弧长和扇形面积测试题(带答案)
- 格式:doc
- 大小:22.65 KB
- 文档页数:9
24.4 弧长和扇形面积同步练习卷一.选择题(共10小题).1.若扇形的半径为6,圆心角为120°,则此扇形的弧长是()A.3πB.4πC.5πD.6π2.已知圆锥的底面半径为6cm,母线长为10cm,则这个圆锥的全面积是()A.60πcm2B.96πcm2C.132πcm2D.168πcm23.如图,用一个半径为6cm的定滑轮拉动重物上升,滑轮旋转了120°,假设绳索粗细不计,且与滑轮之间没有滑动,则重物上升了()A.πcm B.2πcm C.3πcm D.4πcm4.如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=2cm,绕AC所在直线旋转一周,所形成的圆锥侧面积是()A.16πcm2B.8πcm2C.4πcm2D.2πcm25.如图,点A、B、C、D都在边长为1的网格格点上,以A为圆心,AE为半径画弧,弧EF经过格点D,则扇形AEF的面积是()A.B.C.πD.6.如图,从一块半径为20cm的圆形铁皮上剪出一个圆心角是60°的扇形ABC,则此扇形围成的圆锥的侧面积为()A.200πcm2B.100πcm2C.100πcm2D.50πcm27.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB=120°,半径OA为3m,那么花圃的面积为()A.6πm2B.3πm2C.2πm2D.πm28.如图,长方形ABCD中,AB=3BC,且AB=9cm,以点A为圆心,AD为半径作圆交BA 的延长线于点M,则阴影部分的面积等于()A.(π+9)cm2B.(π+18)cm2C.(π+9)cm2D.(π+18)cm2二.填空题9.弧长等于半径的圆弧所对的圆心角是度.10.一个周长确定的扇形,要使它的面积最大,扇形的圆心角应为度.11.已知扇形的弧长为6π,它的圆心角为120°,则该扇形的半径为.12.已知圆弧所在圆的半径为6,所对圆心角为60°,则这条弧的长为.13.扇形的半径为6cm,弧长为10cm,则扇形面积是.14.已知一个圆锥形零件的母线长为13cm,底面半径为5cm,则这个圆锥形的零件的侧面积为cm2.(结果用π表示).15.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为150°,AB的长为18cm,BD 的长为9cm,则纸面部分BDEC的面积为cm2.16.如图,在扇形AOB中,∠AOB=90°,OA=4,以OB为直径作半圆,圆心为点C,过点C作OA的平行线分别交两弧点D、E,则阴影部分的面积为.三.解答题17.计算下图中扇形AOB的面积(保留π)18.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,求该圆锥的高h的长.19.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,求扇形OAB的弧长,周长和面积.(结果保留根号及π).20.如图,在半径为6cm的⊙O中,圆心O到弦AB的距离OE为3cm.(1)求弦AB的长;(2)求劣弧的长.21.在扇形OAB中,C是弧AB上一点,延长AC到D,且∠BCD=75°.(1)求∠AOB的度数;(2)扇形OAB是某圆锥的侧面展开图,若OA=12,求该圆锥的底面半径.22.如图所示,现有一圆心角为90°、半径为80cm的扇形铁片,用它恰好围成一个圆锥形的量筒;如果用其它铁片再做一个圆形盖子把量筒底面密封.(接缝都忽略不计).求:(1)该圆锥盖子的半径为多少cm?(2)制作这个密封量筒,共用铁片多少cm2.(注意:结果保留π)参考答案一.选择题1.解:∵扇形的半径为6,圆心角为120°,∴此扇形的弧长==4π.故选:B.2.解:根据题意,这个圆锥的全面积=×2π×6×10+π×62=60π+36π=96π(cm2).故选:B.3.解:根据题意,重物的高度为=4π(cm).故选:D.4.解:∵∠ACB=90°,∠BAC=30°,BC=2cm∴AB=4,则圆锥的底面周长=4π,旋转体的侧面积=×4π×4=8π,故选:B.5.解:由题意,扇形的半径AD==,∠EAF=45°,∴扇形AEF的面积==.故选:A.6.解:作OD⊥AB于D,如图,则AD=BD,∵∠OAD=∠BAC=30°,∴OD=OA=10,AD=OD=10,∴AB=2AD=20,∴扇形围成的圆锥的侧面积==200π(cm2).故选:A.7.解:∵扇形花圃的圆心角∠AOB=120°,半径OA为3cm,∴花圃的面积为=3π,故选:B.8.解:阴影部分的面积=扇形MAD的面积+矩形ABCD的面积﹣△CMB的面积=+3×9﹣×3×12=(π+9)cm2,故选:C.二.填空题9.解:设圆的半径为r,弧长等于半径的圆弧水对的圆心角是n°,根据题意得r=,即得n=,即弧长等于半径的圆弧所对的圆心角是度.10.解:设扇形的半径为r,周长为C,圆心角为n°,面积为S,S=(C﹣2r)r=﹣r2+r=﹣(r﹣)2+,∴当r=C时,S取得最大值,∴C=4r,∴=4r﹣2r,解得,n=,故答案为:.11.解:设扇形的半径为r,6π=,解得,r =9,故答案为:9.12.解:l ==2π, 故答案为2π.13.解:根据题意得,S 扇形=lR ==30(cm 2). 故答案为30cm 2.14.解:圆锥的底面周长=2π×5=10π,圆锥形的零件的侧面积=×10π×13=65π,故答案为:65π.15.解:S =S 扇形BAC ﹣S 扇形DAE =﹣=π(cm 2). 故答案是:π16.解:连接OE ,如图,∵CE ∥OA ,∴∠BCE =90°,∵OE =4,OC =2,∴CE =OC =2,∴∠CEO =30°,∠BOE =60°,∴S阴影部分=S 扇形BOE ﹣S △OCE ﹣S 扇形BCD =﹣×2×2﹣=π﹣2.故答案为π﹣2三.解答题17.解:如图,因为∠ACO=60°,OC=OA=4cm,所以△ACO是等边三角形,所以∠AOC=60°,所以∠AOB=120°,=π(cm2)答:扇形AOB的面积是πcm2.18.解:如图,由题意得:2πr=,而r=2,∴AB=6,∴由勾股定理得:AO2=AB2﹣OB2,而AB=6,OB=2,∴AO=4.即该圆锥的高为4.19.解:由图形可知,∠AOB=90°,∴OA=OB==2,∴扇形OAB的面积==2π,弧AB的长是:=π∴周长=弧AB的长+2OA=π+4.综上所述,扇形OAB的弧长是π,周长是π+4,面积是2π.20.解:(1)∵OE⊥AB,∴E为AB的中点,即AE=BE,在Rt△AOE,OA=6cm,OE=3cm,根据勾股定理得:AE==3cm,则AB=2AE=6cm.(2)在直角△OAE中,OA=6cm,OE=3cm,则OA=2OE,所以∠OAE=30°,∴∠AOE=∠BOE=60°,∴∠AOB=120°,∴劣弧的长是:=4π(cm).21.解:(1)作出所对的圆周角∠APB,∵∠APB+∠ACB=180°,∠BCD+∠ACB=180°,∴∠APB=∠BCD=75°,∴∠AOB=2∠APB=150°;(2)设该圆锥的底面半径为r,根据题意得2πr=,解得r=5,∴该圆锥的底面半径为5.22.解:(1)圆锥的底面周长是:=40πcm .设圆锥底面圆的半径是r ,则 2πr =40π.解得:r =20cm ;(2)S =S 侧+S 底=×π×802+400π=2000π(cm 2). 答:共用铁片2000πcm 2.。
人教版九年级数学上册《24.4弧长和扇形面积》同步测试题及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.在半径为1的⊙O 中,120°的圆心角所对的弧长是 () A .3π B .23π C .πD .32π 2.用一个圆心角为150°,半径为12的扇形作一个圆锥的侧面,则这个圆锥的底面半径为( ) A .2.5B .5C .6D .103.将一半径为6的圆形纸片,沿着两条半径剪开形成两个扇形.若其中一个扇形的弧长为5π,则另一个扇形的圆心角度数是多少?( ) A .30B .60C .105D .2104.若圆锥的底面直径为6cm ,侧面展开图的面积为215πcm ,则圆锥的母线长为( ) A .5cm 2B .2cm 5C .3cmD .5cm5.如图,在⊙ABC 中,AB=AC=,BC=2,以A 为圆心作圆弧切BC 于点D ,且分别交边AB 、AC 于E 、F ,则扇形AEF 的面积是( )A .B .C .D .6.用一个圆心角为120°,半径为4的扇形,做一个圆锥的侧面,则这个圆锥的全面积(侧面与底面面积的和)为( ) A .563πB .643πC .569πD .649π二、填空题7.已知扇形的弧长为6π,它的圆心角为120,则该扇形的半径为 . 8.圆锥底面圆的半径2cm r =,母线长为6cm ,则圆锥全面积为 .9.如图,扇形OAB 的圆心角为30︒,半径为1,将它在水平直线上向右无滑动滚动到'''O A B 的位置时,则点O 到点'O 所经过的路径长为 .10.如图,O 的直径6AB =,圆内接ACD 中,AC=CD ,30CAD ∠=︒则阴影部分的面积为 .三、解答题11.(本小题满分10分)如图,已知扇形的半径为15cm ,⊙AOB=120°.(1)求扇形的面积;(2)用这扇形围成圆锥的侧面,求该圆锥的高和底面半径.12.如图,AB 是⊙O 的直径,BC 切⊙O 于点B ,OC 交⊙O 于点D 的半径为3 20C ∠=︒.(1)求A ∠的度数;(2)求AD 的长.(结果保留π)参考答案题号 1 2 3 4 5 6 答案BBDDB D1.【答案】B【分析】根据弧长公式可知弧长. 【详解】解: l =120121803ππ⨯=. 故选B . 2.【答案】B【分析】根据弧长公式先计算出扇形的弧长,再根据圆锥的底面周长等于这个扇形的弧长即可求解. 【详解】解:由题意知:扇形的弧长=1501210180ππ⨯= 设圆锥的底面半径为R ,圆锥的底面周长等于扇形的弧长 ⊙2πR =10π ∴R =5 故选:B .【点睛】本题考查了扇形的弧长公式及圆锥的展开图,属于基础题,熟练掌握扇形弧长的计算公式是解题的关键. 3.【答案】D【分析】根据题意可知两个扇形的弧长之和就是圆的周长,则可以求得另一个扇形的弧长,再根据弧长公式求解即可.【详解】解:由题意可求得圆的周长2612C ⨯==ππ 其中一个扇形的弧长15L =π,则另一个扇形的弧长21257L -==πππ 设另一个扇形的圆心角度数为n ︒ 根据弧长公式:180n rL =π,有: 67180n ⨯=ππ,解得210n = 故选:D .【点睛】本题考查弧长的计算,解题关键是理解题意,正确应用弧长公式进行计算.【分析】已知圆锥底面圆的半径可求出侧面展开图的弧长,根据侧面展开图的面积即可求解. 【详解】如图所示⊙圆锥的底面直径为6cm ⊙圆锥的底面半径为3cm⊙圆锥的底面圆周长是2π6πC r == ⊙侧面展开图的面积为215πcm⊙侧面展开图的面积116π15π22S l C l ==⨯=⊙圆锥的母线长为5l = 故选:D .【点睛】本题主要考查圆锥侧面展开图的面积,理解掌握面积公式的计算方法是解题的关键. 5.【答案】B【详解】试题分析:先判断出⊙ABC 是等腰直角三角形,从而连接AD ,可得出AD=1,直接代入扇形的面积公式进行运算即可. ⊙AB=AC=,BC=2⊙AB 2+AC 2=BC 2⊙⊙ABC 是等腰直角三角形 连接AD ,则AD=BC=1则S 扇形AEF =故选B .考点:1.扇形面积的计算;2.等腰直角三角形.【分析】先求出圆锥的侧面积和底面半径,再求圆锥的表面积,由此即可求出这个圆锥的表面积. 【详解】解:圆锥的侧面积=π×42×120?360?=163π圆锥的底面半径=2π×4×120?360?÷2π=43圆锥的底面积=π×(43)2=169π圆锥的表面积=侧面积+底面积=1616=39649πππ+. 故选:D .【点睛】本题考查圆锥的表面积,解题时要认真审题,掌握扇形面积、圆锥底面半径的计算方法是解题的关键. 7.【答案】9【分析】知道弧长,圆心角,直接代入弧长公式L=180n rπ即可求得扇形的半径. 【详解】解:⊙扇形的圆心角为120°,它所对应的弧长6π ⊙6π=120180rπ 解得:r=9. 故答案为9.【点睛】此题主要考查了扇形弧长的应用,要掌握弧长公式:L=180n rπ才能准确的解题. 8.【答案】216πcm【分析】圆锥的全面积是底面圆的面积与侧面扇形的面积,由此即可求解. 【详解】解:如图所示,圆锥底面圆的半径2cm r =,母线长为6cm⊙底面圆的周长为2π2π24πcm r =⨯=,底面圆的面积为222ππ24πcm r ==,侧面扇形的面积为214π612πcm 2⨯= ⊙圆锥的全面积为24π12π16πcm +=故答案为:216πcm .【点睛】本题主要考查立体几何图形的面积,掌握圆锥面积是底面圆面积与侧面扇形的面积之和是解题的关键. 9.【答案】76π【分析】点O 到点O ′所经过的路径长分三段,先以A 为圆心,1为半径,圆心角为90度的弧长,再平移了AB 弧的长,最后以B 为圆心,1为半径,圆心角为90度的弧长.根据弧长公式计算即可. 【详解】解:⊙扇形OAB 的圆心角为30°,半径为1 ⊙AB 弧长=301180π⨯⨯=6π⊙点O 到点O ′所经过的路径长=90172=18066πππ⨯⨯⨯+ 故答案为:76π. 【点睛】本题考查了弧长公式,旋转的性质和圆的性质,理解点O 到点O ′所经过的路径长分三段是解题的关键.10.【答案】9332π 【分析】连接OC 、OD ,交AD 与点K ,根据AC CD =,30CAD ∠=︒得到1230∠=∠=︒ AOC ∆ COD ∆为等边三角形,证明出四边形ACDO 为菱形,,进而求出阴影部分的面积. 【详解】解:连接OC 、OD ,交AD 与点K ,如图所示:⊙AC CD = 30CAD ∠=︒ ⊙1230∠=∠=︒⊙32260∠=∠=︒ 42160∠=∠=︒ ⊙AO OC OD ==⊙AOC ∆,COD ∆为等边三角形 ⊙OA OD OC AC CD ==== ⊙四边形ACDO 为菱形⊙CO AD ⊥ ⊙360∠=︒ ⊙530∠=︒⊙AB 为圆O 直径为6 ⊙3AO = ⊙1322OK AO == ∴22333()322AK =-= 23CO KO ==∴233AD AK ==⊙19322ACDO S AD CO =⋅=菱形312033360AOD S ππ=⨯⨯=扇形 ⊙9332S π=阴 【点睛】本题考查了求扇形阴影部分的面积,正确作出辅助线是解题的关键. 11.【答案】(1)150π平方厘米(2)r=10cm ;5cm 【分析】(1)根据扇形的面积公式S=2360n r π,代值计算即可(2)利用弧长公式可求得扇形的弧长,除以2π即为圆锥的底面半径,再利用勾股定理求得高即可.【详解】解:(1)⊙S=2360n r π ⊙S=224015360π⨯=150πcm 2(2)⊙弧长=24015180π⨯=20π ⊙2πr=20π,r=10cm⊙圆锥的高221510-55cm )【点睛】本题考查了扇形的面积公式以及圆锥有关计算,解本题的关键是掌握圆锥的侧面展开图的弧长等于圆锥的底面周长.12.【答案】(1) 35A ∠=︒;(2) 弧AD 的长为116π. 【分析】(1)由切线性质结合已知得70BOD ∠=︒,根据⊙OAD 是等腰三角形即可计算出⊙A =35°.(2)由(1)可知⊙AOC =110°,根据弧长公式即可计算. 【详解】解:(1)BC 是⊙O 的切线90B ∴∠=︒.又⊙⊙C =20°.902070BOC ∴∠=︒-︒=︒⊙OA =OD ⊙⊙A =⊙ADO1 352A BOC ∴∠=∠=︒(2)180AOC BOC ∠=︒-∠18070110AOC ∴∠=︒-︒=︒∴弧AD 的长为110111806ππ=. 【点睛】本题考查了切线的性质,等腰三角形的性质,弧长的计算等知识点,能求出⊙BOC 的度数是解此题的关键,注意:圆的切线垂直于过切点的半径.。
专题3.24 弧长和扇形面积(专项练习1)一、单选题知识点一、求弧长1.如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,若OA =2,⊙P =60°,则AB 的长为( )A .23πB .πC .43πD .53π 2.如图,在扇形AOB 中,AC 为弦,140AOB ∠︒=,60CAO ∠︒=,6OA =,则BC 的长为( )A .43πB .83πC .D .2π 3.如图,半径为1的⊙O 与正五边形ABCDE 相切于点A ,C ,则劣弧AC 的长度为( )A .25π B .23π C .34π D .45π 知识点二、求半径4.一个扇形的圆心角为60°,弧长为2π厘米,则这个扇形的半径为( )A .6厘米B .12厘米C .厘米D 厘米 5.若扇形的圆心角为90︒,弧长为3π,则该扇形的半径为( )A B .6 C .12 D .,圆心角是150,则它的半径长为()6.已知一个扇形的弧长为5cmA.6cm B.5cm C.4cm D.3cm 知识点三、求圆心角7.已知扇形半径为3,弧长为π,则它所对的圆心角的度数为()A.120°B.60°C.40°D.20°8.圆锥的地面半径为10cm.它的展开图扇形半径为30cm,则这个扇形圆心角的度数是()A.60°B.90°C.120°D.150°9.有一条弧的长为2πcm,半径为2cm,则这条弧所对的圆心角的度数是()A.90°B.120°C.180°D.135°知识点四、求点的运动路径长10.如图,在边长为1的正方形组成的网格中,⊙ABC的顶点都在格点上,将⊙ABC绕点C 顺时针旋转60°,则顶点A所经过的路径长为()A.10πBC D.π11.如图,四个三角形拼成一个风车图形,若AB=2,当风车转动90°时,点B运动路径的长度为()A.πB.2πC.3πD.4π12.如图,已知□ABCD的对角线BD=4cm,将□ABCD绕其对称中心O旋转180°,则点D所转过的路径长为( )A .4π cmB .3π cmC .2π cmD .π cm知识点五、求扇形面积13.如图,AB 为半圆的直径,其中4AB =,半圆绕点B 顺时针旋转45︒,点A 旋转到点A '的位置,则图中阴影部分的面积为( )A .πB .2πC .2πD .4π14.如图,AB 是⊙O 的直径,CD 是弦,⊙BCD=30°,OA=2,则阴影部分的面积是( )A .3πB .23πC .πD .2π15.如图,等边三角形ABC 内接于O ,若O 的半径为2,则图中阴影部分的面积等于( )A .3πB .23πC .43πD .2π知识点六、求旋转扫过的面积16.如图,C 是半圆⊙O 内一点,直径AB 的长为4cm ,⊙BOC =60°,⊙BCO =90°,将⊙BOC 绕圆心O 逆时针旋转至⊙B′OC′,点C′在OA 上,则边BC 扫过的区域(图中阴影部分)的面积为( )A .43πB .πC .4πD 17.在⊙ABC 中,⊙C=90°,BC=4cm ,AC=3cm ,把⊙ABC 绕点A 顺时针旋转90°后,得到⊙A 1B 1C 1(如图所示),则线段AB 所扫过的面积为( )A .2B .254πcm 2C .252πcm 2D .5πcm 218.如图,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B′,则图中阴影部分的面积是( )A .6πB .5πC .4πD .3π知识点七、求弓形的面积19.如图,在O 中,2OA =,45C ∠=︒,则图中阴影部分的面积为( )A.2πB .πC .22π- D .2π-20.如图,阴影表示以直角三角形各边为直径的三个半圆所组成的两个新月形,若127S S +=,且8AC BC +=,则AB 的长为( )A .6B .7C .8D .1021.如图,某商标是由三个半径都为R 的圆弧两两外切得到的图形,则三个切点间的弧所围成的阴影部分的面积是( )A .(√3﹣12π)R 2B .(√3+12π)R 2C .(√32﹣π)R 2D .(√32+π)R 2知识点八、求不规则图形面积22.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心、CE 为半径作弧,交CD 于点F ,连接,AE AF .若6AB =,60B ∠=,则阴影部分的面积为( )A .3πB .2πC .9π-D .6π 23.如图,直径6AB =的半圆,绕B 点顺时针旋转30︒,此时点A 到了点A ',则图中阴影部分的面积是( ).A .2πB .34πC .πD .3π24.如图,菱形ABCD 的边长为4cm ,⊙A =60°,弧BD 是以点A 为圆心,AB 长为半径的弧,弧CD 是以点B 为圆心,BC 长为半径的弧,则阴影部分的面积为( )A .2cm 2B .2C .4cm 2D .πcm 2二、填空题 知识点一、求弧长25.如图,边长为的正六边形螺帽,中心为点O ,OA 垂直平分边CD ,垂足为B ,AB =17cm ,用扳手拧动螺帽旋转90°,则点A 在该过程中所经过的路径长为_____cm .26.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 27.如图,在66⨯的方格纸中,每个小方格都是边长为1的正方形,其中A 、B 、C 为格点,作ABC 的外接圆,则BC 的长等于_____.知识点二、求半径28.已知扇形的圆心角为120°,弧长为6π,则它的半径为________.29.