信号与系统实验4傅里叶分析
- 格式:pdf
- 大小:645.68 KB
- 文档页数:22
信号与系统实验报告一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(2)深刻理解和掌握非周期信号的傅里叶变换及其计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。
二、实验原理、原理图及电路图(1) 周期信号的傅里叶分解设有连续时间周期信号()f t ,它的周期为T ,角频率22fT,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。
傅里叶级数有三角形式和指数形式两种。
1)三角形式的傅里叶级数:01212011()cos()cos(2)sin()sin(2)2cos()sin()2n n n n a f t a t a t b t b t a a n t b n t 式中系数n a ,n b 称为傅里叶系数,可由下式求得:222222()cos(),()sin()T T T T nna f t n t dtb f t n t dtTT2)指数形式的傅里叶级数:()jn tn nf t F e式中系数n F 称为傅里叶复系数,可由下式求得:221()T jn tT nF f t edtT周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。
Matlab中进行数值积分运算的函数有quad函数和int函数。
其中int函数主要用于符号运算,而quad函数(包括quad8,quadl)可以直接对信号进行积分运算。
因此利用Matlab进行周期信号的傅里叶分解可以直接对信号进行运算,也可以采用符号运算方法。
quadl函数(quad系)的调用形式为:y=quadl(‘func’,a,b)或y=quadl(@myfun,a,b)。
其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。
班级:姓名: 学号: 实验日期:一、实验名称脉搏、语音及图像信号的傅里叶分析二、实验目的1、了解常用周期信号的傅里叶级数表示。
2、了解周期脉搏信号、语音信号及图像信号的傅里叶分析过程3、理解体会傅里叶分析的理论及现实意义三、实验仪器脉搏语音实验仪器,数字信号发生器,示波器四、实验原理1、周期信号傅里叶分析的数学基础任意一个周期为T 的函数f(t)都可以表示为傅里叶级数:00010000000001()(cos sin )21()()1()cos()()1()sin()()n n n n n f t a a n t b n t a f t d t a f t n t d t b f t n t d t ππππππωωωωπωωωπωωωπ∞=---=++===∑⎰⎰⎰ 其中0ω为角频率,称为基频,0a 为常数,n a 和n b 称为第n 次谐波的幅值。
任何周期性非简谐交变信号均可用上述傅里叶级数进行展开,即分解为一系列不同次谐波的叠加。
对于如图1所示的方波,一个周期内的函数表达式为:(0t<)2() (-t 0)2h f t h ππ⎧≤⎪⎪=⎨⎪-≤<⎪⎩其傅里叶级数展开为:0100041()()sin(21)21411(sin sin 3sin 5)35n h f t n t n h t t t ωπωωωπ∞==--=+++∑L 同理:对于如图2所示的三角波,函数表达式为:4t (-t<)44()232(1) (t )44h T T f t t T T h T π⎧≤⎪⎪=⎨⎪-≤<⎪⎩其傅里叶级数展开为:1202100022281()(1)()sin(21)21811(sin sin 3sin 5)35n n h f t n t n h t t t ωπωωωπ∞-==---=-++∑L图1 方波 图2 三角波从以上各式可知,任何周期信号都可以表示为无限多次谐波的叠加,谐波次数越高,振幅越小,它对叠加波的贡献就越小,当小至一定程度时(谐波振幅小于基波振幅的5%),则高次的谐波就可以忽略而变成有限次数谐波的叠加,这对设计仪器电路是很有意义的。
连续时间信号与系统的傅里叶分析连续时间信号与系统的傅里叶分析是一种非常重要的数学工具和技术,广泛应用于信号处理、通信系统、控制系统等领域。
通过傅里叶分析,我们可以将一个复杂的时域信号分解成一系列简单的正弦函数(或复指数函数)的叠加,从而更好地理解和处理信号。
在傅里叶分析中,我们首先需要了解傅里叶级数和傅里叶变换两个概念。
傅里叶级数是将一个周期信号分解成一系列正弦和余弦函数的叠加。
对于一个连续时间周期为T的周期信号x(t),其傅里叶级数表示为:x(t) = a0/2 + ∑ {an*cos(nω0t) + bn*sin(nω0t)}其中,n为整数,ω0为角频率(ω0 = 2π/T),an和bn为信号的系数。
傅里叶级数展示了信号在频域上的频谱特性,即信号在不同频率上的成分。
通过傅里叶级数,我们可以得到信号的基频和各个谐波分量的振幅和相位信息。
而对于非周期信号,我们则需要使用傅里叶变换来分析。
傅里叶变换可以将一个非周期信号分解成一系列连续的正弦和余弦函数的叠加。
