克隆基因的表达和常见系统的类型
- 格式:ppt
- 大小:772.50 KB
- 文档页数:55
外源基因原核系统克隆表达的基本流程
外源基因原核系统克隆表达的基本流程如下:
1. 设计引物:根据外源基因的序列,设计引物,其中至少包括一个启动子和一个终止子。
2. 基因克隆:使用PCR或其他克隆技术,将外源基因与载体DNA连接起来,形成重组质粒。
3. 转化:将重组质粒转化到适当的宿主细胞中,如大肠杆菌。
4. 筛选:通过选择性培养基或其他筛选方法,筛选出带有重组质粒的转化菌落。
5. 培养:将筛选出的转化菌落进行扩增培养,在适当的培养条件下培养细菌。
6. 表达:在培养过程中,外源基因会被宿主细胞转录和翻译,产生目标蛋白质。
7. 提取:收集细菌培养物,利用细胞破裂或其他细胞提取方法,提取目标蛋白质。
8. 纯化:通过各种纯化技术,如柱层析、电泳等,纯化目标蛋白质。
9. 鉴定:利用各种方法,如SDS-PAGE、Western blot等,对
目标蛋白质进行鉴定和定量分析。
10. 应用:利用纯化的目标蛋白质进行后续的研究或应用,如
功能鉴定、结构分析、抗原制备等。
这是一个基本的流程,根据不同的实验目的和具体情况,可能还会涉及到一些其他的步骤和操作。
克隆表达与蛋白质纯化技术在生物科学研究领域中,克隆表达与蛋白质纯化技术被广泛应用于蛋白质的生产和研究。
克隆表达是指利用重组DNA技术将目标基因导入宿主细胞,并使其在宿主细胞中表达出来。
蛋白质纯化则是指从克隆表达的细胞中提取和纯化目标蛋白质。
本文将介绍克隆表达与蛋白质纯化技术的基本原理和常用方法。
一、克隆表达技术克隆表达是将感兴趣的基因克隆到表达载体中,通过转染或转化的方式导入细胞中,从而使该基因在细胞内得以表达。
克隆表达技术可分为原核细胞系统和真核细胞系统两类。
1. 原核细胞系统原核细胞系统中,常用的宿主细胞包括大肠杆菌和酵母菌。
在克隆表达中,大肠杆菌是最常用的宿主细胞,其原因在于其繁殖速度快、易于培养和转化、表达效率高等优点。
酵母菌则常用于表达更复杂的蛋白质,因其能够进行糖基化等真核细胞系特有的修饰。
2. 真核细胞系统真核细胞系统中,常用的宿主细胞包括哺乳动物细胞、昆虫细胞和植物细胞等。
哺乳动物细胞系统具有许多优点,如蛋白质修饰和折叠更接近自然情况、大容量表达等,然而其表达成本较高。
昆虫细胞和植物细胞则在表达规模较大的蛋白质时较为常用。
二、蛋白质纯化技术蛋白质纯化是将表达系统中产生的混合蛋白质与其他组分分离的过程,常用的方法有离子交换色谱、亲和层析、凝胶过滤、透析等。
1. 离子交换色谱离子交换色谱是根据蛋白质在离子交换柱中与其反离子交换作用力的不同而进行分离纯化的方法。
常用的离子交换介质有阴离子交换柱和阳离子交换柱。
对于不同电荷性质的蛋白质,可以选择合适的离子交换柱实现分离纯化。
2. 亲和层析亲和层析是利用相互作用力将目标蛋白质与其他组分分离的方法。
常见的亲和层析方法包括金属亲和层析、抗体亲和层析等。
通过对目标蛋白质与特定亲和剂的亲和力进行结合,实现其与其他蛋白质的分离。
3. 凝胶过滤凝胶过滤是利用凝胶材料的大小选择性分离蛋白质的方法。
将混合蛋白溶液经过凝胶柱时,大分子量的蛋白质会被阻滞在柱内,而小分子量的蛋白质则可以通过柱床。
几种表达系统的比较生物技术通报・综述与专论・BIOTECHNOLOGY BULLETIN2002年第2期几种表达系统的比较吴丹仇华吉童光志(中国农科院哈尔滨兽医研究所兽医生物技术国家重点实验室,哈尔滨150001) 摘要: 随着蛋白质工程和DNA重组技术的发展,许多有应用潜力的蛋白分子有待开发。
不同蛋白在不同系统中表达水平有显著差异,所以选择一种合适的表达系统对蛋白表达水平非常关键。
对细菌、酵母、昆虫杆状病毒、哺乳动物细胞4种表达体系作一概述,并讨论各自优缺点及常见问题。