若扇形的圆心角为120°,弧长为18πcm ,则该扇形的半径为_____cm .30.如图,⊙O 的半径为6cm ,B 为⊙O 外一点,OB 交⊙O 于点A ,AB=OA ,动点P 从点A 出发,以π cm/s 的速度在⊙O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为______时,BP 与⊙O 相切.知识点三、求圆心角31.一个扇形的弧长是20cm π,面积是2240cm π,则这个扇形的圆心角是___度. 32.如图,点A 、B 、C 在半径为9的⊙O 上,AB 的长为,则⊙ACB 的大小是___.33.若一个扇形的弧长是2πcm ,面积是26πcm ,则扇形的圆心角是__________度.知识点四、求点的运动路径长34.如图,扇形AOB 中,10,36OA AOB =∠=︒.若将此扇形绕点B 顺时针旋转,得一新扇形A O B '',其中A 点在O B '上,则点O 的运动路径长为_______cm .(结果保留π)35.将边长为2的正六边形ABCDEF 绕中心O 顺时针旋转α度与原图形重合,当α最小时,点A 运动的路径长为_____.36.如图,在扇形铁皮AOB中,OA=10,⊙AOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA第5次落在l上时,停止旋转.则点O所经过的路线长为_____.知识点五、求扇形面积37.如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为_____.38.一个扇形的半径为3cm,面积为 2cm,则此扇形的圆心角为______.39.如图,矩形ABCD的对角线交于点O,以点A为圆心,AB的长为半径画弧,刚好过点O,以点D为圆心,DO的长为半径画弧,交AD于点E,若AC=2,则图中阴影部分的面积为_____.(结果保留π)知识点六、求旋转扫过的面积40.如图,在⊙ABC 中,⊙ABC =45°,⊙ACB =30°,AB =2,将⊙ABC 绕点C 顺时针旋转60°得⊙CDE ,则图中线段AB 扫过的阴影部分的面积为_____.41.如图,在⊙ABC 中,AB =5,AC =3,BC =4,将⊙ABC 绕点A 逆时针旋转30°后得到⊙ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积为________.42.如图,将ABC 绕点A 逆时针旋转120︒得ADE ,已知4AB =,1AC =,那么图中阴影部分的面积是________.(结果保留π)知识点七、求弓形的面积43.如图,⊙O 的半径为2,点A ,B 在⊙O 上,⊙AOB =90°,则阴影部分的面积为________.44.如图,点A 、B 、C 在⊙O 上,若⊙BAC =45°,OB =2,则图中阴影部分的面积为_____.45.如图,点C 是以AB 为直径的半圆O 的三等分点,2AC = ,则图中阴影部分的面积是 _______.知识点八、求不规则图形面积46.如图,边长为2的正方形ABCD 中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交点,则图中阴影部分的面积是______.(结果保留π)47.如图,AB 是O 的直径,点E 是BF 的中点,过点E 的切 线分别交AF AB ,的延长线于点D C ,,若C 30∠=,O 的半径是2,则图形中阴影部分的面积是_______.48.如图所示的扇形AOB 中,920,OA B OB AO ∠===︒,C 为AB 上一点,30AOC ∠=︒,连接BC ,过C 作OA 的垂线交AO 于点D ,则图中阴影部分的面积为_______.三、解答题知识点一、求弧长49.如图,PC是⊙O的直径,PA切⊙O于点P,OA交⊙O于点B,连结BC.已知⊙O的半径为2,⊙C=35°(1)求⊙A的度数;(2)求BC的长.知识点二、求半径50.在⊙O中,弦AB所对的圆周角为30°,且5cmAB=,求AB的长.嘉琪的解法如下:⊙弦AB所对的圆周角是30°,AB∴的长为3055(cm) 1806ππ⨯=.请问嘉琪的解法正确吗?如果不正确,请给出理由.知识点三、求圆心角51.若一条圆弧所在圆半径为9,弧长为52π,求这条弧所对的圆心角.知识点四、求点的运动路径长52.如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O为AD边的中点,若把四边形ABCD绕点O顺时针旋转180°,试解决下列问题:(1)画出四边形ABCD旋转后的图形;(2)求点C在旋转过程中经过的路径长.知识点五、求扇形面积53.如图,AB是O的直径,点D是AB延长线上的一点,点C在O上,且AC=CD,=.∠︒120ACD()求证:CD是O的切线;1()若O的半径为3,求图中阴影部分的面积.2知识点六、求旋转扫过的面积54.如图所示,在平面直角坐标系中,Rt⊙ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将⊙ABC以点C为旋转中心逆时针旋转90°,画出旋转后对应的⊙A1B1C;(2)图中⊙ABC外接圆的圆心的坐标是,⊙ABC外接圆的面积是平方单位长度.知识点七、求弓形的面积55.如图,以AB为直径的⊙O经过AC的中点D,DE⊙BC于点E.(1)求证:DE是⊙O的切线;(2)当AB=⊙C=30°时,求图中阴影部分的面积(结果保留根号和π).知识点八、求不规则图形面积56.如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E.(1)求证:AC平分⊙DAB;(2)若BE=3,参考答案1.C【解析】试题解析:⊙P A、PB是⊙O的切线,⊙⊙OBP=⊙OAP=90°,在四边形APBO中,⊙P=60°,⊙⊙AOB =120°,⊙OA =2,⊙AB 的长l =12024=1803ππ⨯. 故选C.2.B【分析】连接OC ,根据等边三角形的性质得到80BOC ∠︒=,根据弧长公式计算即可.【详解】连接OC ,60OA OC CAO ∠︒=,=,AOC ∴为等边三角形,60AOC ∴∠︒=,1406080BOC AOB AOC ∴∠∠-∠︒-︒︒===,则BC 的长80681803ππ⨯==, 故选B . 【点拨】本题考查弧长的计算,等边三角形的判定和性质,掌握弧长公式:180n r l π=是解题的关键.3.D【分析】连接OA 、OC ,如图,根据正多边形内角和公式可求出⊙E 、⊙D ,根据切线的性质可求出⊙OAE 、⊙OCD ,从而可求出⊙AOC ,然后根据圆弧长公式即可解决问题.【详解】连接OA 、OC ,如图.⊙五边形ABCDE 是正五边形, ⊙⊙E =⊙D =(52)1805︒-⨯=108°.⊙AE 、CD 与⊙O 相切,⊙⊙OAE =⊙OCD =90°,⊙⊙AOC =(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,⊙劣弧AC 的长为144141805ππ⨯=. 故选D .【点拨】本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、圆弧长公式等知识,求出圆弧所对应的圆心角是解决本题的关键.4.A【解析】 l=180n R π⨯, 由题意得,2π=60180R π⨯, 解得:R=6cm .故选A .故选A .【点睛】运用了弧长的计算公式,属于基础题,熟练掌握弧长的计算公式是关键. 5.B 【分析】根据弧长公式180n r l π=可以求得该扇形的半径的长度. 【详解】 解:根据弧长的公式180n r l π=,知 180180390l r n πππ⨯===6, 即该扇形的半径为6.故选:B .【点拨】本题考查了弧长的计算.解题时,主要是根据弧长公式列出关于半径r 的方程,通过解方程即可求得r 的值.6.A【分析】设扇形半径为rcm ,根据扇形弧长公式列方程计算即可.【详解】设扇形半径为rcm , 则150180r π=5π,解得r =6cm . 故选A.【点拨】本题主要考查扇形弧长公式.7.B【解析】【详解】解:根据l=3180180n r n ππ⨯==π, 解得:n=60°,故选B .【点拨】本题考查弧长公式,在半径为r 的圆中,n°的圆心角所对的弧长为l=180n r π. 8.C【解析】【分析】根据圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长得到圆锥的展开图扇形的弧长=2π•10,然后根据扇形的弧长公式l =180n R π 计算即可求出n . 【详解】解:设圆锥的展开图扇形的圆心角的度数为n .⊙圆锥的底面圆的周长=2π•10=20π,⊙圆锥的展开图扇形的弧长=20π,⊙20π=30180n π⋅⋅, ⊙n =120°.故答案选:C .【点拨】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长,母线长等于扇形的半径.也考查了扇形的弧长公式.9.C【分析】根据弧长公式:l =180n R π(弧长为l ,圆心角度数为n ,圆的半径为R ),代入即可求出圆心角的度数.【详解】解:由题意得,2π=2180n π⨯, 解得:n =180.即这条弧所对的圆心角的度数是180°.故选C .【点拨】本题考查了弧长的计算,解答本题关键是熟练掌握弧长的计算公式,及公式字母表示的含义.10.C【详解】如图所示:在Rt⊙ACD 中,AD=3,DC=1,根据勾股定理得:又将⊙ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为=. 故选C.11.A【分析】B 点的运动路径是以A 点为圆心,AB 长为半径的圆的14的周长,然后根据圆的周长公式即可得到B 点的运动路径长度为π.【详解】解:⊙B 点的运动路径是以A 点为圆心,AB 长为半径的圆的14的周长, ⊙9022360,故选:A .【点拨】本题考查了弧长的计算,熟悉相关性质是解题的关键.12.C【分析】点D 所转过的路径长是一段弧,是一段圆心角为180°,半径为OD 的弧,故根据弧长公式计算即可.【详解】解:BD=4, ⊙OD=2⊙点D 所转过的路径长=1802180π⨯=2π. 故选:C .【点拨】本题主要考查了弧长公式:180n r l π=. 13.B【分析】由旋转的性质可得:AB A B BAA S S S S ''+=+阴影半圆半圆扇形,从而可得BAA S S '=阴影扇形,利用扇形面积公式计算即可.【详解】解:半圆AB 绕点B 顺时针旋转45︒,点A 旋转到A '的位置, AB A B S S '∴=半圆半圆,45ABA '∠=︒.AB A B BAA S S S S ''+=+阴影半圆半圆扇形,BAA S S '∴=阴影扇形24542360ππ⨯==. 故选B . 【点拨】本题考查的是旋转的性质,扇形面积的计算,掌握以上知识是解题的关键. 14.B【分析】根据圆周角定理可以求得⊙BOD 的度数,然后根据扇形面积公式即可解答本题.【详解】⊙⊙BCD=30°,⊙⊙BOD=60°,⊙AB 是⊙O 的直径,CD 是弦,OA=2,⊙阴影部分的面积是:236236020ππ⨯⨯=, 故选B .【点拨】本题考查扇形面积的计算、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.C【分析】连接OC ,如图,利用等边三角形的性质得120AOC ∠=,AOB AOC SS =,然后根据扇形的面积公式,利用图中阴影部分的面积AOC S =扇形进行计算.【详解】解:连接OC ,如图, ABC 为等边三角形,120AOC ∠∴=,AOB AOC S S =,∴图中阴影部分的面积212024.3603AOC S 扇形ππ⋅⨯===故选C .【点拨】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形的性质.16.B【解析】【分析】根据直角三角形的性质求出OC 、BC ,根据扇形面积公式:2360n r S π=计算即可. 【详解】解:⊙⊙BOC=60°,⊙BCO=90°,⊙⊙OBC=30°,⊙OC=12OB=1,则边BC 扫过的区域的面积为:2212021120111136023602ππ⨯⨯+-- =πcm 2.故答案为B .【点拨】本题主要考查扇形面积公式,三角形的性质.正确计算扇形面积是解题的关键. 17.B【解析】【分析】首先求出AB ,然后根据扇形面积公式计算即可.【详解】解:,⊙线段AB 所扫过的面积为:290525=3604ππ⋅⋅, 故选:B.【点拨】本题主要考查扇形面积计算,熟练掌握扇形面积计算公式是解题关键. 18.A【详解】试题分析:根据题意可得:阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB 为直径的半圆的面积=扇形ABB′的面积=26066360ππ⨯=,故选A . 考点:图形旋转的性质、扇形的面积.19.D【分析】根据圆周角定理得出⊙AOB=90°,再利用S 阴影=S 扇形OAB -S ⊙OAB 算出结果.【详解】解:⊙⊙C=45°,⊙⊙AOB=90°,⊙OA=OB=2,⊙S阴影=S扇形OAB-S⊙OAB=29021223602π⋅⋅-⨯⨯=2π-,故选D.【点拨】本题考查了圆周角定理,扇形面积计算,解题的关键是得到⊙AOB=90°.20.A【分析】根据勾股定理得到AC2+BC2=AB2,根据扇形面积公式、完全平方公式计算即可.【详解】解:由勾股定理得,AC2+BC2=AB2,⊙S1+S2=7,⊙12×π×(2AC)2+12×π×(2BC)2+12×AC×BC−12×π×(2AB)2=7,⊙AC×BC=14,AB6,故选:A.【点拨】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.21.A【解析】【分析】由题意知,得到的如图三角形是等边三角形,边长也为R,阴影的部分的面积等于等边三角形的面积减去三个弓形的面积.而一个弓形的面积等于圆心角为60度的半径为R 的扇形的面积减去边长为R的等边三角形的面积.【详解】解:边长为R的等边三角形的面积SΔ=12×sin60°R2=√34R2;半径为R的扇形的面积S扇形=60πR2360=πR26;⊙一个弓形的面积S扇形=πR26−√34R2,⊙阴影的部分的面积=√34R 2−3×(πR 26−√34R 2)=(√3−12π)R 2. 故选:A .【点拨】本题考查了等边三角形的性质和面积的求法,及扇形,弓形的面积的求法. 22.A【分析】连接AC ,根据菱形的性质求出BCD ∠和6BC AB ==,求出AE 长,再根据三角形的面积和扇形的面积求出即可.【详解】连接AC ,⊙四边形ABCD 是菱形,⊙6AB BC ==,⊙60B ∠=,E 为BC 的中点,⊙3CE BE CF ===,ABC ∆是等边三角形,//AB CD ,⊙60B ∠=,⊙180120BCD B ∠=-∠=,由勾股定理得:AE ==⊙11622AEB AEC AFC S S S ∆∆∆==⨯⨯==,⊙阴影部分的面积212033360AEC AFC CEFS S S S ππ∆∆⨯=+-==扇形, 故选A .【点拨】本题考查了等边三角形的性质和判定,菱形的性质,扇形的面积计算等知识点,能求出AEC ∆、AFC ∆和扇形ECF 的面积是解此题的关键.23.D【分析】由半圆A′B 面积+扇形ABA′的面积-空白处半圆AB 的面积即可得出阴影部分的面积.【详解】解:⊙半圆AB,绕B点顺时针旋转30°,⊙S阴影=S半圆A′B+S扇形ABA′-S半圆AB= S扇形ABA′=2630 360π⋅=3π故选D.【点拨】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式和旋转前后不变的边是解题的关键.24.B【解析】【分析】连接BD,判断出⊙ABD是等边三角形,根据等边三角形的性质可得⊙ABD=60°,再求出⊙CBD=60°,DB=BC=AD,从而确定S扇形BDC=S扇形ABD,然后求出阴影部分的面积=S扇形BDC -(S扇形ABD-S⊙ABD)=S⊙ABD,计算即可得解.【详解】解:如图,连接BD,⊙四边形ABCD是菱形,⊙AB=AD=BC,⊙⊙A=60°,⊙⊙ABD是等边三角形,⊙⊙ADB=60°,AD=DB=BC=4又⊙菱形的对边AD⊙BC,⊙⊙CBD=⊙ADB=60°,⊙S扇形BDC=S扇形ABD⊙S阴影=S扇形BDC-(S扇形ABD-S⊙ABD)=S⊙ABD24cm2.故选B.【点拨】本题考查了菱形的性质,等边三角形的性质和面积,熟记性质并作辅助线构造出等边三角形是解题的关键.25.10π【分析】利用正六边形的性质求出OB的长度,进而得到OA的长度,根据弧长公式进行计算即可.【详解】解:连接OD,OC.⊙⊙DOC=60°,OD=OC,⊙⊙ODC是等边三角形,⊙OD=OC=DC=cm),⊙OB⊙CD,⊙BC=BD cm),⊙OB=3(cm),⊙AB=17cm,⊙OA=OB+AB=20(cm),⊙点A在该过程中所经过的路径长=9020180π⋅⋅=10π(cm),故答案为:10π.【点拨】本题考查了正六边形的性质及计算,扇形弧长的计算,熟知以上计算是解题的关键.26.2π【解析】分析:根据弧长公式可得结论. 详解:根据题意,扇形的弧长为1203180π⨯=2π, 故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.27 【分析】由AB 、BC 、AC 长可推导出⊙ACB 为等腰直角三角形,连接OC ,得出⊙BOC =90°,计算出OB 的长就能利用弧长公式求出BC 的长了.【详解】⊙每个小方格都是边长为1的正方形,⊙AB =AC ,BC ,⊙AC 2+BC 2=AB 2,⊙⊙ACB 为等腰直角三角形,⊙⊙A =⊙B =45°,⊙连接OC ,则⊙COB =90°,⊙OB⊙BC 的长为:90180π⋅=2.【点拨】本题考查了弧长的计算以及圆周角定理,解题关键是利用三角形三边长通过勾股定理逆定理得出⊙ACB 为等腰直角三角形.28.9【分析】根据弧长公式L =180n R π求解即可. 【详解】 ⊙L =180n R π, ⊙R =1806120ππ⨯=9. 故答案为9.【点拨】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L =180n R π. 29.27【解析】【分析】根据弧长公式即可得解.【详解】解:设扇形的半径为r (cm ),则18π=120180r π⨯⨯, 解得:r=27.故答案为27.【点拨】本题考查扇形的弧长公式,l=180n r π,l 是弧长,n 是圆心角的度数,r 是半径. 30.2或10【分析】根据切线的判定与性质进行分析即可.若BP 与⊙O 相切,则⊙OPB=90°,又因为OB=2OP ,可得⊙B=30°,则⊙BOP=60°;根据弧长公式求得弧AP 长,除以速度,即可求得时间.【详解】连接OP⊙当OP⊙PB 时,BP 与⊙O 相切,⊙AB=OA ,OA=OP ,⊙OB=2OP ,⊙OPB=90°;⊙⊙B=30°;⊙⊙O=60°;⊙OA=6cm ,弧AP=606180π⨯=2π, ⊙圆的周长为:12π,⊙点P 运动的距离为2π或12π-2π=10π;⊙当t=2秒或10秒时,有BP 与⊙O 相切.故答案为:2或10【点拨】本题考查的是切线的性质及弧长公式,解答此题时要注意过圆外一点有两条直线与圆相切,不要漏解.31.150【分析】根据弧长公式计算.【详解】 根据扇形的面积公式12S lr =可得: 1240202r ππ=⨯, 解得r =24cm , 再根据弧长公式20180n r l cm ππ==, 解得150n =︒.故答案为:150.【点拨】本题考查了弧长的计算及扇形面积的计算,要记熟公式:扇形的面积公式12S lr =,弧长公式180n r l π=. 32.20°. 【分析】连接OA 、OB ,由弧长公式的92180n ππ⨯⨯=可求得⊙AOB ,然后再根据同弧所对的圆周角等于圆心角的一半可得⊙ACB.【详解】解:连接OA、OB,由弧长公式的92180nππ⨯⨯=可求得⊙AOB=40°,再根据同弧所对的圆周角等于圆心角的一半可得⊙ACB=20°.故答案为:20°【点拨】本题考查弧长公式;圆周角定理,题目难度不大,掌握公式正确计算是解题关键.33.60【分析】根据扇形的面积公式求出半径,然后根据弧长公式求出圆心角即可.【详解】解:扇形的面积=12lr=6π,解得:r=6,又⊙6180nlπ⨯==2π,⊙n=60.故答案为:60.【点拨】此题考查了扇形的面积和弧长公式,解题的关键是掌握运算方法.34.4π.【分析】根据弧长公式,此题主要是得到⊙OBO′的度数.根据等腰三角形的性质即可求解.【详解】解:根据题意,知OA=OB.又⊙AOB=36°,⊙⊙OBA=72°.⊙点O 旋转至O′点所经过的轨迹长度=7210180π︒⨯⨯︒=4πcm . 故答案是:4π. 【点拨】本题考查了弧长的计算、旋转的性质.解答该题的关键是弄清楚点O 的运动轨迹是弧形,然后根据弧长的计算公式求解.35.23π . 【详解】试题分析:根据题意α最小值是60°,然后根据弧长公式即可求得.⊙正六边形ABCDEF 绕中心O 顺时针旋转α度与原图形重合,α最小值是60°, ⊙点A 运动的路径长=60221803. 故答案为23π. 考点:轨迹;旋转对称图形.36.60π.【解析】【分析】点O 所经过的路线是2段弧和一条线段,一段是以点B 为圆心,10为半径,圆心 角为90°的弧,另一段是一条线段,和弧AB 一样长的线段,最后一段是以点A 为圆心,10为半径,圆心角为90°的弧,从而得出答案.