对D进行判断.本题考查了完全平方公式:熟练运用完全平方公式是解决此类问题的关键.完全平方公式为:(a±b)2=a2±2ab+b2.4.【答案】C【解析】解:∵△ABC∽△A 1B 1C 1,∴△ABC 与△A 1B 1C 1的相似比为:AB A 1B 1=23,∴△ABC 与△A 1B 1C 1的面积比是:(23)2=49.故选:C .先由图形得出△ABC 与△A 1B 1C 1的相似比,再根据相似三角形的面积比等于相似比的平方得出答案即可.本题考查了相似三角形的性质,数形结合并明确相似三角形的面积比等于相似比的平方是解题的关键.5.【答案】A【解析】【分析】此题考查二次函数的性质,解析式化为顶点式y =a(x −ℎ)2+k ,顶点坐标是(ℎ,k),对称轴是x =ℎ.根据抛物线的解析式为顶点式,可直接写出顶点坐标.【解答】解:由y =2(x −3)2+1,根据顶点式的坐标特点可知,顶点坐标为(3,1). 故选A .6.【答案】C【解析】解:设这个多边形的边数是n ,则(n −2)⋅180°=1260°,解得n =9.故选C .根据多边形的内角和公式列式求解即可.本题考查了多边形的内角和公式,熟记公式是解题的关键,是基础题,比较简单.7.【答案】C【解析】解:∵1<2<4,∴1<√2<2,即4<3√2<5,∴3<3√2−1<4,即3<√3×√6−1<4,故选:C.估算确定出所求范围即可.此题考查了无理数的大小,熟练掌握估算的方法是解本题的关键.8.【答案】D【解析】解:A、抛物线开口方向向下,则a<0;对称轴位于y轴的右侧,则a、b异号,即b>0,故本选项不符合题意.B、抛物线与y轴交于正半轴,则c>0,故本选项不符合题意.C、当x=−1时,y=0,即a−b+c=0,故本选项不符合题意.D、根据抛物线的对称性质得到:当x=2时,y>0,即4a+2b+c>0,故本选项符合题意.故选:D.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.考查了抛物线与x轴的交点,二次函数图象上点的坐标特征,二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号的确定由抛物线开口方向、对称轴、与y轴的交点有关.9.【答案】D【解析】解:作EF⊥AB于F,作DG⊥EF于G,如图所示:则GF=AD=30m,AF=DG,∠CEF=27°,∵山坡DE的坡度i=12.4=DGEG,∴EG=2.4DG,∵DE=26m,DE2+EG2=DE2,∴AF=DG=10m,EG=24m,∴EF=EG+GF=54m,在Rt △CEF 中,tan∠CEF =CF EF =tan27°≈0.51,∴CF ≈0.51×54=27.54(m),∴AC =AF +CF =10+27.54=37.54(m),又∵∠ADB =45°,∠A =90°,∴△ABD 是等腰直角三角形,∴AB =AD =30m ,∴BC =AC −AB =37.54−30≈7.5(m);故选:D .作EF ⊥AB 于F ,作DG ⊥EF 于G ,则GF =AD =30m ,AF =DG ,∠CEF =27°,求出AF =DG =10m ,EG =24m ,则EF =EG +GF =54m ,由三角函数定义求出CF ≈27.54m ,则AC =37.54m ,证出△ABD 是等腰直角三角形,则AB =AD =30m ,求出BC 即可.本题考查了直角三角形的应用−坡度、仰角问题,作出辅助线构造直角三角形是解题的关键.10.【答案】A【解析】解:不等式组整理得:{x ≤3x >a −1, ∵关于x 的不等式组{2(x −1)≤2+2x +1>a有解, ∴a −1<3,即a <4,解分式方程12=2y−a y−2得y =2a−23, ∵关于y 的分式方程12=2y−a y−2的解为非负数, ∴2a−23≥0,且2a−23≠2,解得,a ≥1,且a ≠4∴1≤a <4,∵a 为整数,∴a =1或2或3,∴满足条件的所有整数a 的值之和:1+2+3=6.故选:A .不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整式方程,由分式方程有非负整数解,确定出a 的值,求出之和即可.此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.【答案】B【解析】解:如图,过B 作BF ⊥x 轴于点F ,过D作DE ⊥x 轴于点E ,∵A(1,0),B 点横坐标为−1,∴AF =1−(−1)=2,∵∠BAO =60°,∴BF =√3AF =2√3, ∴B(−1,2√3). ∵∠BAO =60°,∠BAD =90°,∴∠DAE =30°,∴AE =√3DE .设DE =m ,则D(1+√3m,m),∵四边形ABCD 是矩形,∴AD//BC ,AD =BC ,∴C(−1+√3m,2√3+m).∵反比例函数y =k x (x >0,k >0)的图象经过点C ,D ,∴k =(−1+√3m)(2√3+m)=(1+√3m)⋅m ,解得m =√32,k =5√34.故选:B .过B 作BF ⊥x 轴于点F ,过D 作DE ⊥x 轴于点E ,求出AF =1−(−1)=2,解直角△ABF ,得出BF =√3AF =2√3,那么B(−1,2√3).解直角△ADE ,得出AE =√3DE.设DE =m ,则D(1+√3m,m),根据矩形与平移的性质得出C(−1+√3m,2√3+m).将C ,D 两点坐标代入反比例函数y =k x ,即可求出k .本题考查了反比例函数图象上点的坐标特征,解直角三角形,矩形的性质等知识.设DE =m ,用含m 的代数式表示出C 、D 两点的坐标是解题的关键.12.【答案】D【解析】解:连接BE,过点D作DM⊥EC,垂足为M,∵点D是BC边上的中点,BC=6,∴BD=CD=3,由折叠得,BD=DE,AD⊥BE,∴DE=DB=DC,∴∠BEC=90°,即BE⊥EC,∴EC//AD,∴S△AEC=S△DEC,在△DEC中,DE=DC=3,DM⊥EC,∴ME=MC,∵tan∠MCD=√52=DMMC,设MC=2m,则DM=√5m,由勾股定理得,DM2+MC2=DC2,即4m2+5m2=32,解得m=1,∴DM=√5,MC=2,∴S△DEC=12EC⋅DM=2√5,故选:D.通过作辅助线得出S△AEC=S△DEC,根据等腰三角形的性质,可求出S△DEC,进而得出答案.本题考查直角三角形的边角关系、等腰三角形、折叠轴对称的性质等知识,求出等腰三角形EDC的面积是解决问题的关键.13.【答案】6.09×106【解析】解:6090000=6.09×106,故答案为:6.09×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.【答案】−1【解析】解:√9+(−13)−1−tan45°=3−3−1=−1.故答案为:−1.首先计算乘方、开方、三角函数,然后从左向右依次计算,求出算式的值是多少即可. 此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.15.【答案】k ≤0且k ≠−1【解析】解:依题意,得{k +1≠0△=(−2)2−4(k +1)≥0解得 {k ≠−1k ≤0, 所以k 的取值范围为k ≤0且k ≠−1,故答案为:k ≤0且k ≠−1.由题意可知k +1≠0,又因为二次函数y =(k +1)x 2−2x +1的图象与x 轴有交点,所以△=b 2−4ac ≥0,进而求出k 的取值范围.本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c(a,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.△=b 2−4ac 决定抛物线与x 轴的交点个数.△=b 2−4ac >0时,抛物线与x 轴有2个交点;△=b 2−4ac =0时,抛物线与x 轴有1个交点;△=b 2−4ac <0时,抛物线与x 轴没有交点.16.【答案】13【解析】解:画树状图如图:共有12个等可能的结果,使a +b 能被5整除的结果有4个,∴使a +b 能被5整除的概率=412=13;故答案为:13.画出树状图,共有12个等可能的结果,使a +b 能被5整除的结果有4个,由概率公式即可求解.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.17.【答案】840【解析】解:如图:设甲的速度为v 甲,乙的速度为v 乙,OD 段:两人的速度和为:450÷3=150(km/ℎ),即v 甲+v 乙=150①,此时乙休息0.5ℎ,则E 处的横坐标为:3+0.5=3.5,则乙用了:9.5−3.5=6(ℎ)追上甲,则6(1+59)v 乙=3v 乙+9.5v 甲②,联立①②得{v 甲=60km/ℎv 乙=90km/ℎ, 则第一次相遇是在9.5ℎ时,距离A 地:6×90×(1+59)=840(km).故答案为:840.设甲的速度为v 甲,乙的速度为v 乙,根据题意可得v 甲+v 乙=150①,可求出乙追上甲的时间为6h ,根据题意可得6(1+59)v 乙=3v 乙+9.5v 甲②,联立①②求出乙车的速度即可解答.本题主要考查了一次函数的应用.理解函数图象的点的坐标的实际意义,从而得到甲乙两车的行驶的距离和速度是解题的关键.18.【答案】28【解析】解:每盒“彩云追月”的价格为20×4+15×8=200(元),每盒“众星拱月”的价格为20×3+15×8+100×1=280(元),每盒“花好月圆”的价格为20×2+15×6+100×1=230(元).设中秋节当天销售“彩云追月”礼盒x 盒,“众星拱月”礼盒y 盒,“花好月圆”礼盒z 盒,依题意得:{200x +280y +230z =9440①20×4x +20×3y +20×2z =2320②, ①−2.5×②得130y +130z =3640,∴y +z =28.故答案为:28.利用总价=单价×数量可分别求出每盒“彩云追月”、“众星拱月”、“花好月圆”三种月饼礼盒的价格,设中秋节当天销售“彩云追月”礼盒x 盒,“众星拱月”礼盒y 盒,“花好月圆”礼盒z 盒,根据“中秋节当天销售这三种礼盒共9440元,其中摩卡月饼的销售额为2320元”,即可得出关于x ,y ,z 的三元一次方程组,利用①−2.5×②可得130y +130z =3640,进而可求出(y +z)的值,此题得解.本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.19.【答案】解:(1)原式=4a2−b2+3ab+b2 =4a2+3ab;(2)原式=(m2−2mm−2+1m−2)÷m(m−1)m−2=(m−1)2m−2⋅m−2 m(m−1)=m−1m.【解析】(1)先利用平方差公式和单项式乘多项式法则计算,再合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.本题主要考查整式和分式的混合运算,解题的关键是掌握平方差公式和单项式乘多项式法则、分式的混合运算顺序和运算法则.20.【答案】(1)证明:∵四边形ABCD是矩形,∴∠BAD=∠BCD=90°,∴AD=BC,AB=CD,∴∠BAE=∠DCF=90°,在△ABE和△CDF中,{∠BAE=∠DCF ∠E=∠FAB=CD,∴△ABE≌△CDF(AAS),∴BE=DF,AE=CF,∴AD+AE=BC+CF,即DE=BF,∴四边形EDFB为平行四边形;(2)解:∵sinE=910=ABBE,BE=5,∴AB=910BE=92,∵ED=EB=5,AB⊥DE,∴平行四边形EDFB的面积=ED×AB=5×92=452.【解析】(1)证△ABE≌△CDF(AAS),得BE=DF,AE=CF,则DE=BF,即可得出四边形EDFB为平行四边形;(2)由三角函数定义求出AB =910BE =92,由平行四边形面积公式即可得出答案.本题考查了矩形的性质、平行四边形的判定与性质、全等三角形的判定与性质、三角函数定义等知识;熟练掌握矩形的性质和平行四边形的判定与性质,证明三角形全等是解题的关键.21.【答案】11 10 78 81【解析】解:(1)a =20−1−7−1=11,20−1−7−2=10,甲校抽查的20名学生成绩从小到大排列后,处在中间位置的两个数的平均数为77+792=78,即中位数是78,c =78,乙校抽查的20名学生成绩出现次数最多的是81,共出现3次,故d =81, 故答案为:11,10,78,81;(2)1200×1+220+20=90(人),答:在两所学校通过笔试的1200名志愿者中,笔试成绩在90分以上的共有90人;(3)甲、乙两校的平均数相等,但中位数、众数乙校均比甲校的高,因此乙校的成绩较好,答:乙校成绩较好,乙校的中位数、众数均比甲校的大.(1)根据各组频数的和为20可求出a 、b 的值,根据中位数、众数的意义,可求出c 、d 的值;(2)求出两个学生90分以上所占的百分比,即可求出总体1200名学生中成绩在90分以上的人数;(3)从中位数、众数方面进行判断即可.本题考查频数分布表,中位数、众数、平均数的意义及应用,各组频数之和等于样本容量是正确计算的前提.22.【答案】0 −3916 −2 函数图象关于y 轴对称【解析】解:(1)当x =−12时,y =x 4−2x 2−2=−(−12)4−2×(−12)2−2=−3916. 当x =0时,y =x 4−2x 2−2=−2,(2)答案不唯一.如:函数图象关于y轴对称,故答案为函数图象关于y轴对称.x−3≥x4−2x2−2的解集0.6≤x≤1.4.(3)根据函数图象,34(1)把x=−1和x=0分别代入代入函数解析式即可把下表补充完整;描点、连线即可得2到函数的图象;(2)函数图象关于y轴对称;x−3≥x4−2x2−2的解集.(3)根据函数的图象即可得到34本题考查了抛物线与x轴的交点,二次函数的图象和性质,正确的识别图象是解题的关键.23.【答案】解:(1)在7441中,7+4=11,4+1=5,因为11≠5.∴7441不是“诚勤数”;在5436中,因为5+4=6+3=9,∴5436是“诚勤数”.(2)由题可得,设这个四位数的十位数为a,千位数为b,则个位数为(5−a),百位数为(5−b),且0≤a≤5,1≤b≤5,∴这个四位数为:1000b+100(5−b)+10a+(5−a)=900b+9a+505,∵900=13×69...3,505=13×38...11,∴900b+9a+505=(13×69+3)b+9a+13×38+11=13×(69b+38)+3b+∵这个四位数是13的倍数, ∴3b +9a +11必须是13的倍数; ∵0≤a ≤5,1≤b ≤5.