关键词: 表达系统大肠杆菌酵母昆虫细胞哺乳动物细胞ComparisonofSeveralExpressionSystemsWuDan QiuHuaji TongGuangzhi(NationalKeyLaboratoryofVeterinaryBiotechnologynVeteriResearchInstitute ChineseAcademyofAgricultSciencesAbstract: Withthedevelopmentofrecombinant,manytypesofproteinthathavepotential valuesneedtobeproduced.expressonlevelsamongdifferentproteinex2pressio nsystems.Soit’scriticaltosystemforproteinproduction.Thisreviewwillsum2m arizetheadvantagesand,insectandmammalianexpressionsystems,andalsodis cussthesolutionstoKeywords Ecoli Yeast Insectcells Mammaliancells 随着生物化学和分子生物学技术的发展,使人们得以更深入地了解蛋白质分子的一级和二级结构,这样就可以有目的的进行改造,创建新的有价值的蛋白质分子。
绿色荧光蛋白(GFP)的基因克隆及表达摘要绿色荧光蛋白(GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。
采用PCR技术,对实验室提供的质粒pEGFP-N1中的目的基因进行扩增。
所得PCR产物和质粒pET-28b经过BamH I和Nde I双酶切后,用琼脂糖凝胶电泳法检测酶切产物的酶切情况并回收凝胶,再利用T4DNA连接酶将目的基因与载体连接起来,得到重组质粒。
将重组质粒导入克隆菌E. coli DH5a中培养扩增,提取阳性菌落质粒进行重组子鉴定,进而导入表达菌E. coLi BL-21大肠杆菌感受态细胞中,经IPTG诱导目的基因表达产生绿色荧光蛋白。
关键词:绿色荧光蛋白 PCR 基因克隆表达1.前言1.1绿色荧光蛋白(green fluorescent protein,GFP)绿色荧光蛋白是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。
当受到紫外或蓝光激发时,GFP 发射绿色荧光[1]。
1.2 GFP 的结构GFP中央是一个圆柱形水桶样结构,如图二。
长420 nm,宽240 nm,由11 个围绕中心α螺旋的反平行β折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由3个短的垂直片段覆盖,底部由一个短的垂直片段覆盖,对荧光活性很重要的生色团则位于大空腔内。
发色团是由其蛋白质内部第65-67位的Ser-Tyr-GLy自身环化和氧化形成。
1.3 GFP的研究应用GFP可标记细胞和蛋白质,具有广泛的应用前景。
GFP及其突变体已被广泛应用于基因表达调控、蛋白质空间定位、生物分子之间相互作用、转基因动物]2[等方面。
基于新型功能荧光蛋白的光学分子成像技术的发展,为在活细胞乃至活体动物内研究基因表达和蛋白质功能提供了更多的选择空间。
GFP还用于观察微生物、发育机理研究、细胞筛选、免疫学等方面。
本实验是利用实验室提供的质粒pEGFP-N1,其结构如图三所示。
其上有所用酶的酶切位点。
《分子生物学》复习指南《分子生物学》复习指南答案一、名解1、基因:是含有生物信息的DNA片段,根据这些生物信息可以编码具有生物功能的产物,包括RNA和多肽链。
(课件)2、分子伴侣(Molecular Chaperone):又称为伴侣蛋白,是一类在序列上没有相关性但有共同功能的保守性蛋白质,在细胞内协助其它多肽结构完成正确的折叠、组装、转运和降解,在功能完成后与之分离,不构成这些蛋白质结构执行功能时的组份。
3、RFLP:即限制性片段长度多态性。
高度重复序列中的无间隔反向重复序列很容易形成限制性内切酶识别位点,也很容易由于突变产生或失去一个酶切位点,因而可以造成限制性片段长度多态性。
即用同一种限制性内切酶消化不同个体的同一段DNA时,由于碱基组成的变化而改变限制性内切酶识别位点,从而会产生长度不同的DNA片段,这种方法称为限制性片段长度多态性,简称RFLP技术。