【详解】当OA 第1次落在l 上时:点O 所经过的路线长为:90π1036π1090π10216π1012π.180180180180⨯⨯⨯⨯++== 则当OA 第5次落在l 上时:点O 所经过的路线长=12π×5=60π.故答案是:60π.【点拨】本题考查了轨迹:利用特殊几何图形描述点运动的轨迹,然后利用几何性质计算相应的几何量.37.6【分析】根据多边形的内角和公式求出扇形的圆心角,然后按扇形面积公式列方程求解计算即可.【详解】解:⊙正六边形的内角是120度,阴影部分的面积为24π,设正六边形的边长为r,⊙2120224360rππ⨯⨯=,2224,3rππ∴=236,r∴=解得r=6.(负根舍去)则正六边形的边长为6.故答案为:6.【点拨】本题考查的是正多边形与圆,扇形面积,掌握以上知识是解题的关键.38.40°.【详解】解:根据扇形的面积计算公式可得:23360n=π,解得:n=40°,即圆心角的度数为40°.考点:扇形的面积计算.39.4π【分析】由图可知,阴影部分的面积是扇形ABO和扇形DEO的面积之和,然后根据题目中的数据,可以求得AB、OA、DE的长,⊙BAO和⊙EDO的度数,从而可以解答本题.【详解】解:⊙四边形ABCD是矩形,⊙OA=OC=OB=OD,⊙AB=AO,⊙⊙ABO是等边三角形,⊙⊙BAO=60°,⊙⊙EDO =30°,⊙AC =2,⊙OA =OD =1,⊙图中阴影部分的面积为:22601301+=3603604ππ⨯⨯⨯⨯π, 故答案为:4π. 【点拨】本题主要考查扇形面积、矩形的性质及等边三角形的性质与判定,熟练掌握扇形面积、矩形的性质及等边三角形的性质与判定是解题的关键.40.3【分析】作AF ⊙BC 于F ,解直角三角形分别求出AC 、BC ,根据扇形面积公式、三角形面积公式计算即可.【详解】作AF ⊙BC 于F ,⊙⊙ABC =45°,⊙AF =BF =2AB 在Rt⊙AFC 中,⊙ACB =30°,⊙AC =2AF =FC =tan ∠AF ACF , 由旋转的性质可知,S ⊙ABC =S ⊙EDC ,⊙图中线段AB 扫过的阴影部分的面积=扇形DCB 的面积+⊙EDC 的面积﹣⊙ABC 的面积﹣扇形ACE 的面积=扇形DCB 的面积﹣扇形ACE 的面积﹣260360π⨯,.【点拨】本题考查的是扇形面积计算,掌握扇形面积公式S=2360n Rπ是解题的关键.41.25 12π【解析】【详解】由题意得,S⊙AED=S⊙ABC,由题图可得,阴影部分的面积= S⊙AED+S扇形ABD-S⊙ABC,⊙阴影部分的面积= S扇形ABD=2 30525π36012π⨯=.故答案为25 12π.42.5π【分析】根据旋转的性质可以得到阴影部分的面积=扇形DAB的面积-扇形EAC的面积,利用扇形的面积公式即可求解.【详解】解:⊙将ABC绕点A逆时针旋转120︒得ADE,⊙S⊙ABC= S⊙ADE,⊙阴影部分的面积=扇形DAB的面积+S⊙ADE-扇形EAC的面积-S⊙ABC=扇形DAB的面积-扇形EAC的面积⊙阴影部分的面积221205 12041360360πππ⨯⨯⨯=-=⨯,故答案为:5π.【点拨】本题考查了旋转的性质以及扇形的面积公式,根据旋转的性质推出:阴影部分的面积=扇形DAB的面积-扇形EAC的面积是解题关键.43.π-2【解析】【分析】先求出扇形面积,再求三角形面积,阴影面积=扇形面积-三角形面积.【详解】由已知可得,S 阴影=S 扇形OAB -S ⊙OAB =290212223602ππ-⨯⨯=-. 故答案为π-2【点睛】本题考核知识点:扇形面积. 解题关键点:熟记扇形面积公式,用求差法得到阴影面积.44.π﹣2【分析】先根据圆周角定理证得⊙BOC=90°,从而得出⊙OBC 是等腰直角三角形,然后根据S 阴影=S 扇形OBC -S ⊙OBC 即可求得.【详解】解:⊙⊙BAC=45°,⊙⊙BOC=90°,⊙⊙OBC 是等腰直角三角形,⊙OB=2,⊙S 阴影=S 扇形OBC -S ⊙OBC =14π×22-12×2×2=π-2. 故答案为π﹣2【点拨】本题考查的是圆周角定理及扇形的面积公式,熟记扇形的面积公式是解答此题的关键.45.43π【解析】【分析】连接OC,用扇形OBC 的面积减去OBC 的面积即可.【详解】如图:连接OC,点C 是以AB 为直径的半圆O 的三等分点,60,120,AOC BOC ∴∠=∠=,OA OC =OAC ∴是等边三角形,60,2,A OA OC AC ∴∠====S 扇形OBC 2120π24π.3603⨯== 1111122tan 603,22222OBC ABC S S AC BC ==⨯⋅=⨯⨯⨯=则阴影部分的面积为:43π故答案为43π 【点拨】考查不规则图形面积的计算,掌握扇形的面积公式是解题的关键.46.π-1【分析】延长DC ,CB 交⊙O 于M ,N ,根据圆和正方形的面积公式即可得到结论.【详解】解:延长DC ,CB 交⊙O 于M ,N ,则图中阴影部分的面积=14×(S 圆O −S 正方形ABCD )=14×(4π−4)=π−1, 故答案为π−1.【点拨】本题考查了圆中阴影部分面积的计算,正方形的性质,正确的识别图形是解题的关键.472π3- 【分析】先根据已知条件证明四边形AOEF 为菱形,再得到ΔEOB 为等边三角形,求出AE 的长,得到弓形的面积,再利用ΔFDE S S S =-阴弓即可求解.【详解】解:连接OE EF ,连接OF 交AE 与点G .连接BE⊙点E 是BF 的中点即=EF BE ,C 30∠=︒.⊙EF BE DAB 60∠==︒,又OF AO =⊙AEC 90ΔAFO ∠=︒,为等边三角形⊙AF AO OE EF ===,即四边形AOEF 为菱形,⊙EF AO ,从而DFE FAO 60∠∠==︒⊙AB 为直径⊙AEB 90∠=︒又⊙CD 为切线⊙OE CD ⊥⊙EOC 60∠=︒又OE OB =,⊙ΔEOB 为等边三角形.⊙BE 2=,EBA 60∠=︒,⊙AEsin EBA sin60AB ∠=︒=,即AE AB sin604=⋅︒==.2AOE AOEF 114π2S S S π22323=-=⨯-⨯⨯=-弓EF 扇菱形即2πS 3=弓在RT⊙FDE 中,DEsin DFE sin60EF ∠=︒=即ED EFsin6022=︒=⨯=⊙DF 1==⊙ΔFDE 12π2πS S S 12323⎛=-=⨯=- ⎝阴弓.2π3-.【点拨】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据图形的特点求出弓形的面积是解题的关键.48.232π- 【分析】先根据题目条件计算出OD ,CD 的长度,判断BOC 为等边三角形,之后表示出阴影面积的计算公式进行计算即可.【详解】在Rt COD 中,30,2AOC OC OA ︒∠===⊙1,CD OD ==⊙90AOB ︒∠=⊙60BOC ︒∠=⊙OB OC =⊙BOC 为等边三角形⊙BOC =COD BOC S S S S +-△△阴影扇形221602122360π⨯=+-232π=-故答案为:232π-【点拨】本题考查了阴影面积的计算,熟知不规则阴影面积的计算方法是解题的关键. 49.(1)⊙A =20°;(2)119π.【分析】(1)根据圆周角定理求出⊙AOP ,根据切线的性质计算,得到答案;(2)根据弧长公式计算即可.【详解】解:(1)由圆周角定理得,⊙AOP =2⊙C =70°⊙P A 切⊙O 于点P ,⊙⊙APO =90°,⊙⊙A =20°;(2)⊙BOC =180°﹣⊙AOP =110°, ⊙1102180BA π==119π. 【点拨】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.50.嘉琪的解法不正确,见解析【分析】连接AO ,OB ,根据圆周角定理可得60AOB ∠=︒,进而得到OAB ∆是等边三角形,然后根据弧长计算公式可得答案.【详解】解:嘉琪的解法不正确,理由如下:如图,连接AO ,OB ,AB 所对的圆周角为30,60AOB ∴∠=︒,AO BO =,OAB ∴∆是等边三角形,5AB cm =,∴AB 的长为:6055()1803cm ππ⨯=. 【点拨】此题主要考查了圆周角定理和弧长计算公式,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.注意:弧长公式。
人教版九年级数学上册《24.4 弧长和扇形面积》练习题-附参考答案一、选择题1.已知圆心角为120°的扇形的弧长为6π,该扇形的面积为()A.12πB.21πC.27πD.36π2.如图,⊙O的半径为3,AB为弦,若∠ABC=30°,则AC⌢的长为()A.πB.1 C.1.5 D.1.5π3.如图,将边长为3的正方形铁丝框ABCD,变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ADB的面积为()A.3 B.6 C.9 D.3π4.如图,分别以等边三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若等边三角形边长为3cm,则该莱洛三角形的周长为()A.2πB.9 C.3πD.6π5.如图,四边形OABC为菱形,∠AOC=120°,点B、C在以点O为圆心的EF⌢上,若OA=1,∠1=∠2,则扇形OEF的面积为()A.π6B.π4C.π3D.2π36.如图,正方形ABCD的边长为2,O为对角线的交点,点E,F分别为BC,AD的中点.以C为圆心,BC为半径作圆弧BD,再分别以E,F为圆心,BE为半径作圆弧BO,OD,则图中阴影部分的面积为()A.π−1B.π−3C.π−2D.4−π7.如图,四边形ABCD是半径为2的⊙O的内接四边形,连接OA,OC.若∠AOC:∠ABC=4:3,则AC⌢的长为()A.35πB.45πC.65πD.85π8.如图,以矩形ABCD的顶点A为圆心,AD长为半径画弧交边BC于点E,E恰为边BC的中点,AD=4 √3则图中阴影部分的面积为()A.18√3−8πB.18√3−4πC.24√3−8πD.12√6−6π二、填空题9.一个扇形的半径是3cm,圆心角是60°,则此扇形的面积是cm2.10.如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于.11.如图,半径为2的⊙O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD的长为.12.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,CD=2√3,则阴影部分的面积为.⌢围成的图13.已知:如图,半圆O的直径AB=12cm,点C,D是这个半圆的三等分点,则弦AC,AD和CD形(图中阴影部分)的面积S是.三、解答题14.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,BC=1,以B为圆心,BA为半径画弧交CB的延长线于点D,求弧AD的长15.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2 √3 ,BF=2,求阴影部分的面积(结果保留π).16.如图,内接于,交于点,交于点,交于点,连接,CF .(1)求证:;(2)若的半径为,求的长结果保留.17.如图,已知AB 是O 的直径,点C 在O 上,D 为O 外一点,且90ADC ∠=︒ 2180B DAB ∠+∠=︒.(1)试说明:直线CD 为O 的切线;(2)若30,2B AD ∠=︒=求阴影部分的面积.1.C2.A3.C4.C5.C6.C7.D8.Aπ9.3210.2π11.8512.2π313.6πcm214.解:∵在Rt△ABC中,∠C=90°,∠BAC=30°,BC=1 ∴AB=2BC=2,∠ABC=90°-∠BAC=60°∴∠ABD=180°-∠ABC=120°∴弧AD=故答案为.15.(1)解:BC与⊙O相切.理由如下:连接OD.∵AD是∠BAC的平分线∴∠BAD=∠CAD.∴∠OAD=∠ODA∴∠CAD=∠ODA∴OD ∥AC∴∠ODB=∠C=90°即OD ⊥BC .又∵BC 过半径OD 的外端点D∴BC 与⊙O 相切;(2)解:设OF=OD=x ,则OB=OF+BF=x+2. 根据勾股定理得: OB 2=OD 2+BD 2 即 (x +2)2=x 2+12 ,解得:x=2 即OD=OF=2∴OB=2+2=4.在Rt △ODB 中,∵OD= 12 OB∴∠B=30°∴∠DOB=60°∴S 扇形DOF = 60π×4360 = 2π3 ,则阴影部分的面积为S △ODB ﹣S 扇形DOF = 12×2×2√3−2π3 = 2√3−2π3 . 故阴影部分的面积为 2√3−2π3 . 16.(1)证明:四边形是平行四边形.(2)解:连接由得∴的长. 17.(1)解:如图,连接OC OB OC =OCB B ∴∠=∠2AOC OCB B B ∴∠=∠+∠=∠2180B DAB ∠+∠=︒180AOC DAB ∴∠+∠=︒.OC AD ∴∥90ADC ∠=︒18090OCD ADC ∴∠=︒-∠=︒即CD OC ⊥,又OC 是O 的半径 ∴直线CD 为O 的切线.(2)如图,连接AC ,作OE BC ⊥,垂足为E ,则2BC BE = 30B ∠=︒260AOC B ∴∠=∠=︒OA OC =OAC ∴是等边三角形60OCA ∴∠=︒906030ACD ∴∠=︒-︒=︒ 12AD AC ∴= 2AD =4AC ∴=,即O 的半径为4 OE BC ⊥BE CE ∴=30,4B OB ∠=︒=2OE ∴=22224223BE OB OE ∴=-=-= 43BC ∴=1432BOC S BC OE ∴=⋅⋅=△ 30,B OB OC ∠=︒=120BOC ∴∠=︒2OBC 12041643433603OBC S S S ππ⨯⨯∴=-=-=-阴影扇△.。
知识点:1、 弧长公式: l n R(牢记)180在半径是 R 的圆中, 360 度的圆心角多对的弧长就是圆的周长 Cn R2 12、扇形面积公式: S扇形=或 S 扇形= 1lR (牢记) 360 23、圆锥的侧面积和全面积(难点) 圆锥的侧面展开图形是一个扇形,这个扇形的半径是圆锥的母线长R ,扇形的弧长是圆锥底面圆的周长。
典型例题1.已知圆锥的高是 30cm ,母线长是 50cm ,则圆锥的侧面积是 【关键词】圆锥侧面积、扇形面积答案:22000 cm 2;2. (2010 年福建省晋江市) 已知:如图,有一块含 30 的直角三角板 OAB 的直角边长 BO的长恰与另一块等腰直角三角板 ODC 的斜边 OC 的长相等,把该套三角板放置在平面 直角坐标系中,且 AB 3.(1) 若双曲线的一个分支恰好经过点A ,求双曲线的解析式;(2) 若把含 30 的直角三角板绕点 O 按顺时针方向旋转后,斜边 OA 恰好与 x 轴重叠,点 A 落在点 A ,试求图中阴影部分的面积 (结果保留 ).弧长和扇形面积答案:解: (1) 在 Rt OBA 中, AOB 30 , AB 3,OBcot AOB ,AB∴ OB AB cot30 3 3 ,∴点 A 3,3 3设双曲线的解析式为 ykk 0x∴3 3 k, k 9 393 ,则双曲线的解析式为 y3x(2) 在 Rt OBA 中,AOB 30 , AB 3 ,AB3sin AOB , sin30 ,OAOA∴ OA 6.关键词】反比例函数、扇形面积 yBO C AyA由题意得: AOC 60 ,260 62360在 Rt OCD 中, DOC 45 , OC OB 3 3 ,OD OC cos45332 3622212 1 3627.S ODC OD2224S阴=S扇形 AOA'SODC6 2743. (2010 年浙江省东阳市)在如图的方格纸中,每个小方格 都是边长为 1 个单位的正方形, △ABC 的三个顶点 都在 格点上(每个小方格的顶点叫格点) .( 1)如果建立直角坐标系,使点 B 的坐标为(- 5,2 ),点C 的坐标为(- 2, 2),则点 A 的坐标为 ▲ ; (2) 画出 △ABC 绕点P顺时针旋转 90 后的△A 1B1C,并求线段 BC 扫过的面积 .关键词:扇形面积公式 答案:(1)A(-4,4)(2)图略线段 BC 扫过的面积= (4 -1 )= 15444、( 2010 福建德化) 已知圆锥的底面半径是 3cm ,母线长为 6cm ,则侧面积为__________________________________________________________ cm 2.(结果保留 π) 关键词:圆锥侧面积答案: 185、已知圆锥的底面半径为 关键词:圆锥的高 3,侧面积为 15 ,则这个圆锥的高为 ▲ 答案: 4S扇形 AOA'6(2010年门头沟区).如图,有一块半圆形钢板,直径AB=20cm,计划将此钢板切割成下底为 AB 的等腰梯形,上底CD的端点在圆周上,且 CD=10cm.求图中阴影部分的面积.【关键词】圆、梯形、阴影部分面积答案】 解:连结 OC , OD ,过点 O 作 OE ⊥CD 于点 E. ∵OE ⊥CD ,∴CE=DE=5, ∴OE= CO 2CE 2102 52 =5 3,∵∠ OED=9°0 ,DE= 1 OD , ∴∠DOE=3°0 ,∠DOC=6°0 . 2S△ OCD =2·OE ·CD= 25 3 (cm 2)50 2∴S 阴影 = S 扇形 - S △OCD = ( π- 25 3) cm3 50∴阴影部分的面积为 ( 530π- 25 3) cm 2.60102∴ S扇形36050(cm 2)33分7. (2010 年山东省济南市)如图,四边形 OABC 为菱形,点 ⌒B 、C 在以点 O 为圆心的 EF 上,若 OA =1,∠ 1=∠2,则扇形 OEF 的面积为 π π πA. B. C. 6 4 3 【关键词】扇形的面积 【答案】 C D.2πO8. ( 2010年台湾省) 如图(十三),扇形 AOB 中, OA=10, AOB =36 。
弧长和扇形面积(练习2)第1题. 如图10,扇形O D E 的圆心角为120 ,正三角形ABC 的中心恰好为扇形O D E 的圆心,且点B 在扇形O D E 内(1) 请连接O A O B 、,并证明A O F B O G △≌△; (2) 求证:A B C △与扇形O D E 重叠部分的面积等于A B C △面积的13.答案:(1)连结O A O B 、(如图) O 是正三角形ABC 的中心. O A O B ∴=.O A F O B ∠=∠.3601203AO B ∠==又120DOE ∠=A OB D O ∴∠=∠ A O B B O D D O E ∴∠-∠=∠-∠ 即A O F B O G ∠=∠故AO F BO G △≌△ (2)BO G BO F BG O F S S S =+ △△四边形而AO F BO G △≌△. 有BOG AOF S S =△△ AO FB O FBGOF S S SS ∴=+=△△△四边形又O 是正三角形ABC 的中心. 13AOBAB CS S ∴=△△BG OFS ∴四边形13A B C S =△即A B C △与扇形O D E 重叠部分的面积等于A B C △面积的13.DAE第2题. 如图,两个半径为1,圆心角是90的扇形O A B 和扇 形O A B '''叠放在一起,点O '在 AB 上,四边形OPO Q '是正方 形,则阴影部分的面积等于 . 答案:12-π第3题. 下图是一纸杯,它的母线A C 和E F 延长后形成的立体图形是圆锥.该圆锥的侧面展开图形是扇形O A B .经测量,纸杯上开口圆的直径为6cm ,下底面直径为4cm ,母线长8E F =cm .求扇形O A B 的圆心角及这个纸杯的表面积(面积计算结果用π表示).答案:解:由题意可知:6AB =π, 4C D =π 设AOB n ∠=,A O R =,则8C O R =-由弧长公式得:6180n R =ππ,(8)4180n R -=ππ解方程组618041808nR nR n⨯=⎧⎨⨯=-⎩得4524n R =⎧⎨=⎩答:扇形O A B 的圆心角是45∵24R = 816R -= 1AA BB '(第2题图)O1624722OABS =⨯⨯=扇形ππ 7232O A B O CD S S S =-=-纸杯侧面积扇形扇形ππ 40=π224S =⋅=纸杯底面积ππ.40444S =+=纸杯表面积πππ.第4题. 半径为R 的圆弧 AB 的长为12R π,则AB 所对的圆心角为 ,弦A B 的长为 .答案:90第5题. 半径为5的圆的弧长等于半径为2的圆的周长,则在半径为5的圆中,这条弧所对的圆心角的度数为 .答案:144第6题. 在半径为4cm 的圆中,弧长为2cm 3π的弧所对的圆周角的度数为 .答案:15第7题. 一个扇形的圆心角为30,半径为12cm ,则这个扇形的面积为 .答案:212cm π第8题. 如图,1O 和2O 是半径为6的两个等圆,且互过圆心,则图中阴影部分的面积为.答案:24π-第9题. 如图,△ABC 内接于O ,4cm AB BC C A ===,则图中阴影部分的面积为 .答案:216)93π-第10题. 如图,O A 是O 的半径,A B 是以O A 为直径的O ' 的弦,O B '的延长线交O 于C 点,且4O A =,45OAB ∠= ,则由 AB ,A C 和线段BC 所围成的图形(影阴部分)的面积是 .答案:53π-第11题. 已知扇形的圆心角为60,半径为5,则扇形周长为( )A.53πB.53π+10 C.56π D.5106π+答案:B第12题. 