∴3b +9a 在a =b =5时,取到最大值为60, ∴3b +9a 可以为:2、15、28、41、54, ∵3b +9a =3(b +3a),则3b +9a 是3的倍数. ∴3b +9a =15或3b +9a =54, ∴b +3a =5或b +3a =18, ①当b +3a =5时,a =5−b 3,∵1≤b ≤5,且a 为非负整数, ∴5−b =0或5−b =3, ∴b =5或b =2,若b =5,则a =0,此时900b +9a +505=5005; 若b =2,则a =1,此时900b +9a +505=2314; ②当b +3a =18时,a =18−b 3,∵1≤b ≤5,且a 为非负整数, ∴b =3,a =5,∴900b +9a +505=3250;综上所述,满足条件的A 为:2314、5005、3250.【解析】(1)利用“诚勤数”的定义进行验证,即可得到答案;(2)由题意可设这个四位数的十位数为a ,千位数为b.则个位数为(5−a),百位数为(5−b),然后根据13的倍数关系,以及“5类诚勤数”的定义,利用分类讨论思想进行分析,即可得到答案.本题考查了二元一次方程,新定义的运算法则,解题的关键是熟练掌握题意,正确列出二元一次方程,结合新定义,利用分类讨论思想进行求解.24.【答案】解:(1)设第一周A 型画笔的销量为x 支,B 型画笔的销量为y 支,依题意,得:{x −y =20024x +16y =12800,解得:{x =400y =200.答:第一周A 型画笔的销量为400支,B 型画笔的销量为200支.(2)依题意,得:24(1−13a%)×400(1+43a%)+16×200(1+15a%)=12800(1+35a%),整理,得:a 2−60a =0,解得:a 1=60,a 2=0(不合题意,舍去). 答:a 的值为60.【解析】(1)设第一周A 型画笔的销量为x 支,B 型画笔的销量为y 支,根据“第一周A 型画笔的销量比B 型画笔多200支,且这两种画笔的总销售额为12800元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元二次方程.25.【答案】解:(1)∵A(−1,0),OB =4OA ,∴B(4,0), ∵tan∠CAB =3, ∴OC OA=3,∴C(0,−3),将A(−1,0),B(4,0),C(0,−3)代入y =ax 2+bx +c 得: {0=a −b +c0=16a +4b +c −3=c,解得{a =34b =−94c =−3,∴抛物线的解析式为y =34x 2−94x −3;(2)过P 作PF//AD 交x 轴于F ,连接DF ,如图:设经过B(4,0),C(0,−3)的直线为y =dx +e , 则{0=4d +e −3=e ,解得{d =34e =−3, ∴直线BC 为y =34x −3,由AD//BC ,设直线AD 为y =34x +f ,把A(−1,0)代入得: 0=−34+f ,解得f =34, ∴直线AD 为y =34x +34,解{y =34x 2−94x −3y =34x +34得{x =−1y =0或{x =5y =92, ∴D(5,92), ∵AD//BC , ∴S △ADE =S △ADB ,而S △ADB =12AB ⋅|y D |=12×5×92=454,∴S △ADE =454,设P(m,34m 2−94m −3),而PF//AD ,设直线PF 为y =34x +g , 则34m 2−94m −3=34m +g ,解得g =34m 2−3m −3, ∴直线PF 为y =34x +34m 2−3m −3, 令y =0得x =−m 2+4m +4, ∴F(−m 2+4m +4,0), ∵PF//AD ,∴S △ADF =S △ADP ,而S △ADF =12AF ⋅|y D |=12=12[−m 2+4m +4−(−1)]⋅92=−94m 2+9m +454,∴S △ADP =−94m 2+9m +454,∴S △APE =S △ADP −S △ADE =−94m 2+9m =−94(m −2)2+9, ∴m =2时,S △APE 最大,最大值为9, ∴P(2,−92);(3)将抛物线y =34x 2−94x −3先向右平移12个单位,再向上平移3个单位,得到的抛物线解析式为y =34(x −12)2−94(x −12)−3+3=34x 2−3x +2116, 令y =0得x =12或x =72, ∴G(72,0),∵A(−1,0),C(0,−3),∴直线AC 的解析式为y =−3x −3,设Q(n,−3n −3),则QG 2=(n −72)2+(−3n −3)2,QP 2=(n −2)2+(−3n −3+92)2,PG 2=(72−2)2+(92)2=452,△QPG 是以PG 为腰的等腰三角形,分两种情况: ①PG =QG 时,(n −72)2+(−3n −3)2=452,解得n =−11+3√1920或n =−11−3√1920, ∴Q(−11+3√1920,−27−9√1920)或(−11−3√1920,−27+9√1920); ②PG =QP 时,(n −2)2+(−3n −3+92)2=452,解得n =13+3√9120或n =13−3√9120, ∴Q(13+3√9120,−99−9√9120)或(13−3√9120,−99+9√9120), 综上所述,Q 的坐标为:(−11+3√1920,−27−9√1920)或(−11−3√1920,−27+9√1920)或(13+3√9120,−99−9√9120)或(13−3√9120,−99+9√9120).【解析】(1)由OB =4OA 可得B(4,0),由tan∠CAB =3可得OC =3OA ,则C(0,−3),利用待定系数法将A ,B ,C 三点坐标分别代入即可求解;(2)过P 作PF//AD 交x 轴于F ,连接DF ,先求出直线BC 为y =34x −3,直线AD 为y =34x +34,解{y =34x 2−94x −3y =34x +34得D(5,92),由AD//BC ,得S △ADE =454,设P(m,34m 2−94m −3),同理可得S △ADP =−94m 2+9m +454,从而S △APE =S △ADP −S △ADE =−94m 2+9m =−94(m −2)2+9,即可得到m =2时,S △APE 最大,最大值为9,P(2,−92);(3)将抛物线y =34x 2−94x −3先向右平移12个单位,再向上平移3个单位,得到的抛物线解析式为y =34x 2−3x +2116,可得G(72,0),设Q(n,−3n −3),则QG 2=(n −72)2+(−3n −3)2,QP 2=(n −2)2+(−3n −3+92)2,PG 2=(72−2)2+(92)2=452,①PG =QG时,(n −72)2+(−3n −3)2=452,可得Q(−11+3√1920,−27−9√1920)或(−11−3√1920,−27+9√1920),②PG =QP 时,(n −2)2+(−3n −3+92)2=452,可得Q(13+3√9120,−99−9√9120)或(13−3√9120,−99+9√9120). 本题考查二次函数的综合应用,涉及解析式、三角形面积、等腰三角形判定等知识,解题的关键是设相关点的坐标,用含字母的代数式表示线段长,再列方程.26.【答案】解:(1)如图1,过点C 作CN ⊥AB 于N ,∵∠DCE =15°,∠BEC =45°, ∴∠BDC =∠DCE +∠DEC =60°, ∵CE 平分∠ACD , ∴∠ACE =∠DCE =15°,∴∠BCD =90°−15°−15°=60°, ∴∠BCD =60°, ∴△BCD 是等边三角形, ∴BD =CD =BC =2, ∵CN ⊥BD ,∴BN =DN =1,∠DCN =30°, ∴CN =√3DN =√3,∵∠NEC=45°,CN⊥BA,∴∠NCE=∠NEC=45°,∴CN=NE=√3,∴CE=√2CN=√6;(2)延长EF交AC于H,连接BH,∵∠BEC=45°,∠BEH=90°,∴∠BEC=∠CEH=45°,在△CED和△CEH中,{∠DCE=∠ECH CE=CE∠DEC=∠HEC,∴△CED≌△CEH(ASA),∴DE=EH,CD=CH,∠CDE=∠CHE,在△DFE和△HBE中,{DE=EH∠BEH=∠FED=90°EF=BE,∴△DFE≌△HBE(SAS),∴DF=BH,∵∠BCH=∠BEH=90°,∴∠CBD+∠CHE=180°,∵∠BDC+∠CDE=180°,∴∠BDC=∠CBD,∴BC=CD,∴BC=CH=CD,∴BH=√2BC=√2CD,∴DF=√2CD,∴CD=√22DF;(3)过点C作CN⊥AB于N,∵tanF=13=DEEF,∴设DE=a,EF=3a,∴DF=√DE2+EF2=√a2+9a2=√10a,∵CD=√22DF,∴CD=√5a,∵CD2=CN2+DN2,∴5a2=CN2+(CN−a)2,∴CN=2a,∴CE=√2CN=2√2a,∴EFCE =2√2a=3√24.【解析】(1)过点C作CN⊥AB于N,可证△BCD是等边三角形,可得BD=CD=BC=2,由等边三角形的性质可求CN=√3,可求解;(2)延长EF交AC于H,连接BH,由“ASA”可证△CED≌△CEH,可得DE=EH,CD= CH,∠CDE=∠CHE,由“SAS”可证△DFE≌△HBE,可得DF=BH,由等腰直角三角形的性质可得结论;(3)过点C作CN⊥AB于N,设DE=a,EF=3a,由勾股定理可求DF的长,由勾股定理可求DN的长,可求CE的长,可求解.本题是三角形综合题,考查了全等三角形的判定和性质,直角三角形的性质,等边三角形的判定和性质,勾股定理等知识,添加恰当辅助线是本题的关键.。
重庆八中2023—2024学年上期初三年级第一学月考试数学试题(全卷共四个大题,满分150分,考试时间120分钟)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.tan45°的值为( )A.1B.1−2.下列图案中是中心对称图形的是( )A. B. C. D.3.估计的值在( ) A.3到4之间B.4到5之间C.5到6之间D.6到7之间4.如图,AF 是BAC ∠的角平分线,DF AC ,若60BDF ∠=°,则1∠的度数为( )A.20°B.25°C.30°D.45°5.一辆汽车的速度()km /h 与时间()min 之间的变化关系如图所示,则下列说法正确的是( )A.速度是自变量,时间是因变量B.汽车在3min 加时,行驶的路程为30kmC.汽车在3~8min 加应时停止运动D.汽车最快的速度是30km /h6.如图,在平面直角坐标系中,已知()12,8A ,()6,4D ,()2,3E ,ABC △与DEF △位似,原点O 是位似中心,则B 点的坐标是( )A.()4,5B.()4,6C.()5,6D.()5,57.二次函数()20y ax bx c a ++≠的顶点坐标为()1,m ,其部分图象如图所示.以下结论错误的是( )A.0a >B.0abc >C.240ac b −<D.30a c +<8.下列图形都是由相同的小正方形按照一定规律摆放而成的,照此规律排列下去,第1个图形中小正方形的个数是3个,第2个图形中小正方形的个数是8个,第3个图形中小正方形的个数是15个,则第5个图形中小正方形的个数是( )A.24B.30C.35D.489.如图,ABC △为等腰直角三角形,BD AB ⊥于点B ,CE AD ⊥于点E ,连接BE ,设CAE x ∠=,若2CE AE =,则ABE ∠可表示为( )A.12x B.152x+°C.45x −°D.60x °−10.数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题,比如12x x −表示在数轴上数1x ,2x 对应的点之间的距离.现定义一种“F 运算”,对于若干个数,先将每两个数作差,再将这些差的绝对值进行求和.例如:对1−,1,2进行“F 运算”,得1112126−−+−−+−=.下列说法:①对m ,1−进行“F 运算”的结果是3,则m 的值是2;②若2x y <<,对于2,x ,y 进行“F 运算”的结果是8,则y 的值是8; ③对a ,a ,b ,c 进行“F 运算”,化简的结果可能存在6种不同的表达式. 其中正确的个数为( ) A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算:01−=______. 12.从六边形ABCDEF 的顶点A 出发,可以画出______条对角线。