4、DNA的复制(replication):以构成基因组的全套核酸分子为模板,精确合成一套新的核酸分子的过程。
遗传信息通过亲代DNA 分子的复制传递给子代,在保持生物物种遗传的稳定性方面起着重要的作用。
5、反转录:又称逆转录(reverse transcription),是以RNA为模板,在逆转录酶的催化下,合成双链DNA的反应。
6、克隆载体:可携带插入的外源DNA片段并可转入受体细胞中大量扩增的DNA分子。
该分子中含有能够在受体细胞中自主复制的序列和筛选标记,常用于外源基因的克隆,如噬菌体或质粒。
7、功能基因组:细胞内所有具有生物学功能的基因。
表达一定功能的全部基因所组成的DNA序列,包括编码基因和调控基因。
8、核不均一RNA:即hnRNA,即前体mRNA,在真核生物中,最初转录生成的RNA,存在于真核生物细胞核中的不稳定、大小不均的一组高分子RNA之总称。
由外显子和内显子组成,需经过剪接加工及各种修饰后,形成成熟的mRNA。
9、分子杂交:由来源不同的两个脱氧核糖核酸单链或核糖核酸单链结合成双链分子的过程。
植物光合作用相关基因的克隆与表达植物光合作用是指在光的作用下,植物体内的叶绿素吸收光能,将其转化成化学能,从而产生能量和氧气的过程。
植物光合作用是生命的基础能量来源之一,也是维持生态系统平衡的重要过程。
植物光合作用的相关基因克隆和表达,是近年来植物学研究的热点之一。
这一研究方向主要集中在植物光合作用的细胞生物学、分子生物学和基因组学等方面。
细胞生物学角度,植物体内的光合细胞有两种类型:一种是负责光合作用的叶绿体细胞,另一种是负责运输产物的质体细胞。
这两种细胞在外形和功能上有所不同,其内部的基因表达和调控也存在差异。
因此,研究植物光合作用相关基因的克隆和表达,需要从细胞类型的角度进行分析。
分子生物学角度,植物光合作用相关基因的克隆和表达研究,主要探索基因的结构、功能和调控等方面。
例如,利用PCR技术和基因克隆技术,可以获得植物体内的光合作用相关基因,然后通过生物信息学工具对基因序列、编码蛋白质和表达谱进行分析。
另外,还可以应用转基因技术构建基因敲除或添加的重组植物株系,进一步揭示光合作用相关基因在植物体内的作用和机理。
基因组学角度,随着高通量测序技术的发展和基因组数据的丰富,研究人员可以在全局范围内分析植物光合作用相关基因的基因组学特征、进化关系和功能注释。
例如,通过对一些重要植物基因的全基因组序列比较,可以发现在多个物种中保守的部位和变异的部位,进而获得这些基因在植物演化中的起源和分化过程。
此外,研究人员也可以利用系统生物学的方法,将各个基因的作用和调控网络进行拼凑和模拟,从而模拟出更加细致的植物光合作用模型。
总之,植物光合作用相关基因的克隆和表达研究,对于理解植物生物学和解决环境保护和农业生产中的问题,具有重要意义。
希望未来能够有更多的研究成果和创新突破。
克隆载体的名词解释克隆载体是分子生物学实验中常用的工具,用于携带并负载外源DNA片段,以实现基因克隆和基因工程。
克隆载体可由天然或人工合成的DNA构建而成,广泛用于基础研究、基因表达、基因治疗等领域。
本文将从克隆载体的定义、组成结构、常见类型以及应用等方面对其进行解释。
一、克隆载体的定义克隆载体是指用于将目标外源DNA导入到宿主细胞或有机体中,并在其中进行自主复制、表达和传递的DNA分子。
克隆载体具有一系列特定的序列和功能元件,包括起始子、终止子、选择标记、荧光蛋白等,以确保成功实现目标DNA的克隆和表达。
二、克隆载体的组成结构克隆载体通常由一个或多个元件组成,包括DNA序列、选择标记、表达载体以及复制起源,具体结构如下:1. DNA序列:克隆载体内含有目标外源DNA的序列,其大小和类型因实验需求而异。
DNA序列通常具有特定的限制性内切酶切位点,以便于将外源DNA片段定向插入到载体中的特定位置。
2. 选择标记:为了筛选成功克隆和转入宿主细胞的载体,克隆载体通常携带有选择标记基因,如抗生素抗性基因或荧光蛋白基因。
这些标记基因在宿主细胞中可以提供对抗生素的耐药性或特定荧光表达,从而方便筛选出含有目标外源DNA的成功克隆载体。