如果扇形的圆心角为150 ,半径是6,那么扇形的面积为( )A.5π B.10π C.15π D.30π答案:C第13题. 如图,1O ,与2O 外切于点C ,M 与1O ,2O 都相内切,切点分别为A ,B ,1O 与2O 的半径均为2,M 的半径为6,求图中阴影部分的面积.答案:连结12O O ,1M O ,2M O 并延长,则1M O ,2M O 分别过点A ,B .124O O = ,124O M O M ==,1212O O O M O M ∴==,122160M M O O M O O ∴∠=∠=∠=,12120AO C BO C ∴∠=∠=.12160112024423602236081063M O O M AB O AC S S S S 22⎛π⨯6π⨯2=--=-⨯⨯⨯-⨯ ⎝⎭π=π-=π-3 阴影扇形扇形第14题. 如图,正方形A B C D 的边长为2,分别以B ,D 为圆心,2为半径画弧,求图中阴影部分的面积.答案:2909022360360ABCD BAC DAC S S S S 22π⨯2π⨯2=+-=+-=π-4阴影正方形扇形扇形.D第15题. 如图,阴影部分是某一个广告标志,已知两圆弧所在圆的半径分别是20cm ,10cm ,120AOB ∠=,求这个广告标志的周长(精确到0.1cm ).答案:设半径为20cm ,10cm 的圆弧长分别为1l 和2l .124080(cm )180l π20π==3,224040(cm )180l π10π==3.广告标志的周长为128040(2010)240cm l l A C B D ππ+++=++-⨯=π+20≈145.6()33.第16题. 如图,1O 与2O 相外切于C 点,A B 切1O 于A 点,切2O 于B 点,21O O 的延长线交1O 于点D ,与B A 的延长线交于点P . (1)求证:2221P O P C P AP O =;(2)若AB =,6cm P C =,求图中阴影部分的面积.答案:(1)连结1O A ,2O B ,B C ,A C ,则12O A O B ∥,12180AO C BO C ∴∠+∠=.11O A O C = ,11O AC O C A ∴∠=∠,同理22O CB O BC∠=.112212360()180O AC O C A O C B O BC AO C BO C ∠+∠+∠+∠=-∠+∠=,1290AC O BC O ∴∠+∠= ,90ACB ∴∠= ,90CAB CBA ∴∠+∠=,11C BA O AC O C A ∠=∠=∠.P又C PA BPC ∠=∠ ,∴△PAC ∽△P C B ,P C P B P AP C∴=,2PC PA PB = .222PC PA PB PB PAPAPA∴==.12O A O B ∥,21PO PB PAPO ∴=,2221P O P C P AP O ∴=.(2)设P A x =,由2PC PA PB =,得(36x x +=,解得x =2PA PD PC =,226PAPD PC∴===,4C D ∴=,14PO =,11sin 2PA PO A PO ∠==160PO A ∴∠= ,1120AO C ∴∠= ,260B O C ∠=.1213AO PA BO PB==,26O B =,121221422(26)cm 233OA B O OA COB CS S S S =--=+⨯π-6π=π()阴影梯形扇形扇形第17题. 如图中的五个半圆,邻近的两个半圆相切,两只小虫以相同速度,同时从A 点到B 点,甲虫沿 1ADA , 12A EA , 23A FA , 3A GB 路线爬行;乙虫沿A CB 路线爬行,则下列结论正确的是( )A.甲先到达B 点 B.乙先到达B 点 C.甲、乙同时到达B 点 D.无法确定答案:C第18题. 如图,正方形A B C D 的边长为2,以C D 为直径在正方形内画半圆,再以D 为圆心,2为半径画弧A C ,则图中阴影部分的面积为() A.π B.23π C.32π D.2πD EFGC1A2A3A答案:D第19题. 如图,半圆O 的弦A B 平行直径C D ,已知24AB =,半圆E F 与A B 相切,求圆中阴影部分的面积.答案:如图所示,将小半圆沿C D 平行移动,使其圆心与点O 重合,这样所求阴影部分的面积不变.设平移后,小圆与线段A B 相切于G 点,连O G ,O B ,O G A B ∴⊥,且11241222B G A B ==⨯=.在Rt △O BG 中,222212144OB OG GB -===.2222211112222S S S O B O G O B O G G B 1=-=π-π=π(-)=π=π⨯144=72π2阴影大半圆小半圆.第20题. 已知一圆的周长为8cm π,其圆周上一段弧长为3cm π,则该弧所对的圆周角为 .答案:67.5第21题. 如果弧长为l ,圆心角度数为n ,圆的半径为r ,那么,弧长的计算公式为 .答案:180n r l π=第22题. 如果设圆心角是n 的扇形面积为S ,圆的半径为r ,那么扇形的面积为 .答案:2360n rS π=或12S lr =第23题. 圆心角为30 ,半径为R 的弧长为 . 答案:6R π第24题. 圆周长为6π,则60 圆心角所对应的弧长为 .答案:π第25题. 在半径为1cm 的圆中,弧长为23π的弧所对应的圆周角为 .答案:60第26题. 在O 中,如果120的圆心角所对应的弧长为43π,则O 的半径为 .答案:2第27题. 如果O 的半径3cm ,其中一弧长2πcm ,则这弧所对的弦长为 .答案:第28题. 圆心角是180 ,占整个周角的180360,因此它所对的弧长是圆周长的 .答案:12第29题. 圆心角是n ,占整个周角的 ,因此它所对的弧长是圆周长的 . 答案:360n ,360n第30题. 扇形的面积为34cm 2,扇形所在圆的半径32cm ,求扇形的圆心角.答案:120。
人教版 九年级数学上册 第24章 24.4弧长和扇形面积 专题练习(含答案)基础巩固1.⊙的内接多边形周长为3 ,⊙的外切多边形周长为3.4, 则下列各数中与此圆的周长最接近的是( )AB. D2.如图已知扇形的半径为6cm ,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为( )A .B .C .D .3.若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是A .40°B .80°C .120°D .150°4.艳军中学学术报告厅门的上沿是圆弧形,这条弧所在圆的半径为1.8 米,所对的圆心角为100°,则弧长是 米.(π≈3) 【参考答案】 1. C 2. D 3. C 4. 3O O 10AOB 120°24πcm 26πcm 29πcm 212πcm 120 BOA6cm能力提高 一、选择题1.如图,已知的半径,,则所对的弧的长为( ) A .B .C .D .2.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 ( )A .10cmB .30cmC .40cmD .300cm3.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是( ) A .1.5B .2C .3D .64.有30%圆周的一个扇形彩纸片,该扇形的半径为40cm ,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为( ).A.9°B.18°C.63°D.72°5.已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图所示),则sin θ的值为( )A.B. C. D. O ⊙6OA =90AOB ∠=°AOB ∠AB 2π3π6π12π125135131013126.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径高则这个圆锥漏斗的侧面积是( ) A . B . C . D .二、填空题1.,圆心角等于450的扇形AOB 内部作一个正方形CDEF ,使点C 在OA上,点D .E 在OB 上,点F 在上,则阴影部分的面积为(结果保留) .2.如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为 (结果保留).3.将一块含30°角的三角尺绕较长直角边旋转一周得一圆锥,这个圆锥的高是3,则圆锥的侧面积是____.4.如图,三角板中,,,.三角板绕直角顶点逆时针旋转,当点的对应点落在边的起始位置上时即停止转动,则点转过的路径长为 .6cm OB =,8cm OC =.230cm 230cm π260cm π2120cm AB ππABC ︒=∠90ACB ︒=∠30B 6=BC C A 'A AB B 第2题图5.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留).6.矩形ABCD的边AB =8,AD =6,现将矩形ABCD 放在直线l 上且沿着l 向右作无滑动地翻滚,当它翻滚至类似开始的位置时(如图所示),则顶点A 所经过的路线长是_________.7.已知在△ABC 中,AB=6,AC=8,∠A=90°,把Rt△ABC 绕直线AC 旋转一周得到一个圆锥,其表面积为,把Rt△ABC 绕直线AB 旋转一周得到另一个圆锥,其表面积为,则:等于_________ 三、解答题1.如图,有一个圆O 和两个正六边形,.的6个顶点都在圆周上,的6条边都和圆O 相切(我们称,分别为圆O 的内接正六边形和外切正六边形).(1)设,的边长分别为,,圆O 的半径为,求及的值; (2)求正六边形,的面积比的值.π1111A B C D 1S 2S 1S 2S 1T 2T 1T 2T 1T 2T 1T 2T a b r a r :b r :1T 2T 21:S SB 'A CAB 第4题2.如图,圆心角都是90º的扇形OAB 与扇形OCD 叠放在一起,连结AC ,BD .(1)求证:AC=BD ; (2)若图中阴影部分的面积是,OA=2cm ,求OC 的长.3.如图,已知菱形的边长为,两点在扇形的上,求的长度及扇形的面积.2 43cm ABCD 1.5cm B C ,AEF ABCBCD AEF【参考答案】 选择题 1. B 2. A3. C4. B5. A6. C 填空题 1.2. 3. 18π 4. 5. 6. 7. 2∶3 解答题1.解:(1)连接圆心O 和T 的6个顶点可得6个全等的正三角形 .所以r∶a=1∶1;连接圆心O 和T 相邻的两个顶点,得以圆O 半径为高的正三角形, 所以r∶b=∶2;(2) T ∶T 的连长比是∶2,所以S ∶S = . 2. (1)证明:2385-π∏83π22ππ24123123124:3):(2=b a(2)根据题意得:;∴ 解得:OC =1cm .3. 解:四边形是菱形且边长为1.5,.又两点在扇形的上,,是等边三角形..的长(cm )BDAC BOD AOC DO CO BO AB BOD AOC AODBOD AOD AOC COD AOB =⇒∆≅∆⇒⎪⎭⎪⎬⎫==∠=∠⇒∠+∠=∠+∠⇒∠∠ 900==360)(9036090360902222OC OA OC OA S -=-=πππ阴影360)2(904322OC -=ππABCD 1.5AB BC ∴==B C 、AEF 1.5AB BC AC ∴===ABC ∴△60BAC ∴∠=°21805.160ππ=∙=ππ835.122121=∙∙==lR S ABC 扇形)(2cm。
ED6题CBAC 71()题B AC 72()题B ACE D 8题BAEC D10题BA《弧长及扇形面积》练习题1.如图是排水管的横截面,此管道的半径为54㎝,水面以上部分的弓形的弧长为30π㎝,则这段弓形弧所对的圆心角度数为 。
2.阴影部分是某广告标志,已知两弧所在圆的半径为20cm 和10cm,∠AOB=120°,则S 阴= .3.某种商标图案如图所示(阴影部分),已知菱形ABCD 的边长为4,∠A=60°,是以A 为圆心,AB 长为半径的弧,是以B 为圆心,BC 长为半径的弧,则该商标图案的面积为 。
4.如图,四边形OABC 为菱形,点B ,C 在以O 为圆心的上,若OA=3,∠1=∠2,则S 扇形OEF = 。
5.如图,⊙O 2与⊙O 3外切于点C,⊙O 1分别与⊙O 2、⊙O 3内切于A 、B,若⊙O 1的半径为6,⊙O 2、⊙O 3的半径为2,则图中阴影部分的周界长为 ,阴影部分的面积为 。
6.如图,△ABC 中,∠C=90°,AB=12㎝,∠ABC=60°,将△ABC 以点B 为中心顺时针旋转,使点C 旋转到AB 边上的点D 处,则AC 边扫过的图形(阴影部分) 的面积为 。
7.如图,Rt △ABC 中,∠C=90°,AC=3,BC=4,①若⊙C 与AB 相切,则图中阴影部分的面积为 。
②若⊙O 与三角形的三边都相切,则图中阴影部分的面积为 。
8.如图,Rt △ABC 中,∠C=90°,∠A=30°,BC=4,分别以A 、B 为圆心,AC 、BC 长为半径画弧交AB 于D 、E ,则阴影部分的面积为 。
9.如图,矩形ABCD 中,AB=2,BC=2 3 ,以BC 中点E 为圆心,作 切AD 于点H ,与AB 、CD交于M 、N ,则阴影部分的面积为 。
10.如图,⊙A 、⊙B 、⊙C 、⊙D 、⊙E 相互外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE ,则五个扇形的面积之和为 。
专题2.12 弧长及扇形的面积(基础篇)(专项练习)一、单选题1.已知扇形的半径为6,圆心角为20°,则扇形的面积为( )A .6πB .3πC .πD .2π2.如图,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC ,OC ,若AB =6,∠A =30°,则BC 的长为( )A .6πB .2πC .32πD .π 3.若扇形的圆心角为90︒,弧长为3π,则该扇形的半径为( )A B .6 C .12 D .4.如果一弧长是其所在圆周长的118,那么这条弧长所对的圆心角为( ) A .15度 B .16度 C .20度 D .24度 5.如图是边长为1的正方形组成的网格,△ABC 的顶点都在格点上,将△ABC 绕点C 逆时针旋转60°,则顶点B 所经过的路径长为( )A B C .2π3 D 6.如图,Rt △ABC 中,∠ACB =90°,AC=BC=2,在以AB 的中点O 为坐标原点、AB 所在直线为x 轴建立的平面直角坐标系中,将△ABC 绕点B 顺时针旋转,使点A 旋转至y 轴正半轴上的A′处,则图中阴影部分面积为( )A .-2B .C .D .-27.如图,在扇形OAB 中,∠90AOB =︒,2OA =,则阴影部分的面积是( )A .2B .πC .2πD .π2-8.如图,正方形ABCD 中,分别以B ,D 为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的面积为( )A .221π4a a -B .221π2a a -C .2211π42a a -D .2211π22a a - 9.如图,在边长为6的正方形ABCD 中,以BC 为直径画半圆,则阴影部分的面积是( )A .9B .6C .3D .1210.如图,一扇形纸扇完全打开后,外侧两条竹条AB 、AC 的夹角为120°,AB 长为30cm ,AD =10cm ,贴纸部分的面积为( )A .8003πcm 2B .5003πcm 2C .800πcm 2D .500πcm 2二、填空题11.已知扇形的圆心角的度数是120˚,半径为9,则此扇形弧长是______.12.在活动课上,“雄鹰组”用含30°角的直角三角尺设计风车.如图,∠C =90°,∠ABC =30°,AC =2,将直角三角尺绕点A 逆时针旋转得到△AB ′C ′,使点C ′落在AB 边上,以此方法做下去……则B 点通过一次旋转至B ′所经过的路径长为 _____.(结果保留π)13.如图,A 与x 轴相切,与y 轴相交于点()0,1B ,()0,3C .(1)A 的半径r =______;(2)扇形BAC 的面积为______.14.如图,将△ABC 绕点C 顺时针旋转120°得到△A 'B 'C ,已知AC =3,BC =2,则AA '=__________;线段AB 扫过的图形(阴影部分)的面积为__________.15.如图.在矩形ABCD 中,AB =6,BC =4,以点B 为圆心,BC 的长度为半径画孤,交AB 于点E ;以点A 为圆心,AE 的长度为半径画弧,交AD 于点F .则图中阴影部分的面积为______.(结果保留π)16.如图,用一个半径为6 cm的定滑轮拉动重物上升,滑轮旋转了120︒,假设绳索粗细不计,且与轮滑之间没有滑动,则重物上升了_________cm.(结果保留π)17.如图,线段AB与AC是⊙O的两条弦,且AB=AC,∠ABC=75°,BC=4,则图中阴影部分的面积是_____.18.如图,在矩形ABCD中,22==,将线段AB绕点A按逆时针方向旋转,使得AB BC点B落在边CD上的点B'处,线段AB扫过的面积为___________.三、解答题19.如图,点A,B,C在直径为2的⊙O上,∠BAC=45°.(1) 求弧BC的长度;(2) 求图中阴影部分的面积.(结果中保留π)l cm,弧CD的20.如图,在⊙O中,AB、CD是两条弦,⊙O的半径长为rcm,弧AB的长度为1长度为2l cm(温馨提醒:弧的度数相等,弧的长度相等,弧相等,有联系也有区别) 当1l=2l时,求证:AB=CD21.如图,△ABC中,∠C=90°.(1) 将△ABC绕点A顺时针旋转90°,画出旋转后的△AB1C1;(不写画法,保留画图痕迹)(2) 若AB=10,BC=6,求在旋转过程中,点C运动的路径长.22.如图,一根5m长的绳子,一端拴在柱子上,另一端拴着一只羊(羊只能在草地上活动),请画出羊的活动区域.23.如图Rt△ABC中,∠C=90°,AD平分∠BAC,AD交BC于点D,点E在AB上,以AE 为直径的⊙O经过点D.(1) 求证:直线BC是⊙O的切线.(2) 若AC=6,∠B=30°,求图中阴影部分的面积.24.如图,在△ABC中,经过A,B两点的⊙O与边BC交于点E,圆心O在BC上,过点O作OD⊥BC交⊙O于点D,连接AD交BC于点F,且AC=FC.(1)试判断AC 与⊙O 的位置关系,并说明理由;(2)若FCCE =1.求图中阴影部分的面积(结果保留π).参考答案1.D 【分析】根据扇形的面积公式2360n r S π=即可得. 解:扇形的半径为6,圆心角为20︒,∴扇形的面积为22062360ππ⨯=, 故选:D .【点拨】本题考查了扇形的面积,熟记公式是解题关键.2.D【分析】先根据圆周角定理求出∠BOC =2∠A =60°,求出半径OB ,再根据弧长公式求出答案即可.解:∵直径AB =6,∴半径OB =3,∵圆周角∠A =30°,∴圆心角∠BOC =2∠A =60°,∴BC 的长是603180π⨯=π, 故选:D .【点拨】本题考查了弧长公式和圆周角定理,能熟记弧长公式是解此题的关键,注意:半径为r ,圆心角为n °的弧的长度是180n r π. 3.B 【分析】根据弧长公式180n r l π=可以求得该扇形的半径的长度.解:根据弧长的公式180n r l π=,知 180180390l r n πππ⨯===6, 即该扇形的半径为6.故选:B .【点拨】本题考查了弧长的计算.解题时,主要是根据弧长公式列出关于半径r 的方程,通过解方程即可求得r 的值.4.C【分析】根据弧长公式和圆的周长公式的关系即可得出答案 解:∵一弧长是其所在圆周长的118, ∴1=2r 18018n r ππ⨯ ∴=20n∴这条弧长所对的圆心角为20故选:C 【点拨】本题考查了弧长的计算,掌握弧长公式180n r l π=是解题的关键. 5.B【分析】先根据勾股定理计算出BC B 所经过的路径为弧,根据旋转的性质得弧所对的圆心角为60°,然后根据弧长公式求解.解:BC所以顶点B 所经过的路径长=. 故选:B .【点拨】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了弧长公式.6.C解:试题分析:阴影部分的面积等于扇形ABA′的面积+Rt △A′C′B 的面积-Rt △ABC 的面积-扇形BCC′的面积.考点:面积的计算.7.D【分析】利用阴影部分的面积等于扇形面积减去AOB 的面积即可求解.解:=AOB OAB S S S -阴影扇形213602n r AO OB π=- =29021223602π-⨯⨯ 2π=-故选D【点拨】本题主要考查扇形面积和三角形面积,掌握扇形面积公式是解题的关键. 8.B【分析】由图可知,树叶形图案的面积是两个圆心角为90°,且半径为a 的扇形的面积与正方形的面积的差,可据此求出树叶形图案的面积.解:树叶形图案的面积为:2222扇形正方形901223602ABCD a S S a a a ππ⨯-=⨯-=- . 故选:B .【点拨】本题利用了扇形的面积公式,正方形的面积公式求解,得出树叶形图案的面积等于扇形正方形2ABCD S S - 是解题的关键.9.A【分析】设AC 与半圆交于点E ,半圆的圆心为O ,连接BE ,OE ,证明BE =CE ,得到弓形BE 的面积=弓形CE 的面积,则11=6663=922ABE ABC BCE S S S S ==-⨯⨯-⨯⨯△△阴影. 