对于一个连续时间信号x(t),其傅里叶变换表示为:X(ω) = ∫ x(t)*e^(-jωt) dt其中,X(ω)为信号在频域上的频谱表示,ω为角频率,e为自然对数的底。
通过傅里叶变换,我们可以将信号从时域转换到频域,从而得到信号在不同频率上的成分。
同时,我们还可以通过逆傅里叶变换将信号从频域再转换回时域。
傅里叶分析的重要性在于它能够提供信号在时域和频域之间的转换关系,从而可以更好地理解信号的特性和行为。
通过傅里叶分析,我们可以确定信号的频谱特性、频率成分等信息,从而在信号处理、通信系统设计等方面进行相应的优化和调整。
除了傅里叶级数和傅里叶变换,还有诸如快速傅里叶变换(FFT)、傅里叶变换对(FT pair)、功率谱密度(PSD)等相关概念和技术。
这些工具和技术在实际应用中非常有用,例如在音频处理、图像处理、雷达信号处理等方面经常被使用。
总之,连续时间信号与系统的傅里叶分析为我们提供了一个强大的数学工具,能够将信号从时域转换到频域,揭示信号的频谱特性和频率成分,为信号处理和系统设计提供了有力支持。
信息科学与工程学院《信号与系统》实验报告四专业班级电信 09-班姓名学号实验时间 2011 年月日指导教师陈华丽成绩实验名称离散信号的频域分析实验目的1. 掌握离散信号谱分析的方法:序列的傅里叶变换、离散傅里叶级数、离散傅里叶变换、快速傅里叶变换,进一步理解这些变换之间的关系;2. 掌握序列的傅里叶变换、离散傅里叶级数、离散傅里叶变换、快速傅里叶变换的Matlab实现;3. 熟悉FFT算法原理和FFT子程序的应用。
4. 学习用FFT对连续信号和离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT。
实验内容1.对连续信号)()sin()(0tutAetx taΩα-=(128.444=A,πα250=,πΩ250=)进行理想采样,可得采样序列50)()sin()()(0≤≤==-nnunTAenTxnx nTaΩα。
图1给出了)(txa的幅频特性曲线,由此图可以确定对)(txa采用的采样频率。
分别取采样频率为1KHz、300Hz和200Hz,画出所得采样序列)(nx的幅频特性)(ωj eX。
并观察是否存在频谱混叠。
图1 连续信号)()sin()(0tutAetx taΩα-=2. 设)52.0cos()48.0cos()(nnnxππ+=(1)取)(nx(100≤≤n)时,求)(nx的FFT变换)(kX,并绘出其幅度曲线。
(2)将(1)中的)(nx以补零方式加长到200≤≤n,求)(kX并绘出其幅度曲线。
(3)取)(nx(1000≤≤n),求)(kX并绘出其幅度曲线。
(4)观察上述三种情况下,)(nx的幅度曲线是否一致?为什么?3. (1)编制信号产生子程序,产生以下典型信号供谱分析用。
11,03()8,470,n nx n n nn+≤≤⎧⎪=-≤≤⎨⎪⎩其它2()cos4x n nπ=3()sin8x n nπ=4()cos8cos16cos20x t t t tπππ=++10.80.60.40.20100200300400500xa(jf)f /Hz(2)对信号1()x n ,2()x n ,3()x n 进行两次谱分析,FFT 的变换区间N 分别取8和16,观察两次的结果是否一致?为什么?(3)连续信号4()x n 的采样频率64s f Hz =,16,32,64N =。
信号与系统里的傅里叶变换信号与系统是电子信息类专业中的一门重要课程,而傅里叶变换作为信号与系统中的核心概念之一,具有重要的理论和实际应用价值。
傅里叶变换是一种将时域信号转换到频域的数学工具,可以分析信号的频谱特性,并且在信号处理、通信、图像处理等领域有着广泛的应用。
傅里叶变换的基本思想是将一个时域上的信号分解成不同频率的正弦和余弦波的叠加,通过对信号进行频谱分析,可以得到信号的频率成分、幅度和相位信息。
在傅里叶变换中,信号在频域中的表示被称为频谱,频谱图可以直观地显示信号的频率分布情况,有助于我们理解和分析信号的性质。
傅里叶变换的数学表达式较为复杂,但是我们可以通过一些简单的例子来理解其基本原理。
假设我们有一个周期为T的周期信号,通过傅里叶变换,可以将这个信号分解成不同频率的正弦和余弦波的叠加。
频率最高的分量被称为基频,其余的分量则是基频的整数倍。
通过对这些分量的幅度和相位进行适当的调整,就可以还原原始信号。
傅里叶变换不仅可以分析周期信号,还可以分析非周期信号。
对于非周期信号,我们可以将其视为周期趋于无穷大的周期信号,通过傅里叶变换可以得到其频谱信息。
在实际应用中,非周期信号更为常见,例如音频信号、图像信号等都是非周期信号。
通过傅里叶变换,我们可以将这些信号转换到频域中进行分析和处理。
傅里叶变换不仅可以分析信号的频谱特性,还可以对信号进行滤波和频域处理。
滤波是指通过调整信号的频谱来实现对特定频率成分的增强或抑制。
例如,我们可以通过低通滤波器来去除高频噪声,或者通过高通滤波器来增强低频信号。
频域处理则是指在频域中对信号进行运算和处理。
例如,我们可以通过频域乘法实现信号的卷积运算,或者通过频域加法实现多个信号的叠加。
除了傅里叶变换,还有一种相关的概念叫做傅里叶级数展开。
傅里叶级数展开是将周期信号分解成一系列正弦和余弦波的叠加,不同的是,傅里叶级数展开是在时域上进行分析,而傅里叶变换是在频域上进行分析。