2022-2023学年重庆八中九年级(上)第一次月考数学试卷(10月份)一、选择题:在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.的倒数是 15-()A .B .C .D .55-1515-2.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是 ()A .B .C .D .3.下列计算结果正确的是 ()A .B .C .D .963a a a ÷=933a a a ÷=752a a -=236(3)9a a =4在实数范围内有意义,则的取值范围为 x ()A .且B .C .D .且0x >1x ≠0x ...1x ≠0x (1)x ≠5.如图所示的是一台自动测温记录仪的图象,它反映了重庆秋季某天一段时间的气温随时间变化而变化的关系,观察图象得到的下列信息,其中错误的是 (C)T ︒t ()A .该段时间内最低气温为19C︒B .该段时间内15时达到最高气温C .从0时至15时,气温随着时间的推移而上升D .从15时至20时,气温随着时间的推移而下降6.如图,网格中小正方形的边长均为1,的顶点都在格点上,则等于 ABC ∆cos BAC ∠()A .BCD 127.如图,在平面直角坐标系中,与是以点为位似中心的位似图形,ABC ∆DEF ∆O ,若的面积为4,则的面积为 2OA OD =AOB ∆DOF ∆()A .2B .C .1D .32128.估计的值应在 ()A .7和8之间B .8和9之间C .6和7之间D .9和10之间9.已知二次函数的图象与轴有交点,则的取值范围是 22(1)y kx k x k =+-+x k ()A .B .C .D .且12k …2k <2k >12k …0k ≠10.如图,在边长为6的正方形中,点是的中点,过点作的垂线交正ABCD E AB E DE 方形外角的平分线于点,交边于点,连接交于点,则的长CBG ∠F BC M DF BC N MN 为 ()A .5B .C .D .52729211.若整数使关于的不等式组有解,且关于的分式方程a x 52132x x x a++⎧+>⎪⎨⎪⎩…y 有非负整数解,则满足条件的所有整数之和是 54311a y y--=--a ()A .9B .10C .11D .1212.有个依次排列的整式:第1项是,用第1项加上得到,将乘n 21a x x =-1a (1)x -1b 1b 以得到第2项,再将第2项加上得到,将乘以得到第3项,,以x 2a 2a (1)x -2b 2b x 3a ⋯此类推,下面四个结论中正确的个数为 ()①方程的实数解为;②;③第2023项40a =1±9879(1)(1)b x x x x x =-+++++L ;④当时,则的值为.20242023a x x =-3x =-(1)(1)11k k b b x x x x ≠≠--11(3)4k +--A .1B .2C .3D .4二、填空题:请将每小题的答案直接填写在答题卡中对应的横线上.13.计算: .202(2)π-+-=14.在四个完全相同的球上分别标上数字、2、、4,从这四个球中随机取出一个球1-3-记所标数字为,然后再从剩下的球中随机取出一个球记所标数字为,则一次函数a b 的图象不经过第三象限的概率是 .y ax b =+15.如图所示,点与点是两个四分之一圆的圆心,且两个圆的半径分别为3和6,则A B 图中阴影部分的面积是 .16.某小区为了优化环境,计划在小区内甲、乙两块面积相同的空地上种植矮牵牛、金盏菊和三色堇三种花卉.现有10名工人参与种植,且每名工人每天种植矮牵牛、金盏菊和三色堇的面积之比为.已知每名工人固定种植一种花卉,所有工人花费9天的时间完5:4:2成了甲地的花卉种植.在乙地进行花卉种植时,为了加快乙地的种植进度,基于甲地的工人分配方案进行了调整,从种植金盏菊和三色堇的工人中分别抽调1人种植矮牵牛,这样乙地花卉种植的天数比甲地少且恰好为整数,则乙地种植金盏菊和三色堇的工人人数之比为 .三、解答题:解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.17.计算:(1);2(1)(2)x x x -++(2).222(1)11x x x x x x --÷+-++18.如图,在四边形中,且,连接.ABCD //AD BC 12AD BC =BD (1)用尺规完成以下基本作图:作,使,与交于点.(保留CDE ∠CDE C ∠=∠DE BC F 作图痕迹,不写作法,不下结论)(2)若,求证:四边形为菱形.90BDC ∠=︒ABFD 证明:,C CDE ∠=∠Q .∴,90BDC ∠=︒Q ,.90BDF CDF ∴∠+∠=︒90C DBF ∠+∠=︒又,C CDE ∠=∠ .∴.BF DF ∴=.12BF CF BC ∴==,12AD BC =Q .∴,//AD BC Q 四边形是平行四边形.∴ABFD ,Q 四边形是菱形.∴ABFD四、解答题:解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.某校为了解学生对重庆历史文化的了解程度,举办了历史文化知识问答竞赛.现从八、九年级中各随机抽取20名学生的知识竞赛分数(满分100分,分数用表示,共分成x 四组:.,.,.,.进行整理、描A 95100x ……B 9095x <…C 8090x <…D 080)x <…述、分析,其中分数不低于90分为优秀,下面给出部分信息:八年级随机抽取20名学生的知识竞赛成绩分数是:65,80,81,84,87,88,90,90,91,91,92,92,92,97,97,98,98,99,100,100.九年级随机抽取20名学生的知识竞赛分数中,、两组数据个数相等,、两组的A D B C 数据是:88,90,91,92,92,92,92,92,93,93,94,94.八、九年级抽取的学生竞赛成绩统计表 年级八年级九年级平均数90.690.6中位数91.5a 众数9292优秀率70%b %根据以上信息,回答下列问题:(1)直接写出上述图表中 , , ;a =b =n =(2)根据以上数据,你认为该校八、九年级中哪个年级学生对重庆历史文化知识掌握得更好?请说明理由(一条理由即可);(3)若该校八年级有1200人,九年级有1500人参加了此次知识问答竞赛,估计两个年级知识问答竞赛活动成绩优秀的学生人数是多少?20.如图,已知一次函数与反比例函数的图象都经过点,(0)y ax b a =+≠k y x=(2,)A m .(4,2)B -(1)求一次函数的表达式,并在网格中画出一次函数图象;(2)若点与点关于原点成中心对称,连接、,求的面积;C A AC BC ABC ∆(3)根据函数图象,请直接写出的解集.k ax b x <+21.如图,在竖直的海岸线上有长为68米的码头,现有一艘货船在点处,从码头AB P A 处测得货船在的东南方向,若沿海岸线向南走30米后到达点,在处测得货船在A C C C的南偏东方向.75︒ 1.41≈ 1.73≈ 2.45)≈(1)求货船到的距离(结果精确到1米);A (2)若货船从点出发,沿着南偏西的方向行驶,请问该货船能否行驶到码头所在的P 60︒线段上?请说明理由.AB22.某工厂共有300台机器出租,去年每台机器的租金为100元,由于物价上涨,今年这些机器的租金上涨到了121元台./(1)求每台机器租金的年增长率;(2)据预测,当机器的租金定为121元台时,该工厂可将机器全部租出;若每台机器的/租金每增加1元,就要少租出2台.租出的机器该工厂每天每台需支出41元的维护费用,未租出的机器该工厂每天每台需支出20元的保管费用.当每台机器的租金上涨多少元时,该工厂每天的收益为25250元?23.如果一个自然数的个位数字不为0,且能分解成,其中与都是两位数,N A B ⨯A B 的十位数字比的十位数字大2,、的个位数字之和为10,则称数为“美好A B A B N 数”,并把数分解成的过程,称为“美好分解”.例如:,61N N A B =⨯29896149=⨯Q 的十位数字比49的十位数字大2,且61、49的个位数字之和为10,是“美好2989∴数”;又如:,35的十位数字比19的十位数字大2,但个位数字之和不等于6053519=⨯Q 10,不是“美好数”.605∴(1)判断525,1148是否是“美好数”?并说明理由;(2)把一个大于4000的四位“美好数” 进行“美好分解”,即分解成,N N A B =⨯A 的各个数位数字之和的2倍与的各个数位数字之和的和能被7整除,求出所有满足条件B 的.N24.如图1,已知抛物线与轴交于、两点,与轴交于点,且2y x bx c =++x A B y (0,1)C -.1tan 2OAC ∠=(1)求抛物线的解析式;(2)点是直线下方对称轴左侧抛物线上一点,过点作轴交抛物线于点P AC P //PQ x Q ,过点作轴交于点,若,求点的坐标;P PR x ⊥AC R 32PQ PR +=P (3)将抛物线向右平移一个单位,向下平移一个单位得到新抛物线,在新2y x bx c =++抛物线上有点,在原抛物线对称轴上有点,直接写出所有使得以点,,,M N A C M N 为顶点的四边形是平行四边形的点的坐标,并把求其中一个点的坐标的过程写出M M 来.25.如图1,是等腰三角形,,点是边上一点,连接,将绕ABC ∆BC BA =D AC BD BD 着点顺时针旋转得,且使得点在边所在的直线上.D DE E AB(1)若,点是的中点,的周长;90ABC ∠=︒E AB CD =ADE ∆(2)如图2,若,点为的中点,连接、,求证:;60ABC ∠=︒M BD CM ME CM ME ⊥(3)如图3,若,,在同一平面内将沿着翻折得,且60ABC ∠=︒4BC =ABD ∆BD PBD ∆使得点落在下方,连接,过点作交于点,点关于的对称点P BC PC P PH BC ⊥H C PH 为,连接、,当最大时,求的面积.C 'PC 'AC 'PH HC '-ABC '∆2022-2023学年重庆八中九年级(上)第一次月考数学试卷(10月份)参考答案与试题解析一、选择题:在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.的倒数是 15-()A .B .C .D .55-1515-【解答】解:的倒数为.15-5-故选:.A 2.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是 ()A .B .C .D .【解答】解:、不是轴对称图形,故本选项不合题意;A 、不是轴对称图形,故本选项不合题意;B 、不是轴对称图形,故本选项不合题意;C 、是轴对称图形,故本选项符合题意.D 故选:.D 3.下列计算结果正确的是 ()A .B .C .D .963a a a ÷=933a a a ÷=752a a -=236(3)9a a =【解答】解:、,故符合题意;A 963a a a ÷=A 、,故不符合题意;B 933a a ÷=B 、,故不符合题意;C 752a a a -=C 、,故不符合题意;D 236(3)27a a =D 故选:.A4在实数范围内有意义,则的取值范围为 x ()A .且B .C .D .且0x >1x ≠0x ...1x ≠0x (1)x ≠【解答】解:,,0x Q …10x -≠且.0x ∴…1x ≠故选:.D 5.如图所示的是一台自动测温记录仪的图象,它反映了重庆秋季某天一段时间的气温随时间变化而变化的关系,观察图象得到的下列信息,其中错误的是 (C)T ︒t ()A .该段时间内最低气温为19C ︒B .该段时间内15时达到最高气温C .从0时至15时,气温随着时间的推移而上升D .从15时至20时,气温随着时间的推移而下降【解答】解:、由图象可知,该段时间内最低气温为早上6点时的,故本选项不合A 19C ︒题意;、由图象可知,该段时间内15时气温最高是,故本选项不合题意;B 28C ︒、由图象可知,从0时至6时,气温随着时间的推移而下降,从6时至15时,气温随C 着时间的推移而上升,故本选项符合题意;、由图象可知,从15时至20时,气温随着时间的推移而下降,故本选项不合题意.D 故选:.C 6.如图,网格中小正方形的边长均为1,的顶点都在格点上,则等于 ABC ∆cos BAC ∠()A .BCD12【解答】解:小正方形的边长均为1,Q ,,,222215AC ∴=+=2222420BC =+=2223425AB =+=,222AC BC AB ∴+=是直角三角形,且,ABC ∴∆90ACB ∠=︒sin AC ABC AB ∴∠=故选:.C7.如图,在平面直角坐标系中,与是以点为位似中心的位似图形,ABC ∆DEF ∆O ,若的面积为4,则的面积为 2OA OD =AOB ∆DOF ∆()A .2B .C .1D .3212【解答】解:与是以点为位似中心的位似图形,ABC ∆Q DEF ∆O ,//AB DF ∴,AOB DOF ∴∆∆∽,∴12DF OD AB OA ==,∴14DOF AOB S S ∆∆=的面积为4,AOB ∆Q 的面积为1,DOF ∴∆故选:.C8.估计的值应在 ()A .7和8之间B .8和9之间C .6和7之间D .9和10之间【解答】解:.==,496364<<Q∴<<.78∴<<7和8之间.∴故选:.A 9.已知二次函数的图象与轴有交点,则的取值范围是 22(1)y kx k x k =+-+x k ()A .B .C .D .且12k …2k <2k >12k …0k ≠【解答】解:由题意可知:△且,224(1)40k k =--…0k ≠,2248440k k k -+-…,480k -…且,12k …0k ≠故选:.D 10.如图,在边长为6的正方形中,点是的中点,过点作的垂线交正ABCDE AB E DE 方形外角的平分线于点,交边于点,连接交于点,则的长CBG ∠F BC M DF BC N MN 为 ()A .5B .C .D .527292【解答】解:作交于点,作于点,FH BG ⊥H FK BC ⊥K平分,,BF Q CBG ∠90KBH ∠=︒四边形是正方形,∴BHFK ,,DE EF ⊥Q 90EHF ∠=︒,,90DEA FEH ∴∠+∠=︒90EFH FEH ∠+∠=︒,DEA EFH ∴∠=∠,90A EHF ∠=∠=︒Q ,DAE EHF ∴∆∆∽,∴AD AEHE FH=正方形的边长为,,Q ABCD BE AE =,,3AE ∴=3BE =设,则,FH a =BH a =,∴633a a=+解得;3a =,,FK CB ⊥Q DC CB ⊥,DCN FKN ∴∆∆∽,∴CD CNFK KN=,,6BC CD ==Q 3BK =,3CK ∴=设,则,CN b =3NK b =-,∴633bb=-解得,2b =即,2CN =,,A EBM ∠=∠Q AED BME ∠=∠,ADE BEM ∴∆∆∽,∴AD AEBE BM =,∴633BM=解得,32BM =,356222MN BC CN BM ∴=--=--=故选:.B 11.若整数使关于的不等式组有解,且关于的分式方程a x 52132x x x a++⎧+>⎪⎨⎪⎩…y 有非负整数解,则满足条件的所有整数之和是 54311a y y--=--a ()A .9B .10C .11D .12【解答】解:,52132x x x a ++⎧+>⎪⎨⎪⎩①②…由①得,,10x <不等式组有解,Q ,10a ∴<,54311a y y --=--,543(1)a y -+=-,133a y -=-,32y a =+,23a y +=方程有非负整数解,Q 又由且是整数,10a <a 或或或,20a ∴+=23a +=26a +=29a +=解得或或或,2a =-1a =4a =7a =,1y ≠Q ,23a ∴+≠或或,2a ∴=-4a =7a =满足条件的所有整数之和是9,∴a 故选:.A 12.