解:设AC 与半圆交于点E ,半圆的圆心为O ,连接BE ,OE ,∵四边形ABCD 是正方形,∴∠OCE =45°,∵OE =OC ,∴∠OEC =∠OCE =45°,∴∠EOC =90°,∴OE 垂直平分BC ,∴BE =CE ,∴弓形BE 的面积=弓形CE 的面积,∴11=6663=922ABE ABC BCE S S S S ==-⨯⨯-⨯⨯△△阴影, 故选A .【点拨】本题主要考查了求不规则图形的面积,正方形的性质,等腰直角三角形的性质,圆的性质,熟知相关知识是解题的关键.10.A【分析】贴纸部分的面积为大扇形面积减去小扇形面积,根据扇形面积公式解答. 解:贴纸部分的面积为2212030120108003603603-=πππ⨯⨯(cm 2), 故选:A .【点拨】本题考查扇形的面积,是基础考点,掌握相关知识是解题关键.11.6π【分析】根据扇形的弧长公式计算即可.解:∵圆心角的度数是120˚,半径为9, ∴扇形的弧长为:12096180ππ⨯⨯=. 故答案为:6π. 【点拨】本题考查扇形的弧长公式,解题关键是熟练掌握弧长公式180n r l π⨯=. 12.43π 【分析】根据题意,点B 所经过的路径是圆弧,根据直角三角形30°角所对的边等于斜边的一半,易知AB =4,结合旋转的性质可知∠BAB ′=∠BAC =60°,,最后求出圆弧的长度即可.解:∵∠C =90°,∠ABC =30°,AC =2,∴AB =2AC =4,∠BAC =60°,由旋转的性质得,∠BAB ′=∠BAC =60°,∴B 点通过一次旋转至B ′所经过的路径长为60?441803ππ=, 故答案为:43π. 【点拨】本题主要考查了直角三角形30°角所对的边等于斜边的一半,旋转的性质,以及圆弧的求法,熟练地掌握相关内容是解题的关键.13. 2; 23π##23π【分析】作AF⊥BC,假设⊙A与x轴相切于E点,连接AE,做BD⊥AE,利用垂径定理的内容得出BF=CF,进而得出AD与半径的关系,从而得出△ABC为等边三角形,然后计算半径,再利用扇形面积公式求出即可.解:作AF⊥BC,假设⊙A与x轴相切于E点,连接AE,BD⊥AE,假设AE=x,图象与y轴相交于点B(0,1)、C(0,3),∴OB=DE=1,AD=x-1,∵AC=AB,AF⊥BC,∴BF=CF=1,∴AD=BF=1=x-1,解得:x=2,∴AB=BC=AC=2,△ABC为等边三角形,∴∠BAC=60°,∴扇形BAC的面积=26022=360ππ⨯⨯,故答案为:2;23π.【点拨】此题主要考查了等边三角形的判定方法以及扇形的面积求法等知识,利用已知得出BF=AD是解决问题的关键.14.2π53π##53π【分析】根据弧长公式可求得AA'的长;根据图形可以得出AB扫过的图形的面积=S扇形ACA′+S△ABC-S扇形BCB′-S△A′B′C,由旋转的性质就可以得出S△ABC=S△A′B′C就可以得出AB扫过的图形的面积=S扇形ACA′-S扇形BCB′求出其值即可.解:∵△ABC绕点C旋转120°得到△A′B′C,∴△ABC≌△A′B′C,∴S△ABC=S△A′B′C,∠BCB′=∠ACA′=120°.∴AA'的长为:1203180π⨯=2π;∵AB 扫过的图形的面积=S 扇形ACA ′+S △ABC -S 扇形BCB ′-S △A ′B ′C ,∴AB 扫过的图形的面积=S 扇形ACA ′-S 扇形BCB ′,∴AB 扫过的图形的面积= 221203120253603603πππ⋅⋅⋅-=. 故答案为:2π;53π. 【点拨】本题考查了旋转的性质的运用,全等三角形的性质的运用,弧长公式以及扇形的面积公式的运用,解答时根据旋转的性质求解是关键.15.245π-##-5π+24【分析】利用分割法求解即可.解:在矩形ABCD 中AB =6,BC =4,∴BE =BC =4,∴AE =AB -BE =6-4=2,∴S 阴=S 矩形ABCD -S 扇形AEF -S 扇形BEC =6×4-22902904360360ππ⨯⨯- =24-5π,故答案为:24-5π.【点拨】本题考查扇形的面积,矩形的面积,明确S 阴=S 矩形ABCD -S 扇形AEF -S 扇形BEC 是解题的关键.16.4π【分析】利用题意得到重物上升的高度为定滑轮中120°所对应的弧长,然后根据弧长公式计算即可.解:根据题意,重物的高度为12064180ππ⨯⨯=(cm ). 故答案为:4π. 【点拨】本题考查了弧长公式:180n R l π⋅⋅=(弧长为l ,圆心角度数为n ,圆的半径为R ). 17.883π+ 【分析】如图,连接OA ,OB ,OC ,延长AO 交BC 于点H .根据S 阴=S △ABC ﹣S △OBC +S 扇形OBC ,求解即可.解:如图,连接OA ,OB ,OC ,延长AO 交BC 于点H .∵AB =AC ,∴∠ABC =∠ACB =75°,∴∠BAC =30°,∴∠BOC =2∠BAC =60°,∵OB =OC ,∴△OBC 是等边三角形,∴OB =OC =BC =4,∴OA =4,∵AB =AC ,∴AB AC =,∴AO ⊥BC ,∴BH =CH =2,∴OH =∴AH∴S △ABC 12=•BC •AH 12=⨯4×(S △OBC 142=⨯=S 扇形OBC 260483603ππ⋅== ∴S 阴=S △ABC ﹣S △OBC + S 扇形OBC =883π+. 故答案为:883π+. 【点拨】本题主要考查了垂径定理,求扇形面积,圆周角定理,等边三角形的判定和性质,根据题意得到S 阴=S △ABC ﹣S △OBC + S 扇形OBC 是解题的关键.18.π3##13π 【分析】由旋转的性质可得'2,AB AB ==由锐角三角函数可求'60,DAB ∠=︒从而得出'30,BAB ∠=︒由扇形面积公式即可求解.解:22,AB BC ==1,BC ∴=∵矩形ABCD 中,1,90,AD BC D DAB ∴==∠=∠=︒由旋转可知AB AB '=,∵22AB BC ==,∴'2,AB AB ==''1cos ,2AD DAB AB ∠== '60,DAB ∴∠=︒'30,BAB ∴∠=︒∴线段AB 扫过的面积2302.3603ππ︒⨯⨯==︒ 故答案为:.3π【点拨】本题主要考查了旋转的性质,矩形的性质,扇形面积公式,锐角三角函数等知识,灵活运用这些性质解决问题是解此题的关键.19.(1)2π(2)142π- 【分析】(1)连接OB ,OC .根据∠BOC =2∠A ,∠A =45°,可得∠BOC =90°,根据⊙O 的直径为2,可得OB =OC =1,即利用弧长公式即可求解答案;(2)根据∠BOC =90°,可知△BOC 是直角三角形,根据OB =OC =1,即可求出△BOC 的面积和扇形OBC 的面积,再根据S 阴=S 扇形OBC ﹣S △OBC 即可求解.解:(1)如图,连接OB ,OC .∵∠BOC =2∠A ,∠A =45°,∴∠BOC =90°,∵⊙O 的直径为2,∴OB =OC =1, ∴9023602BC ππ=⨯⨯=; (2)∵∠BOC =90°,∴△BOC 是直角三角形,∵⊙O 的直径为2,∴OB =OC =1,∴△BOC 的面积为11111222OBC S OB OC =⨯⨯=⨯⨯=△, ∵22909013603604OBC S r πππ=⨯=⨯⨯=扇形, 即S 阴=S 扇形OBC ﹣S △OBC =142π-. 【点拨】本题考查了圆周角定理、弧长公式、扇形面积公式等知识,掌握圆周角定理证明出∠BOC =90°是解答本题的关键. 20.见分析【分析】利用弧长公式得出圆心角相等,再利用圆心角,弧,弦之间的关系即可证明. 解:令∠AOB=α,∠COD=β.∵1l =2l∴12180180r r απβπ=∵AB 和CD 在同圆中,r 1=r 2∴α=β∴AB=CD【点拨】本题主要考查弧长公式及圆心角,弧,弦之间的关系,掌握圆心角,弧,弦之间的关系是解题的关键.21.(1)见分析(2)4π【分析】(1)根据要求作出图形即可;(2)根据勾股定理知AC =8,再根据弧长公式计算可得.(1)解:点C 绕点A 顺时针旋转90°得点C 1,点B 绕点A 顺时针旋转90°得点B 1,连结AB 1,B 1C 1,AC 1如图,△AB 1C 1为所画三角形;;(2)解:在ABC 中,∵∠C =90°,AB =10,BC =6,∴AC 8.∵ABC 绕点A 顺时针旋转90︒得到11AB C △,∴11890AC AC CAC ==∠=︒,.∴点C 运动的路径长为:9084180ππ⋅⋅=. 【点拨】本题主要考查作图-旋转变换,解题的关键是熟练掌握旋转变换的定义和性质及弧长公式.22.见分析【分析】根据题意画出两个扇形即可得到羊的活动区域.解:如图,以点O 为圆心,5m 长的绳子为半径画弧交草地左边界于点A ,交OD 的延长线于点B ,再以D 为圆心,DB 长为半径画弧交草地的右边界于点C ,则扇形AOB 和扇形BDC 部分即为羊的活动区域.【点拨】本题考查了作图﹣应用与设计作图、扇形面积,根据题意画扇形是解决本题的关键.23.(1)见分析(2)阴影部分的面积为163π 【分析】(1)连接OD ,由AD 平分∠BAC ,可知∠OAD =∠CAD ,易证∠ODA =∠OAD ,所以∠ODA =∠CAD ,所以OD ∥AD ,由于∠C =90°,所以∠ODB =90°,从而可证直线BC 是⊙O 的切线;(2)根据含30度角的直角三角形性质可求出AB 的长度,然后求出∠AOD 的度数,然后根据扇形的面积公式即可求出答案.(1)证明:连接OD ,∵AD 平分∠BAC ,∴∠OAD =∠CAD ,∵OA =OD ,∴∠ODA =∠OAD ,∴∠ODA =∠CAD ,∴OD ∥AC ,∵∠C =90°,∴∠ODB =90°,∴OD ⊥BC ,∴直线BC 是⊙O 的切线;(2)解:由∠B =30°,∠C =90°,∠ODB =90°,得:AB =2AC =12,OB =2OD ,∠AOD =120°,∠DAC =30°,∵OA =OD ,∴OB =2OA ,∴OA =OD =4,由∠DAC =30°,得DC∴S 阴影=S 扇形OAD -S △OAD=21201443602π⨯-⨯⨯=163π 【点拨】本题考查圆的综合问题,涉及角平分线的性质,平行线的判定与性质,含30度角的直角三角形的性质,扇形面积公式等,需要学生灵活运用所学知识.24.(1)AC 与⊙O 的相切,理由见分析(2)3π【分析】(1)根据圆的半径相等以及CF CA =,等边对等角可得D OAD ∠=∠,CAF CFA ∠=∠,根据对顶角相等可得CFA OFD ∠=∠,结合已知OD ⊥BC ,进而根据等量代换可得90CAF OAF ∠+∠=︒,即可证明AC 与⊙O 的相切;(2)过A 作AM BC ⊥于M ,设==OA OE r ,在Rt CAO 中,根据勾股定理求得r ,进而证明30C ∠=︒,求得扇形AOB 的圆心角为120︒,进而根据含30度角的直角三角形的性质求得AM ,进而求得AOB 的面积,根据扇形面积减去AOB 的面积,即可求得阴影部分面积.解:(1)AC 与⊙O 的相切,理由如下,AO DO =,D OAD ∴∠=∠,CF CA =,CAF CFA ∴∠=∠,又CFA OFD ∠=∠,CAF OFD ∴∠=∠,OD ⊥BC ,90OFD ODF ∴∠+∠=︒,90CAF OAF ∴∠+∠=︒,OA AC ∴⊥,OA 是半径,AC ∴是O 的切线,∴ AC 与⊙O 的相切;(2)过A 作AM BC ⊥于M ,如图,设==OA OE r ,3,1FC CE ==,在Rt CAO 中,1AO r AC FC OC OE EC r ====+=+,222AO AC OC +=,()2221r r ∴+=+, 解得1r =,2OC OE EC ∴=+=,12AO OC ∴=, 30C ∴∠=︒,60AOC ∴∠=︒,180120AOB AOC ∴∠=-∠=︒,在Rt CAM 中,1122AM AC FC ===11122AOB S OB AM ∴=⋅⋅=⨯=△, S ∴扇形AOB 12013603ππ=⨯=,S ∴阴影部分AOB S S =-△扇形AOB 3π= 【点拨】本题考查了圆的切线的判定,求扇形面积,掌握切线的判定和扇形面积公式是解题的关键.。
2021-2022学年北师大版九年级数学下册《弧长及扇形面积》期末综合复习训练(附答案)1.已知扇形半径是9cm,弧长为4πcm,则扇形的圆心角为()A.20°B.40°C.60°D.80°2.如图,⊙A,⊙B,⊙C,⊙D,⊙E相互外离,它们的半径都是2,顺次连接五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是()A.6πB.5πC.4πD.3π3.一条弧所对的圆心角为135°,弧长等于半径为3cm的圆的周长的5倍,则这条弧的半径为()A.45cm B.40cm C.35cm D.30cm4.如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=2,则的长为()A.B.C.D.5.若扇形面积为36π,圆心角为120°,则它的弧长为()A.4πB.C.D.8π6.如图线段AB是图中最大的半圆的直径,而AA1、A1A2、A2A3、A3A4、A4B分别是另外五个小的半圆的直径,有两只小虫以相同的速度同时从点A出发到点B,甲虫沿着用实线表示的大的半圆爬行,乙虫沿用虚线表示的五个小半圆爬行,则下列结论正确的是()A.甲先到点B B.乙先到点BC.甲、乙同时到点B D.无法确定7.如图,在半径为的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为()A.πB.C.2πD.8.如图,正方形ABCD中,分别以B,D为圆心,以正方形的边长a为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的面积为()A.πa2﹣a2B.πa2﹣a2C.πa2﹣a2D.πa2﹣a2 9.在半径为1的⊙O中,弦AB、AC的长分别为、,则∠BAC所对的弧长为()A.B.C.或D.或10.如图,在Rt△ABC中,∠ACB=90°,分别以AB,BC,CA为直径作半圆围成两月牙形,过点C作DF∥AB分别交三个半圆于点D,E,F.若=,AC+BC=15,则阴影部分的面积为()A.16B.20C.25D.3011.已知扇形的半径为3cm,面积为3πcm2,则此扇形的圆心角度数为.12.如图,四边形ABCD内接于半径为18的⊙O,若∠BAD=80°,则的长度为.13.如图,已知半圆O的直径AB=6,将半圆O绕点A逆时针旋转,使点B落在点B′处,AB′与半圆O交于点C,若弧BC的长为,则图中阴影部分的面积是.14.已知:如图,半圆O的直径AB=12cm,点C,D是这个半圆的三等分点,则∠CAD的度数是,弦AC,AD和围成的图形(图中阴影部分)的面积S是.15.如图,传送带的一个转动轮的半径为10cm,转动轮转n°,传送带上的物品A被传送6πcm,则n=.16.如图,在△OAC中,OA=4,AC=2,把△OAC绕点A按顺时针方向转到△O'AC',已知点O'的坐标是(2,2),则在旋转过程中线段OC扫过的阴影部分面积为.17.如图,一只羊被长5米的绳子拴在一个长3米,宽2米的长方形水泥台的一个顶点上,水泥台的周围都是草地,问:这只羊能够吃到的草地的面积是多少平方米?(圆周率取3.14,结果四舍五入到整数)18.如图,在⊙O中,弦AC,BD相交于点E,连结AD,已知AC=BD.(1)求证:∠A=∠D;(2)若AC⊥BD,⊙O的半径为6,求的长.19.如图,⊙O的直径AB=16,半径OC⊥AB,D为上一动点(不包括B,C两点),DE⊥OC,DF⊥AB,垂足分别为E,F.(1)求EF的长.(2)若点E为OC的中点,①求劣弧CD的长度;②若点P为直径AB上一动点,直接写出PC+PD的最小值.20.已知矩形ABCD的长AB=4,宽AD=3,按如图放置在直线AP上,然后不滑动,只转动,当它转动A→A′时,顶点A所经过的路线长等于多少?参考答案1.解:根据弧长公式==4π,解得:n=80,故选:D.2.解:由图可得,5个扇形的圆心角之和为:(5﹣2)×180°=540°,则五个阴影部分的面积之和==6π.故选:A.3.解:设弧所在圆的半径为rcm,由题意得,=2π×3×5,解得,r=40.故选:B.4.解:连接OB,交AC于D,∵四边形OABC是平行四边形,OC=OA,∴四边形OABC是菱形,OB⊥AC,∵OA=OB=BC,∴△OAB是等边三角形,∠AOB=60°,在Rt△OAD中,AD=AC=,∴OA==2,∴的长是=.故选:C.5.解:设扇形的半径为Rcm.由题意:=36π,解得R=6,∴扇形的弧长==4,故选:C.6.解:π(AA1+A1A2+A3A2+A4A3+A4B)=π×AB,因此乙虫走的四段半圆的弧长正好和甲虫走的大半圆的弧长相等,因此甲、乙同时到点B.故选:C.7.解:连接BC,由∠BAC=90°得BC为⊙O的直径,∴BC=2,在Rt△ABC中,由勾股定理可得:AB=AC=2,∴S扇形ABC==π,故选:A.8.解:由题意可得出:S阴影=2S扇形﹣S正方形=2×﹣a2=πa2﹣a2,故选:B.9.解:①如图1,两弦在圆心的异侧时,过O作OD⊥AB于点D,OE⊥AC于点E,连接OA,∵AB=,AC=,∴AD=,AE=,根据直角三角形中三角函数的值可知:sin∠AOD=,∴∠AOD=45°,∵sin∠AOE=,∴∠AOE=60°,∴∠OAD=90°﹣∠AOD=45°,∠OAC=90°﹣∠AOE=30°,∴∠BAC=∠OAD+∠OAC=45°+30°=75°,∴的长==.②如图2,当两弦在圆心的同侧时同①可知∠AOD=45°,∠AOE=60°,∴∠AOE=60°,∴∠OAC=90°﹣∠AOE=90°﹣60°=30°,∠OAB=90°﹣∠AOD=90°﹣45°=45°.∴∠BAC=∠OAB﹣∠OAC=45°﹣30°=15°,∴的长==.故选:D.10.解:连接AF、BE,∵AC是直径,∴∠AFC=90°.∵BC是直径,∴∠CDB=90°.∵DF∥AB,∴四边形ABDF是矩形,∴AB=DF,取AB的中的O,作OG⊥CE.∵,设DF=10k,CE=6k,∵CG=CE=3k,OC=OA=5k,∴OG=4K,∴AF=BD=4K,CF=DE=2K,∴AC=.∵AC+BC=15,∴2k+4k=15,∴k=,∴AC=5,BC=10,S阴影=直径为AC的半圆的面积+直径为BC的半圆的面积+S△ABC﹣直径为AB的半圆的面积=π()2+π()2+AC×BC﹣π()2=π(AC)2+π(BC)2﹣π(AB)2+AC×BC=π(AC2+BC2﹣AB2)+AC×BC=AC×BC=×5×10=25.故选:C.11.解:设扇形的圆心角的度数为n,由扇形面积的计算公式可得,=3π,解得n=120°,故答案为:120°.12.解:如图,连接OB,OD.∵∠BOD=2∠BAD=2×80°=160°,又∵360°﹣160°=200°,∴的长度==20π,故答案为:20π.13.解:连接OC,如图,设∠BOC=n°,∵弧BC的长为,∴=π,解得n=90°,∴∠BAC=BOC=45°,∵S阴影部分+S半圆AB=S半圆+S扇形BAB′,∴S阴影部分=S扇形BAB′==π.故答案为:π.14.解:连接CO、OD,CD,∵C、D是这个半圆的三等分点,∴CD∥AB,∠COD=60°,∴∠CAD的度数为:30°,∵OC=OD,∴△OCD是等边三角形,CD=OC=AB=6cm,∴△OCD与△CDA是等底等高的三角形,∴S阴影=S扇形OCD=π×62=6πcm2.故答案为:30°,6πcm2.15.解:∵物品A被传送的距离等于转动了n°的弧长,∴=6π,解得:n=108,故答案为:108.16.解:过O′作O′M⊥OA于M,则∠O′MA=90°,∵点O′的坐标是(2,2),∴O′M=2,OM=2,∵AO=4,∴AM=4﹣2=2,∴tan∠O′AM==,∴∠O′AM=60°,即旋转角为60°,∴∠CAC′=∠OAO′=60°,∵把△OAC绕点A按顺时针方向旋转到△O′AC′,∴S△OAC=S△O′AC′,∴阴影部分的面积S=S扇形OAO′+S△O′AC′﹣S△OAC﹣S扇形CAC′=S扇形OAO′﹣S扇形CAC′=﹣=2π,故答案为2π.17.解:++≈58.9+3.1+7.1=69(平方米)答:这只羊能够吃到的草地的面积是69平方米.18.(1)证明:∵AC=BD,∴=,∴﹣=﹣,即=,∴∠A=∠D;(2)连接OC、OD,∵AC⊥BD,∠A=∠D,∴∠A=45°,由圆周角定理得:∠COD=2∠A=90°,∴的长==3π.19.解:(1)如图,连接OD,∵⊙O的直径AB=16,∴圆的半径为16÷2=8.∵OC⊥AB,DE⊥OC,DF⊥AB,∴∠EOB=∠OED=∠OFD=90°,∴四边形OFDE是矩形,∴EF=OD=8.(2)①∵点E为OC的中点,∴,∴∠EDO=30°,∴∠DOE=60°,∴劣弧CD的长度为.②延长CO交⊙O于点G,连接DG交AB于点P,则PC+PD的最小值为DG.设DE=x,则DG=2x,∵,EG=12,∴x2+144=4x2,解得x=4,∴DG=8,∴PC+PD的最小值为.20.解:L=L1+L2+L3=π×4+π×5+π×3=6π.答:当它转动A→A′时,顶点A所经过的路线长等于6π.。