3. 表达载体:对于需要进行表达的克隆载体,其内部还包含有启动子、终止子以及表达宿主基因的相关元件。
这些元件协同作用,使得克隆载体能够在宿主细胞中进行基因的转录和翻译,从而实现目标基因的表达。
4. 复制起源:为了保证克隆载体能够在宿主细胞中独立复制,克隆载体通常还含有复制起源序列。
复制起源序列可以与宿主细胞的复制系统相互配合,使得克隆载体能够被复制并遗传到下一代细胞中。
三、克隆载体的常见类型克隆载体具有多种类型,根据其应用和特性的不同,常见的克隆载体包括质粒、噬菌体、合成DNA以及病毒载体等。
1. 质粒(Plasmid):质粒是环状的双链DNA分子,常见于细菌和真核生物中。
质粒通常具有小分子大小(约1-10 kb),较容易复制和操纵。
克隆载体
基因间隔区(intergenic region, IG 区)基因II与基因IV之间存在一段507bp的基因间隔区,内含有复制起始位点,是实施改造、构建人工载体的重点区域。
② IG区内只有一个Bsu I 切点。
(2)加入酶切位点,在IG区内加入单一内切酶位点。
M13mp1 在IG区内插入一个大肠杆菌的LacZ’(-肽序列)。
使克隆的DNA片段以特定单链的形式输出受体细胞外,M13重组分子筛选简便,被M13噬菌体感染的受体细胞生长缓慢,形成混浊斑,易于辨认挑选。
而且重组分子越大,混浊斑的混浊度亦越大但M13-DNA载体的最大缺陷是装载量小,只有 kb
考斯质粒是一类人工构建的含有λ-DNA cos序列和质粒复制子的的特殊类型载体。
能像
-DNA那样进行体外包装,并高效转染受体细胞;能像质粒那样在受体细胞中自主复制具有较高容量的克隆能力:45kb;具有与同源性序列的质粒进行重组的能力粘粒(cosmid)是带有 cos 序列的质粒。
cos序列是噬菌体 DNA 中将DNA 包装到噬菌体颗粒中所需的 DNA 序列。
黏粒的组成包括质粒复制起点(colE1),抗性标记(amp r),cos 位点,因而能象质粒一样转化和增殖。
克隆的最大 DNA 片段可达 45kb 。
有的粘粒载体含有两个cos 位点,在某种程度上可提高使用效率。
质粒载体总结
λ噬菌体载体
表达载体。
基因工程中的基因克隆与表达基因工程是一门涉及分子生物学、遗传学、生物化学等多个学科的综合性科学。
其中,基因克隆和基因表达是基因工程研究的两个重要方面。
本文将就基因克隆和基因表达的原理、方法及应用进行探讨。
一、基因克隆1.原理基因克隆是指将目标基因从其天然基因组或其他来源中分离出来,并将其插入到另一个载体(如质粒)中,使其能够在宿主细胞内复制和表达。
基因克隆的原理是基于DNA序列特异性杂交的方法,利用限制性内切酶切割目标DNA和载体DNA,然后将它们黏合在一起,形成重组DNA。
通过转形或感染,使重组DNA 进入宿主细胞内,并复制和表达。
2.方法基因克隆的方法主要有限制性酶切与黏合(RE-Mediated Ligation)、PCR(聚合酶链反应)、TA克隆和基因文库等。
限制性酶切与黏合是一种常用的基因克隆方法。
该方法利用限制性内切酶切割DNA,然后通过T4 DNA连接酶黏合在一起。
这种方法操作简单、效率高,但存在限制内切酶的局限性,无法应用于不同酶切位点的DNA。
PCR是用于复制DNA片段的重要方法,也可以用于基因克隆。
PCR方法可以在不使用限制酶的情况下,从任何源提取DNA片段,扩增需要的基因段,并使用酶切和连接技术插入到载体中。
TA克隆是指用于从PCR产物中克隆DNA的一种方法。
该方法利用了Taq聚合酶不完全特异性合成3'-末端斜伸的性质,使产生的末端序列与T自带的A进行互补配对,从而使PCR产物能够被直接连接到TA克隆载体上。
基因文库是一种重要的基因克隆技术,可以将许多目标基因同时克隆入同一载体中。
基因文库分为cDNA文库和基因组文库。
通过荧光筛选或选择性培养,可以从文库中筛选出感兴趣的基因。
3.应用基因克隆技术广泛应用于基因工程、疫苗制备、药物研发、作物改良、动物遗传改良、环境污染治理等领域。
例如,利用基因克隆技术可以创造出超级细菌、工业用酶、新型药物、高产优质作物等。
二、基因表达1.原理基因表达是指基因通过转录和翻译的过程,将DNA序列转化为蛋白质的过程。