有个依次排列的整式:第1项是,用第1项加上得到,将乘n 21a x x =-1a (1)x -1b 1b 以得到第2项,再将第2项加上得到,将乘以得到第3项,,以x 2a 2a (1)x -2b 2b x 3a ⋯此类推,下面四个结论中正确的个数为 ()①方程的实数解为;②;③第2023项40a =1±9879(1)(1)b x x x x x =-+++++L ;④当时,则的值为.20242023a xx =-3x =-(1)(1)11k kb b x x x x ≠≠--11(3)4k +--A .1B .2C .3D .4【解答】解:由题意可知,,用第1项加上得到,将乘以得到第21a x x =-1a (1)x -1b 1b x 2项,2a ,22111b x x x x ∴=-+-=-,232(1)a x x x x ∴=-=-将第2项加上得到,将乘以得到第3项,Q 2a (1)x -2b 2b x 3a ,33211b x x x x ∴=-+-=-,343(1)a x x x x ∴=-=-,以此类推,⋯,,1n n a x x +∴=-11n n b x +=-,54a x x ∴=-解方程,得,,50x x -=0x =1±方程的实数解为0,,故结论①错误;∴40a =1±,故结论②正确;109876543291(1)(1)b x x x x x x x x x x x =-=-+++++++++,1n n a x x +=-Q 第2023项,故结论③正确;∴20242023a x x =-,11n n b x +=-Q ,111(1)(1)k k k k b x x x x x +-∴=-=-++⋅⋅⋅++,∴111k k kb x x x x -=++⋅⋅⋅++-当时,,故结论④正确.3x =-1111(3)1(3)(3)(3)(3)111(3)4k k k k k b x ++-----=-+-+⋅⋅⋅+-+==---故正确的结论为:②③④,一共3个.故选:.C 二、填空题:请将每小题的答案直接填写在答题卡中对应的横线上.13.计算: .202(2)π-+-=54【解答】解:原式114=+.54=故答案为:.5414.在四个完全相同的球上分别标上数字、2、、4,从这四个球中随机取出一个球1-3-记所标数字为,然后再从剩下的球中随机取出一个球记所标数字为,则一次函数a b 的图象不经过第三象限的概率是 .y ax b =+13【解答】解:若一次函数的图象不经过第三象限,则且,y ax b =+0a <0b …画树状图如下:共有12种等可能的结果,其中满足且的结果有4种,0a <0b …一次函数的图象不经过第三象限的概率为.∴y ax b =+41123=故答案为:.1315.如图所示,点与点是两个四分之一圆的圆心,且两个圆的半径分别为3和6,则A B图中阴影部分的面积是 154π【解答】解:连接,BC ,,,AC BD ⊥Q 3AB =6BC =,31cos 62AB ABC BC ∴∠===,60ABC ∴∠=︒,sin 606AC BC ∴=︒⋅==ABC DBC ADE S S S S ∆∴=--阴影扇形扇形22606190333602360ππ⨯⨯⨯⨯=-⨯⨯154π=-故答案为:.154π16.某小区为了优化环境,计划在小区内甲、乙两块面积相同的空地上种植矮牵牛、金盏菊和三色堇三种花卉.现有10名工人参与种植,且每名工人每天种植矮牵牛、金盏菊和三色堇的面积之比为.已知每名工人固定种植一种花卉,所有工人花费9天的时间完5:4:2成了甲地的花卉种植.在乙地进行花卉种植时,为了加快乙地的种植进度,基于甲地的工人分配方案进行了调整,从种植金盏菊和三色堇的工人中分别抽调1人种植矮牵牛,这样乙地花卉种植的天数比甲地少且恰好为整数,则乙地种植金盏菊和三色堇的工人人数之比为 .1:2【解答】解:设每名工人每天种植矮牵牛、金盏菊和三色堇的面积为、、,在甲5x 4x 2x 地种植矮牵牛、金盏菊和三色堇的人数分别为人,人,人,在乙地种植矮a b (10)a b --牵牛、金盏菊和三色堇的人数分别为人、人、人,在乙地种植的天(2)a +(1)b -(9)a b --数比甲地少天,y 根据题意得,9[542(10)](9)[5(2)4(1)2(9)]ax bx x a b y x a x b x a b ++--=-++-+--整理得,(3224)36a b y ++=,363224a b y∴++=、、都是正整数,且,,,a Qb y 10a <10b <9y <,,,1y ∴=2a =3b =乙地种植金盏菊和三色堇的工人人数之比为:,∴121942b a b -==--故答案为:.1:2三、解答题:解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.17.计算:(1);2(1)(2)x x x -++(2).222(1)11x x xx x x --÷+-++【解答】解:(1)2(1)(2)x x x -++22212x x x x =-+++;221x =+(2)222(1)11x x xx x x --÷+-++2(1)22111x x x x x x --+-=÷++2(1)11(1)x x x x x -+=⋅+-.1x x =-18.如图,在四边形中,且,连接.ABCD //AD BC 12AD BC =BD(1)用尺规完成以下基本作图:作,使,与交于点.(保留CDE ∠CDE C ∠=∠DE BC F 作图痕迹,不写作法,不下结论)(2)若,求证:四边形为菱形.90BDC ∠=︒ABFD 证明:,C CDE ∠=∠Q .∴CF DF =,90BDC ∠=︒Q ,.90BDF CDF ∴∠+∠=︒90C DBF ∠+∠=︒又,C CDE ∠=∠ .∴.BF DF ∴=.12BF CF BC ∴==,12AD BC =Q .∴,//AD BC Q 四边形是平行四边形.∴ABFD ,Q 四边形是菱形.∴ABFD【解答】(1)解:如图,即为所求.CDE ∠(2)证明:,C CDE ∠=∠Q .CF DF ∴=,90BDC ∠=︒Q ,.90BDF CDF ∴∠+∠=︒90C DBF ∠+∠=︒又,C CDE ∠=∠.BDF DBF ∴∠=∠.BF DF ∴=.12BF CF BC ∴==,12AD BC =Q .AD BF ∴=,//AD BC Q 四边形是平行四边形.∴ABFD ,BF DF =Q 四边形是菱形.∴ABFD 故答案为:;;;.CF DF =BDF DBF ∠=∠AD BF =BF DF =四、解答题:解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.某校为了解学生对重庆历史文化的了解程度,举办了历史文化知识问答竞赛.现从八、九年级中各随机抽取20名学生的知识竞赛分数(满分100分,分数用表示,共分成x 四组:.,.,.,.进行整理、描A 95100x ……B 9095x <…C 8090x <…D 080)x <…述、分析,其中分数不低于90分为优秀,下面给出部分信息:八年级随机抽取20名学生的知识竞赛成绩分数是:65,80,81,84,87,88,90,90,91,91,92,92,92,97,97,98,98,99,100,100.九年级随机抽取20名学生的知识竞赛分数中,、两组数据个数相等,、两组的A D B C 数据是:88,90,91,92,92,92,92,92,93,93,94,94.八、九年级抽取的学生竞赛成绩统计表 年级八年级九年级平均数90.690.6中位数91.5a众数9292优秀率70%b %根据以上信息,回答下列问题:(1)直接写出上述图表中 92 , , ;a =b =n =(2)根据以上数据,你认为该校八、九年级中哪个年级学生对重庆历史文化知识掌握得更好?请说明理由(一条理由即可);(3)若该校八年级有1200人,九年级有1500人参加了此次知识问答竞赛,估计两个年级知识问答竞赛活动成绩优秀的学生人数是多少?【解答】解:(1)九年级随机抽取20名学生的知识竞赛分数中,、两组数据个数Q A D 相等,、两组的数据的中位数即为九年级20名学生的知识竞赛成绩分数的中位数,B ∴C 、两组的12个数据是:88,90,91,92,92,92,92,92,93,93,94,94,B Q C ;9292922a +∴==九年级随机抽取20名学生的知识竞赛分数中,、两组数据个数相等,Q A D 组数据有(个,A ∴201242-=)又组数据为90,91,92,92,92,92,92,93,93,94,94,有11个,B Q ,即.411%100%75%20b +∴=⨯=75b =组数据有11个,B Q .1136019820n ∴=⨯=故答案为:92;75;198;(2)九年级学生对重庆历史文化知识掌握得更好,理由:九年级学生知识竞赛分数的中位数大于八年级学生知识竞赛分数的中位数(或九年级学生知识竞赛分数的优秀率大于八年级学生知识竞赛分数的优秀率).(3)(人.120070%150075%1965⨯+⨯=)答:估计两个年级知识问答竞赛活动成绩优秀的学生人数是1965人.20.如图,已知一次函数与反比例函数的图象都经过点,(0)y ax b a =+≠k y x=(2,)A m .(4,2)B -(1)求一次函数的表达式,并在网格中画出一次函数图象;(2)若点与点关于原点成中心对称,连接、,求的面积;C A AC BC ABC ∆(3)根据函数图象,请直接写出的解集.k ax b x <+【解答】解:(1)点在反比例函数的图象上,Q (4,2)B -k y x =,428k ∴=-⨯=-反比例函数的表达式为;∴8y x=-当时,,2x =842m =-=-点的坐标为.∴A (2,4)-将,代入,得:,(2,4)A -(4,2)B -y ax b =+2442a b a b +=-⎧⎨-+=⎩解得:,12a b =-⎧⎨=-⎩一次函数的表达式为.∴2y x =--(2)点的坐标为,点与点关于原点成中心对称,Q A (2,4)-C A 点的坐标为.∴C (2,4)-直线为,∴AC 2y x =-把代入得,,解得,2y =22x =-1x =-,(1,2)D ∴-,143BD ∴=-+=.13(44)122ABC ABD BCD S S S ∆∆∆∴=+=⨯⨯+=(3)观察函数图象,可知:当或时,反比例函数图象在一次函数图象的下2x <-01x <<方,的解集是或.∴k ax b x<+4x <-02x <<21.如图,在竖直的海岸线上有长为68米的码头,现有一艘货船在点处,从码头AB P A处测得货船在的东南方向,若沿海岸线向南走30米后到达点,在处测得货船在A C C C的南偏东方向.75︒ 1.41≈ 1.73≈ 2.45)≈(1)求货船到的距离(结果精确到1米);A (2)若货船从点出发,沿着南偏西的方向行驶,请问该货船能否行驶到码头所在的P 60︒线段上?请说明理由.AB【解答】解:(1)过点作于点,C CM AP ⊥M由题意得,,,米,45A ∠=︒75PCB ∠=︒30AC =在中,,Rt ACM ∆sin 4530CM CM AC ︒===解得,CM =米,AM CM ∴==在中,,Rt CMP ∆30CPM PCB A ∠=∠-∠=︒,tan 30CM PM ︒===解得,PM =经检验,是原方程的解且符合题意,PM =(米.58AP AM PM ∴=+=+≈)货船到的距离约为58米.∴A (2)设货船从点出发沿着南偏西的方向行驶到点,过点作于点,P 60︒Q P PN AB ⊥N则,906030NPQ ∠=︒-︒=︒在中,,Rt ANP ∆sin 45PN AP ︒===解得,15PN =+米,(15AN PN ∴==+在中,,Rt PNQ ∆tan 30NQ PN ︒===解得,15NQ =+(米,3064.6AQ AN NQ ∴=+=+≈),64.668<Q 货船能行驶到码头所在的线段上.∴AB 22.某工厂共有300台机器出租,去年每台机器的租金为100元,由于物价上涨,今年这些机器的租金上涨到了121元台./(1)求每台机器租金的年增长率;(2)据预测,当机器的租金定为121元台时,该工厂可将机器全部租出;若每台机器的/租金每增加1元,就要少租出2台.租出的机器该工厂每天每台需支出41元的维护费用,未租出的机器该工厂每天每台需支出20元的保管费用.当每台机器的租金上涨多少元时,该工厂每天的收益为25250元?【解答】解:(1)设每台机器租金的年增长率为,x由题意,得.100(1)121x +=解得.0.2121%x ==答:每台机器租金的年增长率为.21%(2)设每台机器的租金上涨元,y 由题意,得.(12141)(3002)20225250y y y +---⨯=整理,得.2(25)0y -=解得.1225y y ==答:当每台机器的租金上涨25元时,该工厂每天的收益为25250元.23.如果一个自然数的个位数字不为0,且能分解成,其中与都是两位数,N A B ⨯A B 的十位数字比的十位数字大2,、的个位数字之和为10,则称数为“美好A B A B N 数”,并把数分解成的过程,称为“美好分解”.例如:,61N N A B =⨯29896149=⨯Q 的十位数字比49的十位数字大2,且61、49的个位数字之和为10,是“美好2989∴数”;又如:,35的十位数字比19的十位数字大2,但个位数字之和不等于6053519=⨯Q 10,不是“美好数”.605∴(1)判断525,1148是否是“美好数”?并说明理由;(2)把一个大于4000的四位“美好数” 进行“美好分解”,即分解成,N N A B =⨯A 的各个数位数字之和的2倍与的各个数位数字之和的和能被7整除,求出所有满足条件B 的.N 【解答】解:(1),35的十位数字比15的十位数字大2,且35、15的个5253515=⨯Q 位数字之和为10,是“美好数”,525∴,41的十位数字比28的十位数字大2,且41、28的个位数字之和为不等11484128=⨯Q 于10,不是“美好数”;1148∴(2)是大于4000的四位“美好数”,N Q 设,,其中,,且、是整数,∴10(2)(10)A x y =++-10B x y =+57x ……19y ……x y 由题意可得,被7整除,2(2)2(10)()324x y x y x y ++-++=-+是整数,∴3247x y -+是整数,∴337x y -+,,57x Q ……19y ……,93323x y ∴-+……或21,即或18,3314x y ∴-+=311x y -=①当时,或,311x y -=54x y =⎧⎨=⎩67x y =⎧⎨=⎩,或,,76A ∴=54B =83A =67B =或5561;4104N ∴=②当时,,318x y -=73x y =⎧⎨=⎩,,97A ∴=73B =;7081N ∴=综上所述:的值为4104或5561或7081.N 24.