弧长与扇形面积一、选择题1.( 2016·湖北十堰)如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A. 10cm B. 15cm C. 10cm D. 20cm【考点】圆锥的计算.【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到 r ,然后利用勾股定理计算出圆锥的高.【解答】解:过O作 OE⊥AB 于 E,∵ OA=OD=60cm,∠ AOB=120°,∴∠ A=∠B=30°,∴OE= OA=30cm,∴弧 CD的长 ==20π,设圆锥的底面圆的半径为r ,则 2π r=20 π,解得 r=10 ,∴圆锥的高 ==20 .故选 D.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.2. (2016 兰州, 12,4 分)如图,用一个半径为5cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108o ,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了()(A)π cm(B) 2π cm(C) 3π cm(D) 5π cm【答案】:C【解析】:利用弧长公式即可求解【考点】:有关圆的计算3. (2016 福州, 16,4 分 )如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为 r 下,则 r 上 = r 下.(填“<”“=”“<”)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r 上 =r 下.故答案为 =.【点评】本题考查了弧长公式:圆周长公式:C=2R2)弧长公式:l=(弧长为π(l,圆心角度数为 n,圆的半径为 R);正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.4. (2016 ·四川资阳 ) 在 Rt △ ABC中,∠ ACB=90 BC 的长为半径作弧,交 AB于点D,若点D为积是()°,AC=2,以点B为圆心,AB的中点,则阴影部分的面A . 2 ﹣ πB . 4 ﹣ πC . 2 ﹣ πD . π【考点】扇形面积的计算.【分析】根据点 D 为 AB 的中点可知 BC=BD=AB ,故可得出∠A=30 °,∠ B=60 °,再由锐角三角函数的定义求出 BC 的长,根据 S 阴影=S △ABC ﹣S 扇形CBD 即可得出结论.【解答】解:∵D 为 AB 的中点,∴ BC=BD=AB ,∴∠ A=30 °, ∠ B=60 °.∵ AC=2,∴ BC=AC ? tan30 °=2?=2,∴S 阴影=S△ABC ﹣S 扇形CB D =×2 ×2﹣=2﹣π.故选 A .5. (2016 ·四 川 自 贡 ) 圆锥的底面半径为 4cm ,高为 5cm ,则它的表面积为( )A . 12πcm 2B .26πcm2C .πcm2 D .( 4 +16 ) πcm 2【考点】圆锥的计算.【专题】压轴题.【分析】利用勾股定理求得圆锥的母线长,则圆锥表面积 =底面积 +侧面积 =π×底面半径 2+底面周长 ×母线长 ÷2.【解答】解:底面半径为4cm ,则底面周长 =8πcm ,底面面积 =16 πcm 2;由勾股定理得,母线长 = cm ,圆锥的侧面面积 =×8π× =4 πcm 2,∴它的表面积 =16π+4π=( 4+16) πcm 2,故选 D .【点评】本题利用了勾股定理,圆的周长公式和扇形面积公式求解.6. ( 2016·四川广安· 3 分)如图, AB 是圆 O 的直径,弦 CD ⊥ AB ,∠ BCD=30 °,CD=4 ,则 S 阴影=()A . 2πB . πC . πD . π【考点】圆周角定理;垂径定理;扇形面积的计算.【分析】根据垂径定理求得CE=ED=2 ,然后由圆周角定理知∠ DOE=60 °,然后通过解直角三角形求得线段 OD 、 OE 的长度,最后将相关线段的长度代入S阴影=S 扇形 ODB ﹣S △DOE +S △BEC.【解答】解:如图,假设线段 CD 、 AB 交于点 E ,∵AB 是⊙ O 的直径,弦 CD ⊥AB ,∴CE=ED=2,又∵∠ BCD=30 °,∴∠ DOE=2 ∠ BCD=60 °,∠ ODE=30 °, ∴OE=DE ?cot60°=2 ×=2, OD=2OE=4 ,∴S 阴影 =S 扇形 ODB ﹣ S△DOE +S △BEC = ﹣ OE ×DE+BE ?CE=﹣2+2=.故选 B .7. ( 2016 吉林长春, 7,3 分)如图, PA 、 PB 是⊙ O 的切线,切点分别为A 、B ,若 OA=2 ,∠P=60 °,则 的长为()A . πB . πC .D .【考点】弧长的计算;切线的性质.【专题】计算题;与圆有关的计算.【分析】由 PA 与 PB 为圆的两条切线,利用切线的性质得到两个角为直角,再利用四边形内角和定理求出∠ AOB 的度数,利用弧长公式求出的长即可.【解答】解:∵ PA 、 PB 是⊙ O 的切线,∴∠ OBP= ∠ OAP=90 °,在四边形 APBO 中,∠ P=60°,∴∠ AOB=120 °,∵ O A=2 ,∴的长 l==π,故选 C【点评】此题考查了弧长的计算,以及切线的性质,熟练掌握弧长公式是解本题的关键.8.( 2016 ·广东深圳)如图,在扇形AOB 中∠ AOB=90°,正方形 CDEF的顶点 C 是弧 AB 的中点,点 D 在 OB 上,点 E 在 OB 的延长线上,当正方形CDEF的边长为2 2 时,则阴影部分的面积为()A.24B.48C.28D.44答案:A考点:扇形面积、三角形面积的计算。
A .24.4 弧长和扇形面积单元检测试卷校名: 班级: 姓名: 学号: 分数第Ⅰ卷(选择题)一.选择题(共 20 小题)1. 如图,在 5×5 的正方形网格中,每个小正方形的边长都为 1,点 A ,B ,C 均为格点,则扇形 ABC 中的长等于( )A .2πB .3πC .4πD .π2. 如图,在 4×4 的正方形网格中,每个小正方形的边长都为 1,△AOB 的三个顶点都在格点上,现将△AOB 绕点 O 逆时针旋转 90°后得到对应的△COD ,则点 A 经过的路径弧 AC 的长为( )B.π C .2π D .3π3. 如图,⊙O 的半径为 6,四边形内接于⊙O ,连结 OA 、OC ,若∠AOC=∠ABC ,则劣弧AC 的长为()A.B.2πC.4πD.6π4.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.B.C.4 D.2+5.半径为6cm 的圆上有一段长度为2.5πcm的弧,则此弧所对的圆心角为()A.35°B.45°C.60°D.75°6.如图,线段AB=2,分别以A、B 为圆心,以AB 的长为半径作弧,两弧交于C 、D 两点,则阴影部分的面积为()A.B.C.D.7.如图,AD 是半圆O 的直径,AD=12,B,C 是半圆O 上两点.若==,则图中阴影部分的面积是()A.6πB.12πC.18πD.24π8.如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是()A.9πB.27πC.6πD.3π9.如图,在△ABC 中,AB=5,AC=3,BC=4,将△ABC 绕A 逆时针方向旋转40°得到△ADE,点B 经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6 B.πC.π﹣3 D.+π10.如图,点C 在以AB 为直径的半圆O 的弧上,∠ABC=30°,且AC=2,则图中阴影部分的面积是()A.﹣B.﹣2 C.﹣D.﹣11.已知圆锥的底面半径为3cm,母线长为6cm,则圆锥的侧面积是()A.18πcm2 B.27πcm2 C.36πcm2 D.54πcm212.圆锥母线长为10,其侧面展开图是圆心角为216°的扇形,则圆锥的底面圆的半径为()A.6 B.3 C.6πD.3π13.已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为()A.30πcm2 B.50πcm2 C.60πcm2 D.3 πcm2 14.如图,一个圆锥形漏斗的底面半径OB=6cm,高OC=8cm.则这个圆锥漏斗的侧面积是()A.30cm2 B.30πcm2 C.60πcm2 D.120cm215.已知圆锥的底面周长为6πcm,高为4cm,则它的侧面展开图的圆心角是()A.108°B.144°C.216°D.72°16.圆柱底面半径为3cm,高为2cm,则它的体积为()A.97πcm3 B.18πcm3 C.3πcm3 D.18π2cm317.矩形ABCD 中,AB=3,BC=4,以AB 为轴旋转一周得到圆柱,则它的表面积是()A.60πB.56πC.32πD.24π18.已知圆柱的底面半径为3cm,母线长为6cm,则圆柱的侧面积是()A.36cm2 B.36π cm2 C.18cm2 D.18π cm219.如图,有一内部装有水的直圆柱形水桶,桶高20 公分;另有一直圆柱形的实心铁柱,柱高30 公分,直立放置于水桶底面上,水桶内的水面高度为12 公分,且水桶与铁柱的底面半径比为2:1.今小贤将铁柱移至水桶外部,过程中水桶内的水量未改变,若不计水桶厚度,则水桶内的水面高度变为多少公分?()A.4.5 B.6 C.8 D.920.《九章算术》商功章有题:一圆柱形谷仓,高1 丈3 尺3寸,容纳米2000斛(1 丈=10 尺,1 尺=10 寸,斛为容积单位,1 斛≈1.62 立方尺,π=3),则圆柱底周长约为(注:圆柱体的体积=底面积×高)()20.1丈3 尺B.5 丈4 尺C.9 丈2 尺D.48 丈6 尺第Ⅱ卷(非选择题)二.填空题(共10 小题)21.一个扇形的圆心角为120°,它所对的弧长为6πcm,则此扇形的半径为cm.22.如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为cm.(结果用π表示)23.如图,正方形ABCD 的边长为1,分别以顶点A、B、C、D 为圆心,1 为半径画弧,四条弧交于点E、F、G、H,则图中阴影部分的外围周长为.24.扇形弧长为5πcm,面积为60πcm2,则扇形半径为.25.如图所示,AB 是⊙O 的直径,弦CD 交AB 于点E,若∠DCA=30°,AB=3,则阴影部分的面积为.26.如图,在扇形AOB 中,∠AOB=150°,以点A 为圆心,OA 的长为半径作交B于点C,若OA=2,则图中阴影部分的面积为.27.如图,用一个半径为20cm,面积为150πcm2 的扇形铁皮,制作一个无底的圆锥(不计接头损耗),则圆锥的底面半径r 为cm.28.如图,已知圆锥的高为4,底面圆的直径为6,则此圆锥的侧面积是.29.已知圆锥的底面半径为5cm,侧面积为65πcm2,圆锥的母线是cm.30.已知圆柱的底面半径为3cm,母线长为5cm,则圆柱的侧面积是cm2.三.解答题(共10 小题)31.如图,AB 是⊙O 的直径,点C 是圆上一点,连接CA、CB,过点O 作弦BC的垂线,交于点D,连接AD.(1)求证:∠CAD=∠BAD;(2)若⊙O 的半径为1,∠B=50°,求的长.32.如图,半圆O 的直径AB=6,弦CD 的长为3,点C,D 在半圆上运动,D点在上且不与A 点重合,但C 点可与B 点重合.(1)若的长=π时,求的长;(2)取CD 的中点M,在CD 运动的过程中,求点M 到AB 的距离的最小值.33.如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O,延长AD,BC 交于点E,且CE=CD.(1)求证:AB=AE;(2)若∠BAE=40°,AB=4,求的长.34.如图,点C,D 是半圆O 上的三等分点,直径AB=4,连接AD,AC,作DE⊥AB,垂足为E,DE 交AC 于点F.(1)求证:AF=DF.(2)求阴影部分的面积(结果保留π和根号)35.如图,O 为半圆的圆心,直径AB=12,C 是半圆上一点,OD⊥AC 于点D,OD=3.(1)求AC 的长;(2)求图中阴影部分的面积.36.如图,已知⊙O 半径为10cm,弦AB 垂直平分半径OC,并交OC 于点D.(1)求弦AB 的长;(2)求弧AB 的长,并求出图中阴影部分面积.37.如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA,C 为垂足,弦DF 与半径OB 相交于点P,连接EO、FO,若DE=4,∠DPA=45°(1)求⊙O 的半径.(2)若图中扇形OEF 围成一个圆锥侧面,试求这个圆锥的底面圆的半径.38.有一个直径为1m 的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形ABC,如图所示.(1)求被剪掉阴影部分的面积:(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?39.如图,圆锥的底面半径为6cm,高为8cm,求这个圆锥的侧面积和表面积.40.求圆柱的表面积.参考答案与试题解析一.选择题(共20 小题)1.【考点】KQ:勾股定理;MN:弧长的计算.【分析】根据全等三角形的判定和性质得出∠CAB=90°,进而利用弧长公式计算即可.【解答】解:在△ACE 与△ABD 中,∴△ACE≌△ABD(SAS),∴∠CAE=∠ABD,∠ECA=∠BAD,∵∠ECA+∠CAE=90°,∴∠CAE+∠BAD=90°,∴∠CAB=90°,∵AC=AB= ,∴扇形ABC 中的长=,故选:D.【点评】此题考查弧长的计算,关键是根据全等三角形的判定和性质得出∠CAB=90°.2.【考点】KQ:勾股定理;MN:弧长的计算;R2:旋转的性质.【分析】根据旋转的性质和弧长公式解答即可.【解答】解:∵将△AOB 绕点O 逆时针旋转90°后得到对应的△COD,∴∠AOC=90°,∵OC=3,∴点A 经过的路径弧AC 的长=,故选:A.【点评】此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.3.【考点】M5:圆周角定理;MN:弧长的计算.【分析】利用圆周角定理和圆内接四边形的性质求得∠AOC=∠ABC=120°,结合弧长公式进行解答即可.【解答】解:∵四边形内接于⊙O,∠AOC=2∠ADC,∴∠ADC+∠ABC= ∠AOC+∠ABC=180°.又∠AOC=∠ABC,∴∠AOC=120°.∵⊙O 的半径为6,∴劣弧AC 的长为:=4π.故选:C.【点评】本题考查了圆周角定理、弧长的计算,本题中利用圆周角定理中圆周角与圆心角的关系得出角的度数,从而得到∠AOC=∠ABC=120°,从而得出劣弧AC 的长.4.【考点】MN:弧长的计算.【分析】根据题目的条件和图形可以判断点B 分别以C 和A 为圆心CB 和AB 为半径旋转120°,并且所走过的两路径相等,求出一个乘以2 即可得到.【解答】解:如图:BC=AB=AC=1,∠BCB′=120°,∴B 点从开始至结束所走过的路径长度为2×弧BB′=2×=,故选:B.【点评】本题考查了弧长的计算方法,求弧长时首先要确定弧所对的圆心角和半径,利用公式求得即可.5.【考点】MN:弧长的计算.【分析】根据弧长的计算公式:l= (弧长为l,圆心角度数为n,圆的半径为R),代入即可求出圆心角的度数.【解答】解:由题意得,2.5π=,解得:n=75°.故选:D.【点评】本题考查了弧长的计算,解答本题关键是熟练掌握弧长的计算公式,及公式字母表示的含义.6.【考点】MO:扇形面积的计算.【分析】根据题意和图形可以求得阴影部分的面积,本题得以解决.【解答】解:由题意可得,AD=BD=AB=AC=BC,∴△ABD 和△ABC 时等边三角形,∴阴影部分的面积为:()×2=,故选:A.【点评】本题考查扇形面积的计算,解答本题的关键是明确题意,利用数形结合的思想解答.7.【考点】MO:扇形面积的计算.【分析】根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可.【解答】解:∵==,∴∠AOB=∠BOC=∠COD=60°,∴阴影部分的面积==6π,故选:A.【点评】本题考查的是扇形面积计算、圆心角定理,掌握扇形面积公式S=是解题的关键.8.【考点】MO:扇形面积的计算.【分析】计算阴影部分圆心角的度数,运用扇形面积公式求解.【解答】解:根据扇形面积公式,阴影部分面积==27π.故选B.【点评】考查了扇形面积公式的运用,扇形的旋转.9.【考点】KS:勾股定理的逆定理;MO:扇形面积的计算;R2:旋转的性质.【分析】根据AB=5,AC=3,BC=4 和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED 的面积=△ABC 的面积,得到阴影部分的面积=扇形ADB 的面积,根据扇形面积公式计算即可.【解答】解:∵AB=5,AC=3,BC=4,∴△ABC 为直角三角形,由题意得,△AED 的面积=△ABC 的面积,由图形可知,阴影部分的面积=△AED 的面积+扇形ADB 的面积﹣△ABC 的面积,∴阴影部分的面积=扇形ADB 的面积==π,故选:B.【点评】本题考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB 的面积是解题的关键.10.【考点】M5:圆周角定理;MO:扇形面积的计算.【分析】根据已知条件得到∠ACB=90°,∠AOC=30°,∠COB=120°,解直角三角形得到AB=2AO=4,BC=2,根据扇形和三角形的面积公式即可得到结论【解答】解:连接 OC ,∵∠ABC=30°,∴∠ACB=90°,∠AOC=60°,∠COB=120°,∵AC=2,∴AB=2AO=4,BC=2,∴OC=OB=2,∴阴影部分的面积=S 扇形﹣S △OBC =﹣×2 ×1=π﹣ , 故选:A .【点评】此题主要考查了扇形面积求法,利用已知得出理解阴影部分的面积等于扇形 OCD 的面积是解题关键.11.【考点】MP :圆锥的计算.【分析】已知底面半径即可求得底面周长,即展开图中,扇形的弧长,然后根据扇形的面积公式即可求解.【解答】解:底面周长是 2×3π=6π,则圆锥的侧面积是:×6π×6=18π(cm2).故选:A .【点评】本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解.12.【考点】MP :圆锥的计算.【分析】设圆锥的底面圆的半径为 r ,根据圆锥的侧面展开图为一扇形,这个扇 形的弧长等于圆锥底面的周长和弧长公式得到 2πr=,然后解关于 r 的方程即可.【解答】解:设圆锥的底面圆的半径为 r ,根据题意得 2πr=,解得 r=6,即圆锥的底面圆的半径为6.故选:A.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.13.【考点】MP:圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×3×10÷2=30π.故选:A.【点评】本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.14.【考点】MP:圆锥的计算.【分析】先利用勾股定理计算出圆锥的母线长,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算这个圆锥漏斗的侧面积.【解答】解:圆锥的母线长==10,所以圆锥的侧面积=•2π•6•10=60π(cm2).故选:C.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15.【考点】MP:圆锥的计算.【分析】根据题意求出圆锥的底面半径,根据勾股定理求出母线长,根据扇形弧长公式计算即可.【解答】解:设它的侧面展开图的圆心角为n,∵圆锥的底面周长为6πcm,∴圆锥的底面半径==3cm,∴圆锥的母线长==5,则=6π,解得,n=216°,故选:C.【点评】本题考查的是圆锥的计算,掌握圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16.【考点】MQ:圆柱的计算.【分析】根据圆柱的体积=底面积×高进行计算.【解答】解:圆柱的体积=9π×2=18π(cm3).故选:B.【点评】熟悉圆柱的体积公式,即圆柱的体积=底面积×高.17.【考点】I2:点、线、面、体;MQ:圆柱的计算.【分析】表面积=侧面积+两个底面积=底面周长×高+2πr2.【解答】解:∵以直线AB 为轴旋转一周得到的圆柱体,得出底面半径为4cm,母线长为3cm,∴圆柱侧面积=2π•A B•BC=2π•3×4=24π(cm2),∴底面积=π•BC2=π•42=16π(cm2),∴圆柱的表面积=24π+2×16π=56π(cm2).故选:B.【点评】此题主要考查了圆柱的表面积的计算公式,根据旋转得到圆柱体,利用圆柱体的侧面积等于底面圆的周长乘以母线长是解决问题的关键.18.【考点】MQ:圆柱的计算.【分析】圆柱侧面积=底面周长×高.【解答】解:根据侧面积公式可得π×2×3×6=36πcm2,故选:B.【点评】考查了圆柱的计算,掌握特殊立体图形的侧面展开图的特点,是解决此类问题的关键.19.【考点】MQ:圆柱的计算.【分析】由水桶底面半径:铁柱底面半径=2:1,得到水桶底面积:铁柱底面积=22:12=4:1,设铁柱底面积为a,水桶底面积为4a,于是得到水桶底面扣除铁柱部分的环形区域面积为4a﹣a=3a,根据原有的水量为3a×12=36a,即可得到结论.【解答】解:∵水桶底面半径:铁柱底面半径=2:1,∴水桶底面积:铁柱底面积=22:12=4:1,设铁柱底面积为a,水桶底面积为4a,则水桶底面扣除铁柱部分的环形区域面积为4a﹣a=3a,∵原有的水量为3a×12=36a,∴水桶内的水面高度变为=9(公分).故选:D.【点评】本题考查了圆柱的计算,正确的理解题意是解题的关键.20.【考点】MQ:圆柱的计算.【分析】首先根据圆柱的体积公式:v=sh,求得圆柱的底面积s,然后根据面积s=πr,求得半径,进而即可求得周长.【解答】解:由题意得:2000×1.62=s(10+3+×),解得s= =243,因为s=πr2,所以,r=9,所以,周长=2πr=2×3×9=54(尺),54 尺=5 丈4 尺,故选:B.【点评】本题考查了圆柱的体积公式在实际中的应用,关键是熟记公式.二.填空题(共10 小题)21.【考点】MN:弧长的计算.【分析】根据弧长公式L=求解即可.【解答】解:∵L=,∴R= =9.故答案为:9.【点评】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L=.22.【考点】I6:几何体的展开图;MN:弧长的计算.【分析】根据圆锥的展开图为扇形,结合圆周长公式的求解.【解答】解:设底面圆的半径为rcm,由勾股定理得:r==6,∴2πr=2π×6=12π,故答案为:12π.【点评】此题考查了圆锥的计算,解答本题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系,难度一般.23.【考点】LE:正方形的性质;MN:弧长的计算.【分析】连接AF、DF,根据圆的定义判断出△ADF 是等边三角形,根据正方形和等边三角形的性质求出∠BAF=30°,同理可得弧DE 的圆心角是30°,然后求出弧EF 的圆心角是30°,再根据弧长公式求出弧EF 的长,然后根据对称性,图中阴影部分的外围四条弧都相等列式计算即可得解.【解答】解:如图,连接AF、DF,由圆的定义,AD=AF=DF,所以,△ADF 是等边三角形,∵∠BAD=90°,∠FAD=60°,∴∠BAF=90°﹣60°=30°,同理,弧DE 的圆心角是30°,∴弧EF 的圆心角是90°﹣30°×2=30°,∴=,由对称性知,图中阴影部分的外围四条弧都相等,所以,图中阴影部分的外围周长=×4=π.故答案为:π.【点评】本题考查了正方形的性质,等边三角形的判定,弧长的计算,作辅助线构造成等边三角形是解题的关键,难点在于熟练掌握图形的对称性.24.【考点】MN:弧长的计算;MO:扇形面积的计算.lr,把对应的【分析】根据扇形面积公式和扇形的弧长公式之间的关系:S扇形=数值代入即可求得半径r 的长.lr【解答】解:∵S扇形=∴240π=•20π•r∴r=24 (cm)故答案为24cm.【点评】此题主要考查了扇形的面积公式,弧长公式,解此类题目的关键是掌握住扇形面积公式和扇形的弧长公式之间的等量关系:Slr.扇形=25.【考点】MO:扇形面积的计算.【分析】作DN⊥AB,垂足为N,求出∠BOD 的度数,进而求出扇形BOD 的面积,再求出△BOD 的面积,即可求出阴影部分的面积.【解答】解:作DN⊥AB,垂足为N,∵∠DCA=30°,∴∠AOD=2∠ACD=60°,∴∠BOD=120°,∵AB=2,∴OB= ,== π,∴S扇形BOD在Rt△DON 中,sin60°==,∴DN=,∴S= ××=,△BOD∴S 阴影=π﹣,故答案为π﹣.【点评】本题主要考查了扇形面积的计算,解题的关键是根据题意得到阴影面积=扇形BOD 的面积﹣三角形BOD 的面积.26.【考点】MO:扇形面积的计算.【分析】连接OC、AC,根据题意得到△AOC 为等边三角形,∠BOC=90°,分别求出扇形COB 的面积、△AOC 的面积、扇形AOC 的面积,计算即可.【解答】解:连接OC、AC,由题意得OA=OC=AC=2,∴△AOC 为等边三角形,∠BOC=90°,∴扇形COB 的面积为:=π,△AOC 的面积为:×2×= ,扇形AOC 的面积为:=π,则阴影部分的面积为:π+ ﹣π=+π.故答案为:+π.【点评】本题考查的是扇形面积计算,掌握等边三角形的性质、扇形的面积公式S=是解题的关键.27.【考点】MP:圆锥的计算.【分析】由圆锥的几何特征,我们可得用半径为20cm,面积为150πcm2 的扇形铁皮制作一个无底的圆锥形容器,则圆锥的底面周长等于扇形的弧长,据此求得圆锥的底面圆的半径.【解答】解:设铁皮扇形的半径和弧长分别为R、l,圆锥形容器底面半径为r,则由题意得R=20,由Rl=150π得l=15π;由2πr=15π得r=7.5cm.故答案是:7.5cm.【点评】本题考查的知识点是圆锥的表面积,其中根据已知制作一个无底的圆锥形容器的扇形铁皮的相关几何量,计算出圆锥的底面半径和高,是解答本题的关键.28.【考点】MP:圆锥的计算.【分析】易得圆锥的底面半径,那么利用勾股定理即可求得圆锥的母线长,进而根据圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【解答】解:∵圆锥的底面直径为6,∴圆锥的底面半径为3,∵圆锥的高为4,∴圆锥的母线长为5,∴圆锥的侧面积为π×3×5=15π.【点评】本题考查圆锥侧面积公式的运用,注意运用圆锥的高,母线长,底面半径组成直角三角形这个知识点.29.【考点】MP:圆锥的计算.【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【解答】解:设母线长为R,则:65π=π×5R,解得R=13cm.【点评】本题考查圆锥侧面积公式的灵活运用,掌握公式是关键.30.【考点】MQ:圆柱的计算.【分析】圆柱侧面积=底面周长×高.【解答】解:π×2×3×5=30πcm2,故答案为30π.【点评】本题考查了圆柱的计算,掌握圆柱侧面积的计算方法是解题的关键.三.解答题(共10 小题)31.【考点】M5:圆周角定理;MN:弧长的计算.【分析】(1)根据圆周角定理证明即可;(2)连接CO,利用弧长公式解答即可.【解答】(1)证明:∵点O 是圆心,OD⊥BC,∴,∴∠CAD=∠BAD;(2)连接CO,∵∠B=50°,∴∠AOC=100°,∴的长为:L=.【点评】此题考查弧长的计算,关键是利用弧长公式解答.32.【考点】MN:弧长的计算.【分析】(1)由题意可知:△OCD 是等边三角形,从而可求出弧CD 的长度,再求出半圆弧的长度后,即可求出弧BC 的长度.(2)过点M 做ME⊥AB 于点E,连接OM,由垂径定理可求出DM 的长度,再有勾股定理即可求出OM 的长度,最后根据ME2=OM2﹣OE2 可知ME 取最小值,则只需要OE 最小即可,从而可求出ME 的长度.【解答】解:(1)连接OD、OC,∵CD=OC=OD=3,∴△CDO 是等边三角形,∴∠COD=60°,∴==π,又∵半圆弧的长度为:×6π=3π,∴=3π﹣π﹣=(2)过点M 做ME⊥AB 于点E,连接OM,再CD 运动的过程中,CD=3,由垂径定理可知:DM=,∴由勾股定理可知:OM= =∴由勾股定理可知:ME2=OM2﹣OE2若ME 取最小值,则只需要OE 最小即可,令OE=0,此时ME=OM=,即点M 到AB 的距离的最小值为【点评】本题考查圆的综合问题,涉及垂径定理,勾股定理,等边三角形的性质等知识,综合程度较高,属于中等题型.33.【考点】M5:圆周角定理;M6:圆内接四边形的性质;MN:弧长的计算.【分析】(1)根据圆内接四边形的性质和等腰三角形的性质得出结论;(2)连接OC,OD,根据等腰三角形得出∠B=∠E=70°,再在等腰三角形OAD 中,得出∠AOD=100°,从而得出∠COD=40°,再由弧长公式得出答案即可.【解答】解:(1)∵CE=CD,∴∠E=∠CDE,∵∠CDE=∠B,∴∠B=∠E,∴AB=AE;(2)连接OC,OD,∵∠BAE=40°,AB=AE,∴∠B=∠E=70°,在等腰三角形OBC 中,得出∠BOC=40°,在等腰三角形OAD 中,∠AOD=100°,∴∠COD=40°,∴的长为:=π.【点评】本题考查了弧长公式,掌握弧长公式是解题的关键.34.【考点】M2:垂径定理;MO:扇形面积的计算.【分析】(1)连接OD,OC,根据已知条件得到∠AOD=∠DOC=∠COB=60°,根据圆周角定理得到∠CAD=∠ADE=30°,于是得到结论;(2)由(1)知,∠AOD=60°,推出△AOD 是等边三角形,OA=2,得到DE=,根据扇形和三角形的面积公式即可得到结论【解答】(1)证明:连接OD,OC,∵C 、D 是半圆 O 上的三等分点,∴==,度数都是 60°,∴∠AOD=∠DOC=∠COB=60°,∴∠DAC=30°,∠CAB=30°,∵DE ⊥AB ,∴∠AEF=90°,∴∠ADE=180°﹣90°﹣30°﹣30°=30°,∴∠DAC ∠ADE=30°,∴AF=DF ;(2)解:由(1)知,∠AOD=60°,∵OA=OD ,AB=4,∴△AOD 是等边三角形,OA=2,∵DE ⊥AO ,∴DE= ,∴S 阴影=S 扇形AOD ﹣S △AOD =﹣×2× =π﹣ . 【点评】本题考查了扇形的面积,等边三角形的判定和性质,正确的作出辅助线是解题的关键.35.【考点】MO :扇形面积的计算.【分析】(1)根据垂径定理可知 AD=DC ,由 OA=OB ,推出 BC=2OD=6,Z 在 Rt △ ACB 中,利用勾股定理求出 AC .(2)首先证明△OBC 设等边三角形,推出∠AOC=120°,根据 S 阴=S 扇形 OAC ﹣S △AOC 计算即可.【解答】解:(1)∵OD ⊥AC ,∴AD=DC ,∵AO=OB ,∴BC=2OD=6,∵AB 是直径,∴∠ACB=90°,∴AC= = =6.(2)连接OC,∵OC=OB=BC=6,∴∠BOC=60°,∴∠AOC=120°,∴S阴=S扇形OAC﹣S△AOC=﹣•6•3=12π﹣9 .【点评】本题考查扇形的面积公式、垂径定理、勾股定理.三角形的中位线定理等知识,解题的关键是学会添加常用辅助线,学会用方法求阴影部分面积,属于中考常考题型.36.【考点】KG:线段垂直平分线的性质;M2:垂径定理;MN:弧长的计算;MO:扇形面积的计算.【分析】(1)先利用垂径定理得出AB=2BD,∠ODB=90°,OD=OC=5,进而根据勾股定理求出BD,即可得出结论;(2)先利用锐角三角函数求出∠BOD=60°,最后利用扇形的弧长公式和扇形的面积公式即可得出结论.【解答】解:(1)如图,⊙O 半径为10cm,∴OB=OC=10,∵弦AB 垂直平分半径OC,∴AB=2BD,∠ODB=90°,OD= OC=5,在Rt△BOD 中,根据勾股定理得,BD==5,∴AB=2BD=10 cm;(2)由(1)知,OD=5,在Rt△BOD 中,cos∠BOD= = ,∴∠BOD=60°,∵OC⊥AB,∴∠AOB=2∠BOD=120°,∴== = cm,S 阴影=S 扇形AOB﹣S△AOB= ﹣AB×OD= ﹣×=﹣25(cm).【点评】此题主要考查了垂径定理,锐角三角函数,勾股定理,弧长公式,扇形的面积公式,求出AB 是解本题的关键.37.【考点】KG:线段垂直平分线的性质;M2:垂径定理;M5:圆周角定理;MP:圆锥的计算.【分析】(1)利用垂径定理得到CE=DC=DE=2 ,OC= OE,则∠OEC=30°,然后利用含30 度的直角三角形三边的关系求出OE 即可;(2)利用圆周角定理得到∠EOF=2∠D=90°,设这个圆锥的底面圆的半径为r,利用弧长公式得到2πr=,然后解关于r 的方程即可.【解答】解:(1)∵弦DE 垂直平分半径OA,∴CE=DC= DE=2 ,OC=OE,∴∠OEC=30°,∴OC= =2,∴OE=2OC=4,∴ .∴(2)设底面圆的半径为 r ,则,∴ . 圆锥的底面圆的半径长为 米.即⊙O 的半径为 4;(2)∵∠DPA=45°,∴∠D=45°,∴∠EOF=2∠D=90°,设这个圆锥的底面圆的半径为 r ,∴2πr= ,解得 r=1,即这个圆锥的底面圆的半径为 1.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了垂径定理和圆周角定理.38.【考点】MO :扇形面积的计算;MP :圆锥的计算.【分析】(1)由∠BAC=90°,得 BC 为⊙O 的直径,即 BC=1m ;又由 AB=AC ,得到 AB= BC= ,而 S 阴影部分=S ⊙O ﹣S 扇形 ABC ,然后根据扇形和圆的面积公式进行计算即可;(2)扇形的半径是 AB= ,扇形 BAC 的弧长 l== π,圆锥的底面周长等于侧面展开图的扇形弧长,然后利用弧长公式计算.【解答】解:(1)如图,连接 BC ,∵∠BAC=90°,∴BC 为⊙O 的直径,即 BC=1m ,又∵AB=AC ,(平方米)【点评】本题考查了扇形的面积公式:S= ,其中n 为扇形的圆心角的度数,R 为圆的半径),或S=lR,l 为扇形的弧长,R 为半径.也考查了90 度的圆周角所对的弦为直径以及等腰直角三角形三边关系.39.【考点】MP:圆锥的计算.【分析】应先利用勾股定理求得圆锥的母线长,圆锥的侧面积=π×底面半径×母线长,把相关数值代入即可求解;圆锥的表面积=圆锥的侧面积+圆锥的底面积=圆锥的侧面积+π×底面半径2,把相关数值代入即可求解.【解答】解:∵圆锥的底面半径为6cm,高为8cm,∴圆锥的母线长为10cm,=π×6×10=60πcm2;∴S侧∵圆锥的底面积=π×62=36π,∴S=60π+36π=96πcm2.表【点评】此题考查圆锥的侧面积和全面积的计算公式;圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.40.【考点】MQ:圆柱的计算.【分析】根据圆柱的表面积=2πr2+πdh,计算即可.【解答】解:圆柱的表面积=2πr2+πdh=2π×32+π×6×10=78π;圆柱的表面积=2πr2+πdh=2π×72+π×14×5=168π.【点评】此题考查了圆柱的表面积的公式的计算应用.考点盘点1.点、线、面、体(1)体与体相交成面,面与面相交成线,线与线相交成点.(2)从运动的观点来看点动成线,线动成面,面动成体.点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.(3)从几何的观点来看点是组成图形的基本元素,线、面、体都是点的集合.(4)长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体简称体.(5)面有平面和曲面之分,如长方体由6 个平面组成,球由一个曲面组成.2.几何体的展开图(1)多数立体图形是由平面图形围成的.沿着棱剪开就得到平面图形,这样的平面图形就是相应立体图形的展开图.同一个立体图形按不同的方式展开,得到的平面展开图是不一样的,同时也可看出,立体图形的展开图是平面图形.(2)常见几何体的侧面展开图:①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形.④三棱柱的侧面展开图是长方形.(3)立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决.从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.3.线段垂直平分线的性质(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.。
弧长与扇形面积1. (2014•广西贺州)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是()A.B.C.D.解答:解:连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sinA==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.故选B.2.(2014·台湾)如图,、、、均为以O点为圆心所画出的四个相异弧,其度数均为60°,且G在OA上,C、E在AG上,若AC=EG,OG =1,AG=2,则与两弧长的和为()A.πB.4π3C.3π2D.8π5解:设AC=EG=a,CE=2﹣2a,CO=3﹣a,EO=1+a,+=2π(3﹣a)×60°360°+2π(1+a)×60°360°=π6(3﹣a+1+a)=4π3.故选B.3. (2014·浙江金华)一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为1,则扇形纸板和圆形纸板的面积比是【】A.5:4B.5:2C2D【答案】A.【解析】故选A.4.(2014年山东泰安)如图,半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.(﹣1)cm2B.(+1)cm2C.1cm2D.cm2解:∵扇形OAB的圆心角为90°,假设扇形半径为2,∴扇形面积为:=π(cm2),半圆面积为:×π×12=(cm2),∴S Q+S M =S M+S P=(cm2),∴S Q=S P,连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S绿色=S△AOD=×2×1=1(cm2),∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).故选:A.5. (2014•海南)一个圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为()cm cm cmr=r=cm6. (2014•黑龙江龙东)一圆锥体形状的水晶饰品,母线长是10cm,底面圆的直径是5cm,点A为圆锥底面圆周上一点,从A点开始绕圆锥侧面缠一圈彩带回到A点,则彩带最少用多少厘米(接口处重合部分忽略不计)()A.10πcm B. 10cm C. 5πcm D.5cm解答:解:由题意可得出:OA=OA′=10cm,==5π,解得:n=90°,∴∠AOA′=90°,∴AA′==10(cm),故选:B.7.(2014•莱芜)如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为()D8.(2014•浙江绍兴)如图,圆锥的侧面展开图使半径为3,圆心角为90°的扇形,则该圆锥的底面周长为()πBπC Dr==∴r=,∴圆锥的底面周长为9.(2014•浙江)如图,半径为6cm的⊙O中,C、D为直径AB的三等分点,点E、F分别在AB两侧的半圆上,∠BCE=∠BDF=60°,连接AE、BF,则图中两个阴影部分的面积和为6cm2.解答:解:如图作△DBF的轴对称图形△HAG,作AM⊥CG,ON⊥CE,∵△DBF的轴对称图形△HAG,∴△ACG≌△BDF,∴∠ACG=∠BDF=60°,∵∠ECB=60°,∴G、C、E三点共线,∵AM⊥CG,ON⊥CE,∴AM∥ON,∴==,在RT△ONC中,∠OCN=60°,∴ON=sin∠OCN•OC=•OC,∵OC=OA=2,∴ON=,∴AM=2,∵ON⊥GE,∴NE=GN=GE,连接OE,在RT△ONE中,NE===,∴GE=2NE=2,∴S△AGE=GE•AM=×2×2=6,∴图中两个阴影部分的面积为6,故答案为6.10.(2014•广安)如图,在直角梯形ABCD中,∠ABC=90°,上底AD为,以对角线BD为直径的⊙O与CD切于点D,与BC交于点E,且∠ABD为30°.则图中阴影部分的面积为﹣π(不取近似值).AD=BD=2,OF=BC=4,=﹣﹣﹣=﹣=﹣11.(2014•绵阳)如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π),=.故答案为:.12.(2014•重庆)如图,△OAB中,OA=OB=4,∠A=30°,AB与⊙O相切于点C,则图中阴影部分的面积为4﹣.(结果保留π)解答:解:连接OC,∵AB与圆O相切,∴OC⊥AB,∵OA=OB,∴∠AOC=∠BOC,∠A=∠B=30°,在Rt△AOC中,∠A=30°,OA=4,∴OC=OA=2,∠AOC=60°,∴∠AOB=120°,AC==2,即AB=2AC=4,则S阴影=S△AOB﹣S扇形=×4×2﹣=4﹣.故答案为:4﹣.13. (2014•黑龙江)如图,如果从半径为3cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径是 2 cm.第2题图解答:解:扇形的弧长为:=4πcm,圆锥的底面半径为:4π÷2π=2cm,故答案为:2.14. (2014•荆门)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.第3题图解答:解:连接AC,∵DC是⊙A的切线,∴AC⊥CD,又∵AB=AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CAD=∠ACB=45°,又∵AB=AC,∴∠ACB=∠B=45°,∴∠CAD=45°,∴∠CAD=45°,∵的长为,∴,解得:r=2,∴S阴影=S△ACD﹣S扇形ACD=.故答案为:.15.(2014•襄阳)如图,在正方形ABCD中,AD=2,E是AB的中点,将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F 处,点C落在点A处.再将线段AF绕点F顺时针旋转90°得线段FG,连接EF,CG.(1)求证:EF∥CG;(2)求点C,点A在旋转过程中形成的,与线段CG所围成的阴影部分的面积.=×====×1+﹣=﹣.16.(2014·昆明)如图,在△ABC 中,∠ABC =90°,D 是边AC 上的一点,连接BD ,使∠A =2∠1,E 是BC 上的一点,以BE 为直径的⊙O 经过点D .(1)求证:AC 是⊙O 的切线;(2)若∠A =60°,⊙O 的半径为2,求阴影部分的面积.(结果保留根号和π)第22题图17. (2014年钦州)如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3)求图中阴影部分的面积.解答:(1)证明:连接OC,OC交BD于E,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∵∠CDB=∠OBD,∴CD∥AB,又∵AC∥BD,∴四边形ABDC为平行四边形,∴∠A=∠D=30°,∴∠OCA=180°﹣∠A﹣∠COB=90°,即OC⊥AC又∵OC是⊙O的半径,∴AC是⊙O的切线;(2)解:由(1)知,OC⊥AC.∵AC∥BD,∴OC⊥BD,∴BE=DE,∵在直角△BEO中,∠OBD=30°,OB=6,∴BE=OBcos30°=3,∴BD=2BE=6;(3)解:易证△OEB≌△CED,∴S阴影=S扇形BOC∴S阴影==6π.答:阴影部分的面积是6π.18.(2014•贵州)如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2.(1)求证:AC是⊙O的切线;(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)第1题图解答:(1)证明:连接OC,交BD于E,∵∠B=30°,∠B=∠COD,∴∠COD=60°,∵∠A=30°,∴∠OCA=90°,即OC⊥AC,∴AC是⊙O的切线;(2)解:∵AC∥BD,∠OCA=90°,∴∠OED=∠OCA=90°,∴DE=BD=,∵sin∠COD=,∴OD=2,在Rt△ACO中,tan∠COA=,∴AC=2,∴S阴影=×2×2﹣=2﹣.19、(2013•雅安)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)BF=,,=×﹣20、(2013•新疆)如图,已知⊙O的半径为4,CD是⊙O的直径,AC为⊙O的弦,B为CD延长线上的一点,∠ABC=30°,且AB=AC.(1)求证:AB为⊙O的切线;(2)求弦AC的长;(3)求图中阴影部分的面积.AC==4AC=4=8..=+4=+4+4。