如图1,已知抛物线与轴交于、两点,与轴交于点,且2y x bx c =++x A B y (0,1)C -.1tan 2OAC ∠=(1)求抛物线的解析式;(2)点是直线下方对称轴左侧抛物线上一点,过点作轴交抛物线于点P AC P //PQ x Q ,过点作轴交于点,若,求点的坐标;P PR x ⊥AC R 32PQ PR +=P (3)将抛物线向右平移一个单位,向下平移一个单位得到新抛物线,在新2y x bx c =++抛物线上有点,在原抛物线对称轴上有点,直接写出所有使得以点,,,M N A C M N 为顶点的四边形是平行四边形的点的坐标,并把求其中一个点的坐标的过程写出M M 来.【解答】解:(1),(0,1)C -Q ,1OC ∴=在中,,Rt AOC ∆1tan 2OC OAC OA ∠==,即,2OA ∴=(2,0)A -把,代入得:(2,0)A -(0,1)C -2y x bx c =++,4201b c c -+=⎧⎨=-⎩解得,321b c ⎧=⎪⎨⎪=-⎩抛物线的解析式为;∴2312y x x =+-(2)由可得,抛物线对称轴为直线,2312y x x =+-33224x =-=-设,其中,23(,1)2P t t t +-324t -<<-轴,//PQ x Q ,关于直线对称,P ∴Q 34x =-,332()242PQ t t ∴=--=--由,可得直线解析式为,(2,0)A -(0,1)C -AC 112y x =--轴,PR x ⊥Q,1(,1)2R t t ∴--,2213(1)(1)222PR t t t t t ∴=---+-=--,32PQ PR +=Q ,2332222t t t ∴----=整理得,2430t t ++=解得或,1t =-3t =-,324t -<<-Q ,1t ∴=-;3(1,)2P ∴--(3)原抛物线解析式为,2233251()2416y x x x =+-=+-根据题意可得新抛物线解析式是,22232514115(11(41641622y x x x x =-+--=--=--设,,,而,,215(,)22M m m m --3(4N -)n (2,0)A -(0,1)C -①若,是对角线,则的中点即为的中点,MN AC MN AC ,∴23204150122m m m n ⎧-=-+⎪⎪⎨⎪--+=-⎪⎩可解得,54m =-,;5(4M ∴-5)16-②若,是对角线,MA NC ,2320415122m m m n ⎧-=-+⎪⎪⎨⎪--=-⎪⎩解得,54m =,;5(4M ∴25)16-③若,是对角线,MC NA,2302415122m m m n ⎧+=--⎪⎪⎨⎪---=⎪⎩解得,114m =-,,11(4M ∴-103)16综上所述,的坐标为,或,或,.M 5(4-516-5(425)16-11(4-1031625.如图1,是等腰三角形,,点是边上一点,连接,将绕ABC ∆BC BA =D AC BD BD 着点顺时针旋转得,且使得点在边所在的直线上.D DE E AB (1)若,点是的中点,的周长;90ABC ∠=︒E AB CD =ADE ∆(2)如图2,若,点为的中点,连接、,求证:;60ABC ∠=︒M BD CM ME CM ME ⊥(3)如图3,若,,在同一平面内将沿着翻折得,且60ABC ∠=︒4BC =ABD ∆BD PBD ∆使得点落在下方,连接,过点作交于点,点关于的对称点PBC PC P PH BC ⊥H C PH 为,连接、,当最大时,求的面积.C 'PC 'AC 'PH HC '-ABC '∆【解答】(1)解:如图1中,过点作于点,于点.D DT AB ⊥T DK BC ⊥K,90DTB DKB TBK ∠=∠=∠=︒Q 四边形是矩形,∴BTDK ,DK TB ∴=,,DE DB =Q DT BE ⊥,ET BT ∴=,,BA BC =Q 90ABC ∠=︒,45A C ∴∠=∠=︒,CD =Q ,2DK KC ∴==,2ET BT ∴==,AE EB =Q ,,4AE ∴=6AT DT ==,DE ∴===AD ==的周长为;ADE ∴∆4+(2)证明:如图2中,连接,延长到,使得,连接,,EC EM J MJ EM =BJ CJ DJ.设交于点.DJ BC P=,,Q BM MD=EM MJ四边形是平行四边形,∴EBJD,,∴=//EB DJEB DJ,,ABC∠=︒=Q60BC BA是等边三角形,∴∆ABC,,∠=∠=︒ACB CABAC BC∴=60,Q//BE DJ∠=∠,,∴=∠=︒EBD BDP DPC ABC60是等边三角形,PDC∴∆,∴==CD DP CP,=QDB DE∴∠=∠EBD DEA,∴∠=∠BDP DEA,Q120=BP AD,,∠=∠=︒EAD BPD∴∆≅∆EAD DPB AAS(),,∴===AE DP CP DP=,,Q AE DPBE DJ=,∴==PJ AB AC,,∠=∠=︒Q120CAE CPJAE CP=∴∆≅∆EAC CPJ SAS(),,∴=CE CJ,Q=EM MJ;∴⊥CM EMB BA B(3)如图3中,以为圆心为半径作,过点作交于点,连接e Ke B BK CB⊥B 交于点.CK PH R,,∠=︒CBKQ90BC BK=,∴∠=︒45BKR,Q⊥PH CB,∴∠=︒90CHR,∴∠=∠=︒HCR HRC45,∴=CH HR,关于对称,Q C'PHC,∴='CH HC,HR HC ∴=',PH HC PH HR PR ∴-'=-=的值最大时,的值最小,PR ∴PH HC -'过点作于点,P PQ CK ⊥Q 是等腰直角三角形,PQR ∆Q 的值最大时,的值最大,PQ ∴PR当时,的值中点,此时,∴PB CK ⊥PQ 4PQ =-,4PR ∴==-的最大值为.PH HC ∴-'4-。
九年级(上)第一次月考数学试卷题号一二三四总分得分一、选择题(本大题共12小题,共48.0分)1.4的倒数是()A. −4B. 4C. −14D. 142.下列四个选项中,既是轴对称又是中心对称的图形是()A. 矩形B. 等边三角形C. 正五边形D. 正七边形3.计算(x2y)2的结果是()A. x4y2B. x4yC. x2y2D. x2y4.下列调查中,最适合采用普查方式的是()A. 调查某品牌灯泡的使用寿命B. 调查重庆市国庆节期间进出主城区的车流量C. 调查重庆八中九年级一班学生的睡眠时间D. 调查某批次烟花爆竹的燃放效果5.函数y=x+2x−1中自变量x的取值范围是()A. x≥−2B. x≥−2且x≠1C. x≠1D. x≥−2或x≠16.若y=(m-1)x m2+m是关于x的二次函数,则m的值为()A. −2B. −2或1C. 1D. 不存在7.若△ABC∽△DEF,△ABC与△DEF的面积之比为4:25,则△ABC与△DEF周长之比为()A. 4:25B. 2:5C. 5:2D. 25:48.佔计32+7的运算结果应在哪两个连续自然数之间()A. 5和6B. 6和7C. 7和8D. 8和99.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()A.B.C.D.10.如图,是一次函数y=kx+b的图象,则二次函数y=2kx2-bx+1的图象大致为()A.B.C.D.11.△OAB在第一象限中,OA=AB,OA⊥AB,O是坐标原点,且函数y=1x正好过A,B两点,BE⊥x轴于E点,则OE2-BE2的值为()A. 3B. 2C. 3D. 412.使得关于x的分式方程61−x-2=ax+2x−1有正整数解,且关于x的不等式组3x−12a≥x+43x−42<x+12至少有4个整数解,那么符合条件的所有整数a的和为()A. −20B. −17C. −9D. −5二、填空题(本大题共6小题,共24.0分)13.8-4cos45°+(-12)-2-|π-3|0=______.14.如图,矩形ABCD的边AB长为4,对角线BD的长是边AB长的两倍,在矩形ABCD中以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是______(结果保留π)15.第一次体育月考,年级主任尹老师对初三年级前6个班级的满分人数进行了统计,为了鼓励先进缩短差距,尹老师还让数学老师绘制了如图所示的折线统计图,则这6个班级体育满分人数的中位数为______.16.如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=35,则tan∠B的值为______.17.春天的某个周末,阳光明媚,适合户外运动.下午,住在同一小区的小懿、小静两人不约而同的都准备从小区出发,沿相同的路线步行去同一个公园赏花!小懿出发5分钟后小静才出发,同时小懿发现当天的光线很适合摄影,所以决定按原速回家拿相机,小懿拿了相机后,担心错过最佳拍照时间,所以速度提高了20%,结果还是比小静晚2分钟到公园.小懿取相机的时间忽略不计,在整个过程中,小静保持匀速运动,小懿提速前后也分别保持匀速运动.如图所示是小懿、小静之间的距离y (米)与小懿离开小区的时间x(分钟)之间的函数图象,则小区到公园的距离为______米.18.2018年9月28日,重庆八中80周年校庆在渝北校区隆重举行,学校总务处购买了红,黄,蓝三种花卉装扮出甲,乙,丙,丁四种造型,其中一个甲造型需要15盆红花,10盆黄花,10盆蓝花;一个乙造型需要5盆红花,7盆黄花,6盆蓝花;一个丙造型需要7盆红花,8盆黄花,9盆蓝花;一个丁造型需要6盆红花,4盆黄花,4盆蓝花,若一个甲造型售价1800元,利润率为20%,一个乙和一个丙造型一共成本和为1830元,且一盆红花的利润率为25%,问一个丁造型的利润率为______.三、计算题(本大题共3小题,共28.0分)19.解方程:(1)3x2-5x-2=0(2)xx−3-12x=120.(1)(2m-n)2-(m+n)(4m-n)(2)(3x+1-x+1)÷x2+4x+4x+121.小飞文具店今年7月份购进一批笔记本,共2290本,每本进价为10元,该文具店决定从8月份开始进行销售,若每本售价为11元,则可全部售完;且每本售价每增长1元,销量就减少30本.(1)若该种笔记本在8月份的销售量不低于2200本,则8月份售价应不高于多少元?(2)由于生产商提高造纸工艺,该笔记本的进价提高了10%,文具店为了增加笔记本的销量进行了销售调整,售价比8月份在(1)的条件下的最高售价减少了17m%,结果9月份的销量比8月份在(1)的条件下的最低销量增加了m%,9月份的销售利润达到6600元,求m的值.四、解答题(本大题共5小题,共50.0分)22.如图,MN∥PQ,点A在MN上,点B在PQ上,连接AB,过点A作AC⊥AB交PQ于点C.过点B作BD平分∠ABC交AC于点D,若∠NAC=32°,求∠ADB的度数.23.在学习解直角三角形以后,重庆八中数学兴趣小组测量了旗杆的高度,如图,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为6米,落在斜坡上的影长CD为4米,AB⊥BC,同一时刻,光线与旗杆的夹角为37°,斜坡CE的坡角为30°,旗杆的高度约为多少米?(结果精确到0.1,参考数据:sin37°=060,cos37°≈0.80,tan37°=075,3≈1.73)24.在▱ABCD中,连接对角线BD,AB=BD,E为线段AD上一点,AE=BE,F为射线BE上一点,DE=BF,连接AF(1)如图1,若∠BED=60°,CD=23,求EF的长;(2)如图2,连接DF并延长交AB于点G,若AF=2DE,求证:DF=2GF.25.如果一个三位正整数A与另一个三位正整数B相加得到三位数C,C的三个数位上的数字都相同,我们就称三位正整数A和三位正整数B互为“影子数”如:191+253=444,191+475=666…,所以191和253互为“影子数,同时191和475也互为“影子数”,475和253都是191的“影子数”.(1)若一个三位正整数M是67的倍数,它比它的一个“影子数”小107,求这个三位数M;(2)若将一个三位正整数abc−的十位和百位交换位置后组成的三位数是bac−,且bac−是abc−的“影子数”,若bac−-abc−=540,求证:b=c+3.26.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-1,0)和点B,与y轴交于点C,点C关于抛物线对称轴的对称点为点D,抛物线顶点为H(1,2).(1)求抛物线的解析式;(2)点P为直线AD上方抛物线的对称轴上一动点,连接PA,PD.当S△PAD=3,若在x轴上存在一动点Q,使PQ+55QB最小,求此时点Q的坐标及PQ+55QB的最小值;(3)若点E为抛物线上的动点,点G,F为平面内的点,以BE为边构造以B,E,F,G为顶点的正方形,当顶点F或者G恰好落在y轴上时,求点E的横坐标.答案和解析1.【答案】D【解析】解:4的倒数是.故选:D.根据倒数的定义:乘积是1的两个数,即可求解.本题主要考查了倒数的定义,正确理解定义是解题关键.2.【答案】A【解析】解:A、矩形是轴对称图形,也是中心对称图形,故此选项正确;B、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;C、正五边形是轴对称图形,不是中心对称图形,故此选项错误;D、正七边形是轴对称图形,不是中心对称图形,故此选项错误.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【答案】A【解析】解:(x2y)2=x4y2.故选:A.直接利用积的乘方运算法则计算得出答案.此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.4.【答案】C【解析】解:A、调查某品牌灯泡的使用寿命适合采用抽样调查方式,故本选项错误;B、调查重庆市国庆节期间进出主城区的车流量适合采用抽样调查方式,故本选项错误;C、调查重庆八中九年级一班学生的睡眠时间适合采用普查方式,故本选项正确;D、调查某批次烟花爆竹的燃放效果适合采用抽样调查方式,故本选项错误.