初中数学苏科版九年级上册2.7弧长及扇形的面积同步测试一、单选题1.若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A. B. C. D.2.若扇形的弧长是,半径是18,则该扇形的圆心角是()A. B. C. D.3.圆心角为,弧长为的扇形半径为()A. B. C. D.4.如图,AB为⊙O的直径,AB=30,点C在⊙O上,⊙A=24°,则的长为()A.9πB.10πC.11πD.12π5.如图1,一只蚂蚁从点O出发,以1厘米/秒速度沿着扇形AOB的边缘爬行一周。
设爬行时间为x秒,蚂蚁到点O的距离为y厘米,y关于x的函数图像如图2所示,则扇形的面积为()A.3B.6C.πD.π6.如图,OO是⊙ABC的外接圆,BC=3,⊙BAC=30°,则劣弧的长等于()A. B.π C. D.7.如图,在扇形中,为弦,,,,则的长为()A. B. C. D.8.如图,⊙O的半径为2,AB、CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A、B、C、D不重合),经过P作PM⊙AB于点M,PN⊙CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为()A. B. C. D.9.如图,半径为2的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于()A.4B.6C.2πD.π+ 410.如图,若弧AB半径PA为18,圆心角为120°,半径为2的⊙,从弧AB的一个端点A (切点)开始先在外侧滚动到另一个端点B(切点),再旋转到内侧继续滚动,最后转回到初始位置,⊙自转的周数是()。
弧长和扇形面积测试题(带答案)27.3.1弧长和扇形面积一.选择题(共8小题) 1.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A. B.1� C.�1 D.1�2.一个圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为() A. cm B. cm C.3cm D. cm 3.圆心角为120°,弧长为12π的扇形半径为() A.6 B.9 C.18 D.364.在半径为2的圆中,弦AB的长为2,则的长等于() A. B. C. D.5.一个扇形的半径为8cm,弧长为 cm,则扇形的圆心角为()A.60° B.120° C.150° D.180°6.已知一个扇形的半径为12,圆心角为150°,则此扇形的弧长是() A.5π B.6π C.8π D.10π7.已知扇形的圆心角为60°,半径为1,则扇形的弧长为()A. B.π C. D.8.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线l上进行两次旋转,则点B在两次旋转过程中经过的路径的长是() A. B.13πC.25πD.25 二.填空题(共6小题)9.已知扇形半径是3cm,弧长为2πcm,则扇形的圆心角为_________ °.(结果保留π) 10.若扇形的圆心角为60°,弧长为2π,则扇形的半径为_________ . 11.如图,正三角形ABC的边长为2,点A,B在半径为的圆上,点C在圆内,将正三角形ABC 绕点A逆时针旋转,当点C第一次落在圆上时,点C运动的路线长是_________ . 12.通过对课本中《硬币滚动中的数学》的学习,我们知道滚动圆滚动的周数取决于滚动圆的圆心运动的路程(如图①).在图②中,有2014个半径为r的圆紧密排列成一条直线,半径为r的动圆C从图示位置绕这2014个圆排成的图形无滑动地滚动一圈回到原位,则动圆C自身转动的周数为_________ . 13.半径为4cm,圆心角为60°的扇形的面积为_________ cm2. 14.如图,在△ABC中,AB=BC=2,∠ABC=90°,则图中阴影部分的面积是_________ .三.解答题(共6小题) 15.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.16.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,OC=2,求阴影部分图形的面积(结果保留π).17.如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2.(1)求线段EC的长;(2)求图中阴影部分的面积.18.如图扇形纸扇完全打开后,外侧两竹条AB、AC的夹角为120°,AB长为30cm,贴纸部分BD长为20cm,求贴纸部分的面积.19.如图,线段AB与⊙O相切于点C,连接OA,OB,OB交⊙O于点D,已知OA=OB=6,AB=6 .(1)求⊙O的半径;(2)求图中阴影部分的面积.20.如图所示,在⊙O中, = ,弦AB与弦AC交于点A,弦CD与AB 交于点F,连接BC.(1)求证:AC2=AB•AF;(2)若⊙O的半径长为2cm,∠B=60°,求图中阴影部分面积.27.3.1弧长和扇形面积参考答案与试题解析一.选择题(共8小题) 1.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A. B.1� C.�1 D. 1�考点:扇形面积的计算.分析:图中1、2、3、4图形的面积和为正方形的面积,1、2和两个3的面积和是两个扇形的面积,因此两个扇形的面积的和�正方形的面积=无阴影两部分的面积之差,即�1= .解答:解:如图:正方形的面积=S1+S2+S3+S4;① 两个扇形的面积=2S3+S1+S2;② ②�①,得:S3�S4=S扇形�S正方形= �1= .故选:A.点评:本题主要考查了扇形的面积计算公式及不规则图形的面积计算方法.找出正方形内四个图形面积之间的联系是解题的关键. 2.一个圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为() A. cm B. cm C.3cm D. cm考点:弧长的计算.分析:利用弧长公式和圆的周长公式求解.解答:解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得: 2πr= , r= cm.故选:A.点评:圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.3.圆心角为120°,弧长为12π的扇形半径为() A. 6 B.9 C.18 D. 36考点:弧长的计算.专题:计算题.分析:根据弧长的公式l= 进行计算.解答:解:设该扇形的半径是r.根据弧长的公式l= ,得到:12π= ,解得 r=18,故选:C.点评:本题考查了弧长的计算.熟记公式是解题的关键.4.在半径为2的圆中,弦AB的长为2,则的长等于() A. B. C. D.考点:弧长的计算.分析:连接OA、OB,求出圆心角∠AOB的度数,代入弧长公式求出即可.解答:解:连接OA、OB,∵OA=OB=AB=2,∴△AOB是等边三角形,∴∠AOB=60°,∴ 的长为: = ,故选:C.点评:本题考查了弧长公式,等边三角形的性质和判定的应用,注意:已知圆的半径是R,弧AB对的圆心角的度数是n°,则弧AB的长= .5.一个扇形的半径为8cm,弧长为 cm,则扇形的圆心角为()A.60° B.120° C.150° D.180°考点:弧长的计算.分析:首先设扇形圆心角为n°,根据弧长公式可得: = ,再解方程即可.解答:解:设扇形圆心角为n°,根据弧长公式可得: = ,解得:n=120°,故选:B.点评:此题主要考查了弧长计算,关键是掌握弧长计算公式:l= .6.已知一个扇形的半径为12,圆心角为150°,则此扇形的弧长是() A. 5π B.6π C.8π D. 10π考点:弧长的计算.分析:直接利用弧长公式l= 求出即可.解答:解:此扇形的弧长是: =10π.故选:D.点评:此题主要考查了弧长计算,正确记忆弧长公式是解题关键.7.已知扇形的圆心角为60°,半径为1,则扇形的弧长为()A. B.π C. D.考点:弧长的计算.分析:利用弧长公式l= 即可直接求解.解答:解:弧长是: = .故选:D.点评:本题考查了弧长公式,正确记忆公式是关键.8.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线l上进行两次旋转,则点B在两次旋转过程中经过的路径的长是() A. B.13π C.25π D. 25考点:弧长的计算;矩形的性质;旋转的性质.专题:几何图形问题.分析:连接BD,B′D,首先根据勾股定理计算出BD长,再根据弧长计算公式计算出,的长,然后再求和计算出点B在两次旋转过程中经过的路径的长即可.解答:解:连接BD,B′D,∵AB=5,AD=12,∴BD= =13,∴ = = ,∵ = =6π,∴点B在两次旋转过程中经过的路径的长是: +6π= ,故选:A.点评:此题主要考查了弧长计算,以及勾股定理的应用,关键是掌握弧长计算公式l= .二.填空题(共6小题) 9.已知扇形半径是3cm,弧长为2πcm,则扇形的圆心角为120 °.(结果保留π)考点:弧长的计算.分析:设扇形的圆心角为n°,根据弧长公式和已知得出方程 =2π,求出方程的解即可.解答:解:设扇形的圆心角为n°,∵扇形半径是3cm,弧长为2πcm,∴ =2π,解得:n=120,故答案为:120.点评:本题考查了弧长的计算的应用,解此题的关键是能根据弧长公式得出关于n的方程,题目比较好,难度适中.10.若扇形的圆心角为60°,弧长为2π,则扇形的半径为 6 .考点:弧长的计算.专题:计算题.分析:利用扇形的弧长公式表示出扇形的弧长,将已知的圆心角及弧长代入,即可求出扇形的半径.解答:解:∵扇形的圆心角为60°,弧长为2π,∴l= ,即2π= ,则扇形的半径R=6.故答案为:6 点评:此题考查了弧长的计算公式,扇形的弧长公式为l= (n为扇形的圆心角度数,R为扇形的半径),熟练掌握弧长公式是解本题的关键.11.如图,正三角形ABC的边长为2,点A,B在半径为的圆上,点C在圆内,将正三角形ABC绕点A逆时针旋转,当点C第一次落在圆上时,点C运动的路线长是.考点:弧长的计算;等腰直角三角形;垂径定理.分析:作辅助线,首先求出∠DAC的大小,进而求出旋转的角度,利用弧长公式问题即可解决.解答:解:如图,分别连接OA、O B、OD;∵OA=OB= ,AB=2,∴△OAB是等腰直角三角形,∴∠OAB=45°;同理可证:∠OAD=45°,∴∠DAB=90°;∵∠CAB=60°,∴∠DAC=90°�60°=30°,∴当点C第一次落在圆上时,点C运动的路线长为: = .故答案为:.点评:本题考查了正方形的性质、旋转的性质、等边三角形的判定和性质、勾股定理的运用以及弧长公式的运用,题目的综合性较强,解题的关键是正确的求出旋转角的度数.12.通过对课本中《硬币滚动中的数学》的学习,我们知道滚动圆滚动的周数取决于滚动圆的圆心运动的路程(如图①).在图②中,有2014个半径为r的圆紧密排列成一条直线,半径为r的动圆C从图示位置绕这2014个圆排成的图形无滑动地滚动一圈回到原位,则动圆C自身转动的周数为1344 .考点:弧长的计算;相切两圆的性质;轨迹.专题:压轴题.分析:它从A位置开始,滚过与它相同的其他2014个圆的上部,到达最后位置.则该圆共滚过了2014段弧长,其中有2段是半径为2r,圆心角为120度,2012段是半径为2r,圆心角为60度的弧长,所以可求得.解答:解:弧长= =1344πr,又因为是来回所以总路程为:1344π×2=2688π,所以动圆C自身转动的周数为:2688πr÷2πr=1344,故答案为:1344.点评:本题考查了弧长的计算.关键是求出动圆C自身转动的长度.13.半径为4cm,圆心角为60°的扇形的面积为πcm2.考点:扇形面积的计算.分析:直接利用扇形面积公式求出即可.解答:解:半径为4cm,圆心角为60°的扇形的面积为: = π(cm2).故答案为:π.点评:此题主要考查了扇形的面积公式应用,熟练记忆扇形面积公式是解题关键.14.如图,在△ABC中,AB=BC=2,∠ABC=90°,则图中阴影部分的面积是π�2 .考点:扇形面积的计算;等腰直角三角形.专题:几何图形问题.分析:通过图形知S阴影部分面积=S半圆AB的面积+S半圆BC的面积�S△ABC的面积,所以由圆的面积公式和三角形的面积公式可以求得阴影部分的面积.解答:解:∵在△ABC中,AB=BC=2,∠ABC=90°,∴△ABC是等腰直角三角形,∴图中阴影部分的面积是: S阴影部分面积=S半圆AB的面积+S半圆BC的面积�S△ABC的面积 ==π�2.故答案为:π�2.点评:本题考查了扇形面积的计算、勾股定理.解题的关键是推知S阴影部分面积=S半圆AB的面积+S半圆BC的面积�S△A BC的面积.三.解答题(共6小题) 15.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.考点:扇形面积的计算;等腰三角形的性质;切线的判定;特殊角的三角函数值.菁优网版权所有专题:几何图形问题.分析:(1)连接 OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;(2)阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.解答:(1)证明:连接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=180°�∠A�∠D�∠2=90°.∴CD是⊙O的切线.(2)解:∵∠A=30°,∴∠1=2∠A=60°.∴S扇形BOC= .在Rt△OC D中,∵ ,∴ .∴ .∴图中阴影部分的面积为:.点评:此题综合考查了等腰三角形的性质、切线的判定方法、扇形的面积计算方法.16.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,OC=2,求阴影部分图形的面积(结果保留π).考点:扇形面积的计算;全等三角形的判定与性质;垂径定理.分析:根据垂径定理可得CE=DE,∠CEO=∠DEB=90°,然后根据∠CDB=30°,得出∠COB=60°,继而证得△OCE≌△BDE,把阴影部分的面积转化为扇形的面积计算即可.解答:解:∵AB是⊙O的直径,弦CD⊥AB于点E,∴CE=DE,∠CEO=∠DEB=90°.∵∠CDB=30°,∴∠COB=60°,∠OCE=∠CDB,在△OCE和△BDE中,∵ ,∴△OCE≌△BDE,∴S阴影=S扇形OCB= = π.点评:本题考查了扇形面积的计算以及垂径定理、全等三角形的判定和性质,解答本题的关键是理解性质和定理,注意掌握扇形的面积公式.17如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2.(1)求线段EC的长;(2)求图中阴影部分的面积.考点:扇形面积的计算;含30度角的直角三角形;勾股定理;矩形的性质.分析:(1)根据扇形的性质得出AB=AE=4,进而利用勾股定理得出DE的长,即可得出答案;(2)利用锐角三角函数关系得出∠DEA=30°,进而求出图中阴影部分的面积为:S扇形FAB�S△DAE�S扇形EAB求出即可.解答:解:(1)∵在矩形ABCD 中,AB=2DA,DA=2,∴AB=AE=4,∴DE= =2 ,∴EC=CD�DE=4�2 ;(2)∵sin∠DEA= = ,∴∠DEA=30°,∴∠EAB=30°,∴图中阴影部分的面积为: S扇形FAB�S△DAE�S扇形EAB = �×2×2 �= �2 .点评:此题主要考查了扇形的面积计算以及勾股定理和锐角三角函数关系等知识,根据已知得出DE的长是解题关键.18.如图扇形纸扇完全打开后,外侧两竹条AB、AC的夹角为120°,AB长为30cm,贴纸部分BD长为20cm,求贴纸部分的面积.考点:扇形面积的计算.分析:贴纸部分的面积等于扇形ABC减去小扇形的面积,已知了圆心角的度数为120°,扇形的半径为30cm,可根据扇形的面积公式求出贴纸部分的面积.解答:解:设AB=R,AD=r,则有S贴纸= πR2�πr2 = π(R2�r2)= π(R+r)(R�r)= (30+10)×(30�10)π= π(cm2);答:贴纸部分的面积为πcm2.点评:本题主要考查了扇形的面积公式.19.如图,线段AB与⊙O相切于点C,连接OA,OB,OB交⊙O于点D,已知OA=OB=6,AB=6 .(1)求⊙O的半径;(2)求图中阴影部分的面积.考点:扇形面积的计算;勾股定理;切线的性质.专题:几何综合题.分析:(1)线段AB与⊙O相切于点C,则可以连接OC,得到OC⊥AB,则OC是等腰三角形OAB底边上的高线,根据三线合一定理,得到AC=3 ,在直角△OAC中根据勾股定理得到半径OC的长;(2)图中阴影部分的面积等于△OAB的面积与扇形OCD的面积的差的一半.解答:解:(1)连接OC,则OC⊥AB.(1分)∵OA=OB,∴AC=BC= AB= ×6 =3 .(2分)在Rt△AOC中,OC= =3,∴⊙O的半径为3;(4分)(2)∵OC= ,∴∠B=30°,∠COD=60°(5分)∴扇形OCD的面积为S扇形OCD= = π,(7分)∴阴影部分的面积为S阴影=SRt△OBC�S扇形OCD= OC•CB�π= �π.(8分)点评:本题主要考查了圆的切线的性质定理,切线垂直于过切点的半径,并且注意,不规则图形的面积可以转化为一些规则图形的面积的和或差.20.如图所示,在⊙O中, = ,弦AB与弦AC交于点A,弦CD与AB 交于点F,连接BC.(1)求证:AC2=AB•AF;(2)若⊙O的半径长为2cm,∠B=60°,求图中阴影部分面积.考点:扇形面积的计算;圆心角、弧、弦的关系;圆周角定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)由 = ,利用等弧所对的圆周角相等得到一对角相等,再由一对公共角相等,利用两对对应角相等的两三角形相似可得出△ACF与△ABC相似,根据相似得比例可得证;(2)连接OA,OC,利用同弧所对的圆心角等于圆周角的2倍,由∠B为60°,求出∠AOC为120°,过O作OE 垂直于AC,垂足为点E,由OA=OC,利用三线合一得到OE为角平分线,可得出∠AOE为60°,在Rt△AOE中,由OA及cos60°的值,利用锐角三角函数定义求出OE的长,在Rt△AOE中,利用勾股定理求出AE的长,进而求出AC的长,由扇形AOC的面积�△AOC的面积表示出阴影部分的面积,利用扇形的面积公式及三角形的面积公式即可求出阴影部分的面积.解答:(1)证明:∵ = ,∴∠ACD=∠ABC,又∠BAC=∠CAF,∴△ACF∽△ABC,∴ = ,即AC2=AB•AF;(2)解:连接OA,OC,过O作OE⊥AC,垂足为点E,如图所示:∵∠ABC=60°,∴∠AOC=120°,又∵OA=OC,∴∠AOE=∠COE= ×120°=60°,在Rt△AO E中,OA=2cm,∴OE=OAcos60°=1cm,∴AE= = cm,∴AC=2AE=2 cm,则S阴影=S扇形OAC�S△AOC= �×2 ×1=(�)cm2.点评:此题考查了扇形面积的求法,涉及的知识有:相似三角形的判定与性质,弧、圆心角及弦之间的关系,等腰三角形的性质,勾股定理,以及锐角三角函数定义,熟练掌握性质及定理是解本题的关键.。