故选:C.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.【答案】B【解析】解:根据题意得:被开方数x+2≥0,解得x≥-2,根据分式有意义的条件,x-1≠0,解得x≠1,故x≥-2且x≠1.故选:B.根据二次根式的性质和分式的意义,被开方数≥0,分母不等于0,就可以求解.考查了函数自变量的取值范围,注意函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.6.【答案】A【解析】解:若y=(m-1)x是关于x的二次函数,则,解得:m=-2.根据y=ax2+bx+c(a是不为0的常数)是二次函数,可得答案.本题考查了二次函数,注意二次项的系数不能是0.7.【答案】B【解析】解:∵相似三角形△ABC与△DEF面积的比为4:25,∴它们的相似比为2:5,∴△ABC与△DEF的周长比为2:5.故选:B.根据相似三角形的面积的比等于相似比的平方先求出△ABC与△DEF的相似比,然后根据相似三角形的周长的比等于相似比解答即可.本题主要考查了相似三角形面积的比等于相似比的平方,周长的比等于相似比的性质,熟记性质是解题的关键.8.【答案】D【解析】解:(+)2=39+2=39+,∵29<<30,∴68<39+<69,∴+的运算结果应在8和9之间,故选:D.先将+进行平方,然后估算得到即可.本题主要考查的是比较无理数的大小,熟练掌握相关法则是解题的关键.9.【答案】C【解析】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有根据题意知原图形中各行、各列中点数之和为10,据此可得.本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.10.【答案】B【解析】解:由一次函数y=kx+b的图象可得,k>0,b>0,∴二次函数y=2kx2-bx+1的图象开口向上,对称轴为x=>0,故选:B.根据一次函数的图象可以判断k和b的正负,从而可以判断二次函数y=2kx2-bx+1的图象的开口方向和对称轴,从而可以解答本题.本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】D【解析】解:如图:过点A作AF⊥y轴于点F,延长EB交FA的延长线于点D.∵AF⊥OF,BE⊥OE,OE⊥OF∴四边形DEOF是矩形∴∠D=90°,OF=DE,DF=OE设点A(a,),即AF=a,OF=∵∠BAO=90°,AF⊥FO∴∠BAD+∠FAO=90°,∠FAO+∠FOA=90°∴∠DAB=∠AOF且AO=AB,∠AFO=∠ADB=90°∴△AFO≌△BDA(AAS)∴AD=OF=,DB=AF=a∴BE=DE-DB=-a,OE=DF=AF+AD=a+∴OE2-BE2=(a+)2-(-a)2=4故选:D.过点A作AF⊥y轴于点F,延长EB交FA的延长线于点D.由题意可证四边形DEOF是矩形,可得DE=OF,DF=OE,由题意可证△AFO≌△BDA,可得AF=DB,AD=OF,设出A点坐标,表示出BE与OE,即可求出所求式子的值.本题考查了反比例函数应用,涉及的知识有:全等三角形的判定与性质,坐标与图形性质,熟练掌握全等三角形的判定与性质是解本题的关键.12.【答案】C【解析】解:分式方程去分母得:-6-2(x-1)=ax+2,即(a+2)x=-6,由分式方程有正整数解,得到a+2≠0,解得:x=->0,得a<-2,不等式组整理得:,即≤x<5,由不等式组至少有4个整数解,得到,解得:a≤-4,由x为正整数,且-≠1,得到a+2=-1,-2,-3,解得:a=-4或-3或-5,∵a≤-4,∴a=-4或-5,-4-5=-9,则符合条件的所有整数a的和为-9,故选:C.表示出不等式组的解集,由不等式组有且只有四个整数解,确定出a的范围,分式方程去分母转化为整式方程,表示出x,由x为正整数确定出a的值即可.此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.13.【答案】3【解析】解:原式=2-4×+4-1=2-2+3=3,故答案为:3.先化简二次根式,代入三角函数值,计算负整数指数幂和零指数幂,再计算乘法,最后计算加减可得.本题主要考查实数的运算,解题的关键是掌握二次根式的性质、特殊锐角的三角函数值、负整数指数幂和零指数幂的运算法则.14.【答案】83-83π【解析】解:∵矩形ABCD的边AB长为4,对角线BD的长是边AB长的两倍,∴BD=8,∠ABE=60°,∴S阴=S△ABD-S扇形BAE=×4×4-=8-π,故答案为8-π.根据S阴=S△ABD-S扇形BAE计算即可;本题考查扇形的面积的计算,正方形的性质等知识,解题的关键是学会用分割法求阴影部分面积.15.【答案】51【解析】解:由图可知,把数据按从小到大的顺序排列是:36、42、48、54、54、60,则中位数是(48+54)÷2=51.故答案是:51.把这组数据按从小到大的顺序排列,处于最中间两个数的平均数就是这组数据的中位数.此题考查了中位数和折线统计图,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.16.【答案】23【解析】解:Rt△AMC中,sin∠CAM==,设MC=3x,AM=5x,则AC==4x.∵M是BC的中点,∴BC=2MC=6x.在Rt△ABC中,tan∠B===.根据∠CAM的正弦值,用未知数表示出MC、AM的长,进而可表示出AC、BC 的长.在Rt△ABC中,求∠B的正切值.本题考查了解直角三角形中三角函数及勾股定理的应用,要熟练掌握好边与边、边与角之间的关系.17.【答案】720【解析】解:由题意,可知小懿提速后的速度为240÷2=120(米/分),∴小懿提速前的速度为120÷(1+20%)=100(米/分).∵两人之间的距离y=400米时,小懿返回到了家中,此时小懿走了1000米,讲去提前走的500米,所以小懿在小静出发后又走了500米,小静走了400米,∴小静的速度为100×=80(米/分).设小静走了400米后还需x分钟到达公园.由题意,可得(120-80)x=400-240,解得x=4,∴小区到公园的距离为400+4×80=720(米).故答案为720.根据图象可知,两人之间的距离y=240米时,小静到达了公园,根据小懿比小静晚2分钟到公园,求出小懿提速后的速度,再求出小懿提速前的速度.根据两人之间的距离y=400米时,小懿返回到了家中,根据时间相同时,速度比等于路程比求出小静的速度.设小静走了400米后还需x分钟到达公园,根据追击问题的相等关系列出方程,求出x,进而得出小区到公园的距离.本题考查了一次函数的应用,行程问题的基本关系,函数的图象,一元一次方程的应用,有一定的难度,求出两人的速度是解题的关键.18.【答案】20%【解析】解:∵甲造型售价1800元,利润率为20%,∴甲造型成本价=1800÷(1+20%)=1500元,设一盆红花的成本价为x元,根据题意得,×15+12x=1830,解得:x=40,∴1盆黄花+1盆蓝花的成本==90元,∵1盆红花的售价=40×(1+25%)=50元;∴1盆黄花+1盆蓝花的售价==105元,∴一个丁造型的利润率=×100%=20%,故答案为:20%.根据已知条件得到甲造型成本价=1800÷(1+20%)=1500元,设一盆红花的成本价为x元,根据题意列方程得到x=40,求出1盆黄花+1盆蓝花的成本,1盆红花的售价,1盆黄花+1盆蓝花的售价,根据利润÷成本×100%=利润率即可得到结论.本题考查了利润率问题,一元一次方程,正确的理解题意是解题的关键.19.【答案】解:(1)(3x+1)(x-2)=0,3x+1=0或x-2=0,所以x1=-13,x2=2;(2)去分母得2x2-(x-3)=2x(x-3),去括号得,2x2-x+3=2x2-6x,移项、合并同类项得,5x=-3,系数化为1得,x=-35,经检验,原方程的解为x=-35.【解析】(1)利用因式分解法解方程;(2)把分式方程化为整式方程得到2x2-(x-3)=2x(x-3),然后解整式方程后进行检验得到原方程的解.本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了解分式方程.20.【答案】解:(1)原式=4m2-4mn+n2-(4m2-mn+4mn-n2)=4m2-4mn+n2-4m2-3mn+n2=2n2-7mn;(2)原式=3−(x−1)(x+1)x+1•x+1(x+2)2=−(x+2)(x−2)x+1•x+1(x+2)2=-x−2x+2.【解析】(1)利用乘法公式展开,然后合并同类项即可;(2)先把括号内通分和除法运算化为乘法运算,再计算同分母的减法运算,然后把分子分母因式分解后约分即可.本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.21.【答案】解:(1)设8月份售价应为x元,依题意得:2290-30(x-11)≥2200,解得x≤14.答:8月份售价应不高于14元;(2)9月份的进价为10(1+10%)元,售价为14(1-17m%)元,根据题意,得[14(1-17m%)-10(1+10%)]×2200(1+m%)=6600,令m%=t,则原方程可化为(3-2t)(1+t)=3,解得t1=0(不合题意,舍去),t2=0.5,则m=50.答:m的值是50.【解析】(1)设8月份售价应为x元,根据不等关系:该种笔记本在8月份的销售量不低于2200本,列出不等式求解即可;(2)先求出9月份的进价与售价,再根据等量关系:9月份的销售利润达到6600元,列出方程求解即可.本题考查了一元一次不等式的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的不等关系和等量关系,列出不等式和方程,再求解.22.【答案】解:∵MN∥PQ,∴∠ACB=∠NAC=32°,∵AC⊥AB,∴∠BAC=90°,∴∠ABC=58°,∵BD平分∠ABC,∴∠ABD=12∠ABC=29°,∴∠ADB=90°-29°=61°.【解析】根据平行线的性质得到∠ACB=∠NAC=32°,由垂直的定义得到∠BAC=90°,根据三角形的内角和得到∠ABC=58°,根据角平分线的定义即可得到结论.本题考查了平行线的性质,角平分线的定义,以及直角三角形两锐角互余,熟记性质是解题的关键.23.【答案】解:如图,过点C作CG⊥EF于点G,延长GH交AD于点H,过点H作HP⊥AB于点P,则四边形BCHP为矩形,∴BC=PH=6,BP=CH,∠CHD=∠A=37°,∴AP=PHtan∠A=8,过点D作DQ⊥GH于点Q,∴∠CDQ=∠CEG=30°,∴CQ=12CD=2,DQ=CD cos∠CDQ=4×32=23,∵QH=DQtan∠CHD=833,∴CH=QH-CQ=833-2,则AB=AP+PB=AP+CH=8+833-2≈10.61【解析】作CG⊥EF、延长GH交AD于点H、作HP⊥AB可得四边形BCHP为矩形,从而知BC=PH=6、BP=CH、∠CHD=∠A=37°,先求出AP==8,作DQ⊥GH 知∠CDQ=∠CEG=30°,求出CQ=2、DQ=2,再求得QH=,CH=QH-CQ=-2,根据AB=AP+PB=AP+CH可得答案.本题主要考查解直角三角形、三角函数,坡脚等知识,解题的关键是正确添加辅助线,构造直角三角形解决问题.24.【答案】(1)解:如图1中,∵四边形ABCD是平行四边形,∴AB=CD=23,∵AB=BD,∴BD=23,∵EA=EB,∴∠EAB=∠EBA,∵∠DEB=60°,∠DEB=∠EAB+∠EBA,∴∠BAD=∠EBA=∠ADB=30°,∴∠EBD=90°,∴BE=2,DE=2BE=4,∵BF=DE,∴BF=4,∴EF=BF-BE=4-2=2.(2)证明:作FH∥AB交AE于H.设DE=BF=a,则AF=2a.∵EA=EB,BA=BD,∴∠EAB=∠EBA=∠ADB,∵BF=DE,∴△ABF≌△BDE(SAS),∴BE=AF=2a,∴EF=a,EA=EB=2a,∵FH∥AB,EF=FB,∴AH=EH=a,∴DFFG=DHHA=2aa=2,∴DF=2FG.【解析】(1)想办法证明△BDE是直角三角形,解直角三角形求出BE,DE即可解决问题;(2)作FH∥AB交AE于H.设DE=BF=a,则AF=2a.想办法证明AH=EH=DE=a,根据FH∥AB,EF=FB,推出===2即可;本题考查平行四边形的性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.【答案】解;(1)设一个三位数正整数为M=abc−,且满足是67的倍数(中a,b,c为0到9之间的整数,a≠0,b≠0)由题意,abc−+107为它的“影子数”,则它和它的“影子数”的和可表示为:(a+1)(b+0)(c+7)−,由“影子数”的定义可得:a+1=b+0=c+7,满足条件的情况条件的三位数为:①c=0时,b=7,a=6,三位数正整数为abc为670;②c=1时,b=8,a=7,三位数正整数为abc为781;③c=2时,b=9,a=8,三位数正整数为abc为892.能被67整除的只有670,所以这个三位数M为670.(2)证明:∵abc−和bac−bac互为影子数,所以a=2c-b,∵bac−-abc−=540,∴100b+10(2c-b)+c=540+100(2c-b)+10b+c,∴180b-180c=540,∴b-c=3,∴b=c+3.【解析】(1)根据题中“影子数”的定义,可设一个满足条件的三位数为M=abc,然后表示出比之大107的“影子数”,根据定义可解;(2)根据“影子数”的定义求出a、b、c之间的关系式代入题中给定的等式求出.本题主要运用了因式分解的思想,把一个三位数用乘积的形式表示出来,从而转换为所求解的形式,这是解答本题的关键.26.【答案】解:(1)∵抛物线的顶点为H(1,2),∴可以假设抛物线的解析式为y=a(x-1)2+2,把A(-1,0)代入得到,a=-12,∴抛物线的解析式为y=-12(x-1)2+2,即y=-12x2+x+32.(2)如图1中,连接PA,PD,在y轴上取一点M(0,-32),连接BM,作QN⊥BM 于N.设AD交对称轴于K.由题意C(0,32),D(2,32),A(-1,0),B(3,0),∴直线AD的解析式为y=12x+12,∴K(1,1),设P(1,m),则有12×(m-1)×3=3,∴m=3,∴P(1,3),∵OB=3,OM=32,∴BM=325,∴sin∠ABM=AMBM=55,∴QNBQ=55,∴QN=55BQ,∴PQ+55BQ=PQ+QN,根据垂线段最短可知,当PN⊥BM,且P,Q,N共线时,PQ+55BQ的值最小,最小值=线段PN的值.∵直线BM的解析式为y=12x-32,∴当PN⊥BM时,直线PN的解析式为y=-2x+5,此时Q(52,0),由y=12x−32y=−2x+5,解得x=135y=−15,∴N(135,-15),∴PN=(135−1)2+(−15−3)2=855,∴PQ+55BQ的最小值为855.(3)(3)设F(m,-12m2+m+32),有三种情况:①如图2,当G在y轴上时,过E作EQ⊥y轴于Q,作EM⊥x轴于M,∵四边形EBFG是正方形,∴EG=EB,∵∠EQG=∠EMB=90°,∠QEG=∠MEB,∴△EQG≌△EMB,∴EQ=EM,即m=-12m2+m+32,解得:m1=3,m2=-3,∴E点横坐标为3或-3.②当F在y轴上时,如图3,过E作EM⊥x轴于M,同理得:△EMB≌△BOF,∴OB=EM=3,即-12m2+m+32=-3,m1=1-10,m2=1+10,∴P的横坐标为1-10或1+10,③当G在y轴上时,如图4,作EM⊥OB于E,EN⊥OG于N.同法可证:EN=EM,∴m=-(-12m2+m+32),解得m1=2+7,m2=2-7,∴点E的横坐标为2-7或2+7综上所述,点E的横坐标为3或-3或1-10或1+10或2-7或2+7.【解析】(1))由抛物线的顶点为H(1,2),可以假设抛物线的解析式为y=a(x-1)2+2,把A(-1,0)代入得到,a=-;(2)如图1中,连接PA,PD,在y轴上取一点M(0,-),连接BM,作QN⊥BM 于N.设AD交对称轴于K.首先证明QN=BQ,推出PQ+BQ=PQ+QN,根据垂线段最短可知,当HN⊥BM,且P,Q,N共线时,PQ+BQ的值最小,最小值=线段PN的值;(3)设P(m,-m2+m+3),有三种情况:①如图2,当G在y轴上时,过E作EQ⊥y轴于Q,作EM⊥x轴于M,证明△EQG≌△EMB,则EQ=EM,列方程可得m的值;②当F在y轴上时,如图3,过E作EM⊥x轴于M,同法可得;③当G在y轴上时,如图4,作EM⊥OB于E,EN⊥OG于N.只要证明EM=EN,构建方程即可解决问题;本题为二次函数的综合应用,涉及待定系数法、全等三角形的判定和性质、正方形的性质、垂线段最短、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中构造三角形相似是解题的关键,在(3)中确定出E的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.第21页,共21页。
重庆市第八中学校2024-2025学年九年级上学期9月月考数学试题一、单选题1.下列式子中,是分式的是( )A .5x -B .3πx y+ C .4a D .2xy2.在以下节水、节能、回收、绿色食品四个标志中,是轴对称图形的是( )A .B .C .D .3.反比例函数8y x=的图象一定经过的点是( ) A .()2,4- B .()1,8- C .()4,2 D .()2,4-4.估计的值应该在( )A .7和8之间B .8和9之间C .9和10之间D .10和11之间5.如图,ABC V 和DEF V 是以点O 为位似中心的位似图形,:1:2OC CF =,若36DEF S =△,则ABC S V 为( )A .6B .3C .4D .86.如图,已知直线a b ∥,直线l 与直线a b 、分别交于点A B 、,AC AB ⊥交直线b 于点C .若250∠=︒,则1∠的度数为( )A .50︒B .40︒C .60°D .30︒7.如图,直角三角形ABC 中,90C ∠=︒,分别以AB AC BC 、、为直径向上作半圆.若26BC AC ==,则图中阴影部分的面积为( )A .9B .9π2C .27π2D 8.如图,下列图形均是由完全相同的小圆点按照一定规律所组成的,第①个图形中一共有5个小圆点,第②个图形中一共有8个小圆点,第③个图形中一共有11个小圆点,L ,按此规律排列下去,第⑩个图形中小圆点的个数是( )A .30B .31C .32D .339.如图,在正方形ABCD 中6AB =,点E 是对角线AC 上的一点,连结DE ,过点E 作EF ED ⊥,交AB 于点F ,以,DE EF 为邻边作矩形DEFG ,连结AG ,若F 恰为AB 的中点,则AG 的长为( )A .32B .34C .94D 10.有如下的一列等式:23200110221033210T a T a x a T a x a x a T a x a x a x a ==-=-+=-+-,,,,L ,其中n 为正整数,nT的各项系数均不为0.交换任意两项的系数得到的新多项式称为“友好多项式”那么以下说法正确的有( )①多项式3T 有6个不同的“友好多项式”;②求多项式3T 所有不同的“友好多项式”之和,其中3x 的系数为:3212a a a -+; ③若()21nn T x =-,那么n T 的所有系数之和为1;④若()21n n T x =-,那么当2025n =时,20252025202320211132a a a a +++++=L .A .0个B .1个C .2个D .3个二、填空题11.计算:tan60cos60cos30︒⋅︒+︒=.12.已知一个正多边形的内角为140︒,这个多边形的条数为.13.一个不透明的口袋中有2个黄色球和3个红色球,这些球除颜色外其余均相同,从中随机摸出一个球,记下颜色后放回,搅匀后再从中随机摸出一个球,则两次都摸出红球的概率是.14.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.若蓄电池电流为6A 时,电阻为Ω.15.若()2610425mm y m x x -+=-++是关于x 的二次函数,则m 的值为.16.若关于x 的不等式组3532122x x x a x +⎧≤+⎪⎪⎨+⎪+>⎪⎩无解,且关于y 的分式方程53122ay y y --=--有整数解,则满足条件的所有整数a 的和为. 17.如图,四边形ABCD 为矩形,52AB =,BC =,点E 为AB 边上一点,将BCE V 沿CE 翻折,点B 的对应点为点F ,过点F 作FG CE ∥交DC 于点G ,若:1:4DG GC =,则FG 的长为.18.对于一个三位自然数m ,将各个数位上的数字分别乘以3后,取其个位数字,得到三个新的数字,,x y z ,我们对自然数m 规定一个运算:()222F m x y z =++,例如:136m =,其各个数位上的数字分别乘以3后,再取其个位数字分别是:3,9,8,则()222136398154F =++=.则()432F =;若已知两个三位数4,22p a a q b ==(,a b 为整数,且25,25a b ≤≤≤≤),若p q +能被7整除,则()F p q +的最大值是.三、解答题 19.计算(1)()()22x y x x y ++-;(2)22269133a a a a a a ++⎛⎫-÷ ⎪-+⎝⎭. 20.当前,电信网络诈骗犯罪形势严峻,某中学组织了关于防诈安全知识的专题讲座,并进行了防诈安全知识测评,现从该校初中、高中两个学段中各随机抽取20名学生的测试成绩(120分制)进行整理和分析(成绩得分用x 表示,共分成四组:A .090x ≤<,B .90100x ≤<,C .100110x ≤<,D .110120x ≤≤,下面给出了部分信息:初中20名学生的测试成绩是:110,111,100,99,100,89,88,88,87,118,97,96,85,86,106,106,120,112,106,106高中20名学生的测成绩在C 组中的数据是:104,106,107,108,106,109. 初中、高中抽取的学生测试成绩统计表根据上述信息,解答下列问题: (1)直接写出上述图表中a b m 、、的值;(2)该校哪个学段学生掌握防诈安全知识更好?请说明理由.(写出一条理由即可) (3)该校初中4400名学生,高中560名学生,估计两个学段测试成绩优秀()110120x ≤≤的学生共有多少名?21.如图,等腰直角三角形ABC ,90ABC ∠=︒,点D 是AC 的中点,连接BD ,点E 是AC 上的一点,AB AE =.(1)用直尺和圆规完成以下基本操作:过点A 作BAC ∠的角平分线,交BD 和BE 分别于点G 和点F (保留作图痕迹,不写作法) (2)求证:AB GD BD =+.证明:在Rt ABC △中,90ABC AB BC ∠=︒=,,点D 是AC 的中点,AC BD AD DC BD ∴⊥==,,90ADB ∴∠=︒,AB AE AG =Q ,平分BAC ∠,∴_______, 90AFB ∴∠=︒,又AGD BGF ∠=∠Q ,9090AGD BGF ∴︒-∠=︒-∠,∴______________,在ADG △和BDE V 中,________AD BD DAG DBE ⎧⎪=⎨⎪∠=∠⎩,(ASA)ADG BDE ∴V V ≌,DG DE ∴=,GD BD ∴+=_______AE AB ==.22.喷灌和滴灌是目前较常用的两种节水灌溉方式,去年,某专家小组用两块相同大小的试验田分别采用喷灌和滴灌的方式,滴灌总用水2000吨,喷灌总用水3000吨,据测算,喷灌时每亩用水量比滴灌时每亩用水量多10吨. (1)求喷灌和滴灌每亩用水量分别是多少;(2)今年,专家小组计划将滴灌和喷灌试验田面积分别增加%a ,同时,通过改进灌溉输水管道,使喷灌的每亩用水量减少了2%3a ,滴灌的用水量不变,据测算,今年的灌溉用水量比去年的用水量增加了1%2a ,求a 的值.23.如图,在直角梯形ABCD 中,490,tan ,4cm 3B D AB BC ∠=︒===,现有一动点Q 从C点出发沿C D A →→的方向移动到A 点(含端点C 和点A ),当它到A 时停止.设Q 点经过的路程为cm x ,线段,,AQ CQ AC 围成的封闭图形面积为21cm y .(1)直接写出1y 与x 的函数关系式,并注明x 的取值范围;(2)在x 的取值范围内画出1y 的图象,写出函数1y 的一条性质:______________; (3)结合函数图象,当直线212y x m =+与1y 的函数图象有两个交点时,直接写出常数m 的取值范围.(结果保留一位小数,误差不超过0.2).24.如图,四边形ABCD 是某公园的游览步道(步道可以骑行),把四个景点连接起来,为了方便,在景点C 的正东方设置了休息区K ,其中休息区K 在景点A 的南偏西30︒方向A 在景点B 的北偏东75︒方向,景点B 和休息区K 两地相距()90ABK ∠<︒,景点D 分别在休息区K 、景点A 的正东方向和正南方向.(参考数据:2.24 2.45)(1)求步道AB 的长度;(2)周末小明和小宏相约一起去公园游玩,他们在景点C 一起向正东出发,不久到达休息区K ,他们发现有两条路线到达景点A ,于是小宏想比赛看谁先到达景点A .他们分别租了一辆共享单车,两人同时在K 点出发,小明选择①K B A --路线,速度为每分钟320米;小宏选择②K D A --路线,速度为每分钟240米,其中两人在各个景点停留的时间不计.请你通过计算说明,小明和小宏谁先到达景点A 呢?25.如图,一次函数y =kx +b k ≠0 与反比例函数()0,0my m x x=≠<的图象相交于点()1,A n -,与x 轴交于点B ,与y 轴交于点C ,已知122OB OC ==.(1)求反比例函数与一次函数的解析式;(2)将点B 沿x 轴负半轴平移5个单位长度得到点E ,连接AE ,交反比例函数图象于点D ,连接BD .若在y 轴上有一动点F ,直线BD 上有一动点P .当35A P PB +最小时,求DPF V 周长的最小值以及点F 的坐标;(3)如图2,将线段AD 以D 为圆心,逆时针旋转90︒,得到线段DN ,连接CN ,在反比例函数上是否存在一点Q ,使得90CND QCO ∠+∠=︒?直接写出点Q 的坐标.26.如图,等腰直角三角形中,90,ACB CB CA ∠=︒=,点D 是线段BC 中点,以D 为直角顶点作等腰直角三角形,MDN M 在N 的左侧.(1)如图1,若点M 与点A重合,连接,BN AB =BN 的长度;(2)如图2,若点M 在AC 左侧,且90AMC ∠=︒时,过点D 作DE BC ⊥交AB 于点E ,连接ME CN 、,在线段CN 上取一点F 且满足45NDF DMC ∠=︒-∠,求证:AM CM +=;(3)如图3,若点M 在AC 左侧,且90AMC ∠=︒时,将AMC V 和MCD △分别沿AC CD 、翻折得到AM C 'V 和CM D ''V,连接BN DM '、,若12M DM AMC S S '''=V V ,请直接写出DMBN的值.。
重庆市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020八下·重庆月考) 一元二次方程2y2﹣7=3y的二次项系数、一次项系数、常数项分别是()A . 2,﹣3,﹣7B . ﹣2,﹣3,﹣7C . 2,﹣7,3D . ﹣2,﹣3,72. (2分) (2019九上·龙湾期中) 下列各式中,是关于的二次函数的是A .B .C .D .3. (2分) (2018九上·硚口月考) 抛物线y=(x-2)2-3的对称轴是()A . y轴B . 直线x=2C . 直线x=-2D . 直线x=-34. (2分) (2019九上·大洼月考) 若关于x的方程x2-2(k+1)x+k2-1=0有实数根,则k的取值范围是()A . k≥-1B . k>-1C . k≤-1D . k<-15. (2分)二次函数y=2(x-1)-1的顶点是().A . (1,-1)B . (1,1)C . (-1,1)D . (2,-l)6. (2分)摄影兴趣小组的学生,将自己拍摄的照片向本组其他成员各赠送一张,全组共互赠了182张,若全组有x名学生,则根据题意列出的方程是()A . x(x+1)=182B . x(x-1)=182C . 2x(x+1)=182D . 0.5x(x-1)=1827. (2分)(2020·重庆模拟) 抛物线y=x2+4x+7的对称轴是()A . 直线x=4B . 直线x=﹣4C . 直线x=2D . 直线x=﹣28. (2分) (2019八下·北京房山期末) 下列各点在函数的图象上的是()A . (1,3)B . (﹣2,4)C . (3,5)D . (﹣1,0)9. (2分)(2019·浙江模拟) 近期气候温暖湿润很适合春笋生长,某农林基地预计2019年春笋产量将由2017年的45万吨提升到50万吨,设每年春笋产量年平均增长率为,则可列方程为()A .B .C .D .10. (2分) (2016九上·潮安期中) 若二次函数y=x2﹣mx+1的图象的顶点在x轴上,则m的值是()A . 2B . ﹣2C . 0D . ±2二、填空题 (共4题;共4分)11. (1分) (2017九上·重庆期中) 若关于x的方程x2+(m+1)x+m=0有一个解为3,则m的值是________12. (1分) (2019九上·萧山月考) 抛物线的顶点坐标是________.13. (1分) (2019九上·嘉定期末) 如果抛物线y=(k﹣2)x2+k的开口向上,那么k的取值范围是________.14. (1分) (2016九上·苍南月考) 边长为1的正方形OABC的顶点A在x轴的正半轴上,如图将正方形OABC 绕顶点O顺时针旋转75°,使点B恰好落在函数y=ax2(a<0)的图像上,则a的值为________.三、解答题 (共9题;共81分)15. (5分) (2019九上·九龙坡开学考) 解方程:x2﹣x﹣20=0.16. (10分)(2018·遵义模拟) 如图,经过点A(0,﹣4)的抛物线y= x2+bx+c与x轴相交于B(﹣2,0),C两点,O为坐标原点;(1)求抛物线的解析式并用配方法求顶点M的坐标;(2)若抛物线上有一点P,使∠PCB=∠ABC,求P点坐标;(3)将抛物线y= x2+bx+c向上平移个单位长度,再向左平移m(m>0)个单位长度得到新抛物线,若新抛物线的顶点M在△ABC内,直接写出m的取值范围.17. (5分)(2019·定兴模拟) 如图,在Rt△ABC中∠C=90°,BC=7cm .动点P在线段AC上从点C出发,沿CA方向运动;动点Q在线段BC上同时从点B出发,沿BC方向运动.如果点P , Q的运动速度均为lcm/s ,那么运动几秒时,它们相距5cm .18. (10分)(2019·宁波模拟) 已知二次函数y=x2+bx+c的图象经过点A和点B(1)求该二次函数的解析式;(2)写出该抛物线的对称轴及顶点坐标.19. (10分) (2016九上·吉安期中) 已知关于x的一元二次方程x2+2(m+1)x+m2﹣1=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1 , x2 ,且满足(x1﹣x2)2=16﹣x1x2 ,求实数m的值.20. (6分) (2016九上·营口期中) 某水果批发市场经销一种水果,如果每千克盈利10元,每天可售出500千克、经市场调查发现,在进货价不变的情况下,若每千克这种水果在原售价的基础上每涨价1元,日销售量将减少20千克.(1)如果市场某天销售这种水果盈利了6000元,同时顾客又得到了实惠,那么每千克这种水果涨了多少元?(2)设每千克这种水果涨价x元时(0<x≤25),市场每天销售这种水果所获利润为y元.若不考虑其他因素,单纯从经济角度看,每千克这种水果涨价多少元时,市场每天销售这种水果盈利最多?最多盈利多少元?21. (10分) (2019九上·房山期中) 如图,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.(1)建立如图所示的直角坐标系,求抛物线的表达式;(2)该运动员身高1.7米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?.22. (15分)(2012·阜新) 在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B (1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q 的坐标;若不存在,说明理由;(4)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于x轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;(5)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.23. (10分)(2019·湖州模拟) 结合湖州创建文明城市要求,某小区业主委员会觉定把一块长80m,宽60m 的矩形空地建成花园小广场,设计方案如图所示,阴影区域为绿化区(四块绿化区为全等的直角三角形),空白区域为活动区,且四周出口宽度一样,其宽度不小于36m,不大于44m,预计活动区造价60元/m2 ,绿化区造价50元/m2 ,设绿化区域较长直角边为xm.(1)用含x的代数式表示出口的宽度.(2)求工程造价y与x的函数表达式,并直接写出x的取值范围.(3)如果业主委员会投资28.4万元,能否完成全部工程?若能,请写出x为整数的方案有多少种;若不能,请说明理由.(4)业主委员会决定在(3)设计的方案中,按最省钱的一种方案,先对四个绿化区域进行绿化,在完成了工作量的后,施工方进行了技术改进,每天的绿化面积是原计划的两倍,结果提前4天完成四个区域的绿化任务.问:原计划每天绿化多少平方米?参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共9题;共81分)15-1、16-1、16-2、16-3、17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、22-4、22-5、23-1、23-2、23-3、23-4、。
初2019级重庆八中九年级(上)第一次月考数学试卷
一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A 、
B 、
C 、
D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的框涂黑
1.(4分)4的倒数是( )
A .4−
B .4
C .14−
D .14
2.(4分)下列四个选项中,既是轴对称又是中心对称的图形是( )
A .矩形
B .等边三角形
C .正五边形
D .正七边形
3.(4分)计算22()x y 的结果是( )
A .42x y
B .4x y
C .22x y
D .2x y
4.(4分)下列调查中,最适合采用普查方式的是( )
A .调查某品牌灯泡的使用寿命
B .调查重庆市国庆节期间进出主城区的车流量
C .调查重庆八中九年级一班学生的睡眠时间
D .调查某批次烟花爆竹的燃放效果
5.(4分)函数y =
中自变量x 的取值范围是( ) A .2x − B .2x −且1x ≠
C .1x ≠
D .2x −或1x ≠ 6.(4分)若2(1)m
m y m x +=−是关于x 的二次函数,则m 的值为( ) A .2− B .2−或1
C .1
D .不存在 7.(4分)若ABC DEF ∆∆∽,ABC ∆与DEF ∆的面积之比为4:25,则ABC ∆与DEF ∆周长之比为( )
A .4:25
B .2:5
C .5:2
D .25:4
8.(4( )
A .5和6
B .6和7
C .7和8
D .8和9
9.(4分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )
A .
B .
C .
D .
10.(4分)如图,是一次函数y kx b =+的图象,则二次函数221y kx bx =−+的图象大致为( )
A .
B .
C .
D .
11.(4分)OAB ∆在第一象限中,OA AB =,OA AB ⊥,O 是坐标原点,且函数1y x
=正好过A ,B 两点,BE x ⊥轴于E 点,则22OE BE −的值为( )
A .3
B .2
C .3
D .4
12.(4分)使得关于x 的分式方程62211
ax x x +−=−−有正整数解,且关于x 的不等式组134234122
x a x x x ⎧−+⎪⎪⎨−⎪<+⎪⎩至少有4个整数解,那么符合条件的所有整数a 的和为( ) A .20− B .17− C .9
− D .5−
二、填空题:(本大题6个小题,每小题題4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上
13.(42014cos 45()|3|2
π−−︒+−−−= . 14.(4分)如图,矩形ABCD
的边AB 长为4,对角线BD 的长是边AB 长的两倍,在矩形ABCD 中以点B 为圆心,以AB 为半径画弧,交对角线BD 于点E
,则图中阴影部分的面积是 (结果保留)π
15.(4分)第一次体育月考,年级主任尹老师对初三年级前6个班级的满分人数进行了统计,为了鼓励先进缩短差距,尹老师还让数学老师绘制了如图所示的折线统计图,则这6个班级体育满分人数的中位数为 .
16.(4分)如图,在Rt ABC ∆中,90C ∠=︒,AM 是BC 边上的中线,3sin 5
CAM ∠=,则tan B ∠的值为 .
17.(4分)春天的某个周末,阳光明媚,适合户外运动.下午,住在同一小区的小懿、小静两人不约而同的都准备从小区出发,沿相同的路线步行去同一个公园赏花!小懿出发5分钟后小静才出发,同时小懿发现当天的光线很适合摄影,所以决定按原速回家拿相机,小懿拿了相机后,担心错过最佳拍照时间,所以速度提高了20%,结果还是比小静晚2分钟到公园.小懿取相机的时间忽略不计,在整个过程中,小静保持匀速运动,小懿提速前后也分别保持匀速运动.如图所示是小懿、小静之间的距离y (米)与小懿离开小区的时间x (分钟)之间的函数图象,则小区到公园的距离为 米.
18.(4分) 2018 年 9 月 28 日, 重庆八中 80 周年校庆在渝北校区隆重举行, 学校总务处购买了红, 黄, 蓝三种花卉装扮出甲, 乙, 丙, 丁四种造型, 其中一个甲造型需要 15 盆红花, 10 盆黄花, 10 盆蓝花;一个乙造型需要 5 盆红花, 7 盆黄花, 6 盆蓝花;一个丙造型需要 7 盆红花, 8 盆黄花, 9 盆蓝花;一个丁造型需要 6 盆红花, 4 盆黄花, 4 盆蓝花, 若一个甲造型售价 1800 元, 利润率为20%,一个乙和一个丙造型一共成本和为 1830 元, 且一盆红花的利润率为25%,问一个丁造型的利润率为 .
三、解答题:(本大题共两小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤
19.(8分)如图,//MN PQ ,点A 在MN 上,点B 在PQ 上,连接AB ,过点A 作AC AB ⊥交PQ 于点C .过点B 作BD 平分ABC ∠交AC 于点D ,若32NAC ∠=︒,求ADB ∠的度数.
20.(8分)解方程:
(1)23520x x −−=
(2)1132x x x
−=− 四、解答题:(本大题共五个小题,21-25题每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤
21.(10分)(1)2(2)()(4)m n m n m n −−+−
(2)2344(1)11
x x x x x ++−+÷++ 22.(10分)在学习解直角三角形以后,重庆八中数学兴趣小组测量了旗杆的高度,如图,某一时刻,旗杆AB 的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC 为6米,落在斜坡上的影长CD 为4米,AB BC ⊥,同一时刻,光线与旗杆的夹角为37︒,斜坡CE 的坡角为30︒,旗杆的高度约为多少米?(结果精确到0.1,参考数据:
sin37060︒=,cos370.80︒≈,tan37075︒= 1.73)≈
23.(10分)小飞文具店今年7月份购进一批笔记本,共2290本,每本进价为10元,该文具店决定从8月份开始进行销售,若每本售价为11元,则可全部售完;且每本售价每增长1元,销量就减少30本.
(1)若该种笔记本在8月份的销售量不低于2200本,则8月份售价应不高于多少元?
(2)由于生产商提高造纸工艺,该笔记本的进价提高了10%,文具店为了增加笔记本的销
量进行了销售调整,售价比8月份在(1)的条件下的最高售价减少了1%7
m ,结果9月份的销量比8月份在(1)的条件下的最低销量增加了%m ,9月份的销售利润达到6600元,求m 的值.
24.(10分)在ABCD 中,连接对角线BD ,AB BD =,E 为线段AD 上一点,AE BE =,F 为射线BE 上一点,DE BF =,连接AF
(1)如图1,若60BED ∠=︒,CD =,求EF 的长;
(2)如图2,连接DF 并延长交AB 于点G ,若2AF DE =,求证:2DF GF =.
25.(10分)如果一个三位正整数A 与另一个三位正整数B 相加得到三位数C ,C 的三个数位上的数字都相同,我们就称三位正整数A 和三位正整数B 互为“影子数”如:191253444+=,191475666+=⋯,所以191和253互为“影子数,同时191和475也互为“影子数”,475和253都是191的“影子数”.
(1)若一个三位正整数M 是67的倍数,它比它的一个“影子数”小107,求这个三位数M ;
(2)若将一个三位正整数abc 的十位和百位交换位置后组成的三位数是bac ,且bac 是abc 的“影子数”,若540bac abc −=,求证:3b c =+.
五、解答题:(本大题共12分)解答时每小题必须给出必要的演算过程城推理步骤
26.(12分)如图,抛物线2(0)y ax bx c a =++≠与x 轴交于点(1,0)A −和点B ,与y 轴交于点C ,点C 关于抛物线对称轴的对称点为点D ,抛物线顶点为(1,2)H .
(1)求抛物线的解析式;
(2)点P 为直线AD 上方抛物线的对称轴上一动点,连接PA ,PD .当3PAD S ∆=,若在x 轴上存在一动点Q ,使
PQ 最小,求此时点Q 的坐标及PQ 的最小值; (3)若点E 为抛物线上的动点,点G ,F 为平面内的点,以BE 为边构造以B ,E ,F ,G 为顶点的正方形,当顶点F 或者G 恰好落在y 轴上时,求点E 的横坐标.。