物质的磁性(I)——抗磁性、顺磁性和铁磁性
- 格式:ppt
- 大小:12.86 MB
- 文档页数:88
原子物理学顺磁性,抗磁性,铁磁性指导教师:XXX专业:XXXX学号:XXXXXXXXXX姓名:XXXXXXX大学XXXX年X月X日顺磁性,抗磁性,铁磁性摘要:一些物质放在磁场中经过磁化后,它的宏观磁矩方向同磁场方向相反,此类物质称为抗磁性的;另一些物质放在磁场中经过磁化后,它的宏观磁矩方向同磁场方向相同,此类物质称为顺磁性的;而某些物质,如铁、钴、镍以及一些稀土元素和许多氧化物,在受到外磁场磁化后,显出比顺磁性强的很多的磁性,在失去磁场后,还保留磁性,这种现象称为铁磁性。
关键词:顺磁性,抗磁性,铁磁性一、顺磁性简介:顺磁性物质的磁化率为正值,比反磁性大1~3个数量级,X约10^-5~10^-3,遵守Curie定律或Curie-Weiss定律。
物质中具有不成对电子的离子、原子或分子时,存在电子的自旋角动量和轨道角动量,也就存在自旋磁矩和轨道磁矩。
在外磁场作用下,原来取向杂乱的磁矩将定向,从而表现出顺磁性。
定义:顺磁性是一种弱磁性。
当分子轨道或原子轨道上有落单的原子或电子时,就会产生顺磁性。
顺磁(性)物质的主要特点是原子或分子中含有没有完全抵消的电子磁矩,因而具有原子或分子磁矩。
但是原子(或分子)磁矩之间并无强的相互作用(一般为交换作用),因此原子磁矩在热骚动的影响下处于无规(混乱)排列状态,原子磁矩互相抵消而无合磁矩。
但是当受到外加磁场作用时,这些原来在热骚动下混乱排列的原子磁矩便同时受到磁场作用使其趋向磁场排列和热骚动作用使其趋向混乱排列,因此总的效果是在外加磁场方向有一定的磁矩分量。
这样便使磁化率(磁化强度与磁场强度之比)成为正值,但数值也是很小,一般顺磁物质的磁化率约为十万分之一(10^-5),并且随温度的降低而增大。
原理:顺磁性物质可以被看作是由许多微小的磁棒组成的,这些磁棒可以旋转,但是无法移动。
这样的物质受到外部磁场的影响后其磁棒主要顺磁力线方向排列,但是这些磁棒互相之间不影响。
热振动不断地使得磁棒的方向重新排列,因此磁棒指向不排列比排列的可能性高。
(2)物质的磁性⽬录:(⼀)、洪德法则(⼆)、磁性的本质是什么,活着怎么从微观的⾓度解释磁性产⽣的原因(三)、外斯分⼦场(四)、物质的抗磁性是怎样产⽣的?为什么说抗磁性普遍存在(五)、顺磁性朗之万理论的内容是什么?在量⼦⼒学范畴内如何对其修正?(六)、铁磁性物质是怎样实现⾃发磁化的,为什么通常未经磁化的铁都不具有磁性(七)、阐述物质铁磁性,反铁磁性和亚铁磁性之间区别和联系(⼋)、交换作⽤模型与超交换作⽤模型的内容分别是什么。
(九)、量⼦⼒学简介(⼀)、洪德法则洪德法则(Hund's rules)简单说就是,⼀个轨道上⼀般都有⼏个“兼并能级”,例如图5中的2p轨道有3个能量⼀样的兼并能级。
在这种情况下,电⼦先⼀个萝⼘⼀个坑把所有的都占⼀遍,如果还剩电⼦,才会⼀个配⼀个的占满这些能级。
图5 (侵删)基于这些规律,我们会发现⼀个有趣的事实:在元素周期表中1. 惰性⽓体(ⅧA)的核外电⼦都恰好是全部成对的,因此不可能有净胜⾃旋;2. 主族元素(ⅠA ~ⅫA)虽然都有未配对电⼦,但在形成化合物时,这些电⼦⼀般都会成为价电⼦参与配对成键,因⽽也⼤都不具备明显的磁性;3. 只有过渡族元素具有⾮价电⼦的净剩⾃旋,因⽽也就是不同材料中磁性的主要承载者。
(⼆)、磁性的本质是什么,活着怎么从微观的⾓度解释磁性产⽣的原因作为⼀种物理场,磁场是看不见、摸不着但⼜客观存在的特殊物质。
它是磁性相互作⽤的媒介,有点神秘但却实实在在影响着我们的⽣活。
⽽题主的困惑来源于我们对磁性产⽣原因的混淆。
磁场的产⽣可以分为两⼤⽅⾯(如图1所⽰):1、以运动电流为基础;2、以基本粒⼦的量⼦特征—⾃旋为基础。
我们需要将这两部分独⽴进⾏阐述。
题主所说的“⾼中我们就学习过,变化的电场周围会产⽣磁场”正是第⼀种起源,⽽题主接着提到的“⽐如⾮晶体中的磁性,另外有些晶体材料同样不具备明显的磁性等等”尽管不对,但其实指的就是第⼆种起源。
2. 我想多说的是第⼆个起源:以⾃旋为基础的铁磁性物质中的磁性。
磁性物质知识点磁性物质是指具有磁性能力的物质,其在外磁场的作用下会对磁场体现出各种性质和行为。
对于磁性物质的了解,有助于我们理解其在生活和科技中的应用。
本文将介绍磁性物质的基本概念、性质和分类,并探讨其在不同领域的应用。
一、磁性物质的基本概念磁性物质是指能够吸引铁和放出磁性的物质。
根据磁性的强弱,磁性物质可以分为强磁性物质和弱磁性物质。
磁性物质通常由微观颗粒组成,这些颗粒中的每个颗粒都具有微小的磁性。
在没有外磁场作用下,这些颗粒的磁性相互混乱,不表现出明显的磁性。
当外磁场作用于磁性物质时,这些微观颗粒的磁性将被导向,使得整个物质体现出磁性行为。
二、磁性物质的性质1. 磁化性:磁性物质在外磁场作用下,会被磁化,即形成磁化强度。
2. 磁导率:磁性物质的磁导率大于真空或空气的磁导率。
3. 磁滞回线:当外磁场强度增大或减小时,磁性物质的磁化强度也随之增大或减小,但不是线性关系。
这种非线性的关系可以通过磁滞回线来表示,磁滞回线可以帮助我们对磁性物质的磁化行为进行分析。
4. 磁畴:磁性物质内部存在着各种微观磁畴,每个磁畴都具有自己的磁化方向。
在没有外磁场作用时,磁性物质的磁畴是杂乱无章的。
而在外磁场作用下,磁畴会重新排列,使整个物质体现出统一的磁性。
5. 居里温度:磁性物质表现出磁性的温度范围被称为居里温度。
在居里温度以下,磁性物质呈现出铁磁性,居里温度以上则呈现出顺磁性。
三、磁性物质的分类根据磁化强度和磁滞回线的关系,磁性物质可以分为顺磁性、铁磁性和抗磁性三种类型。
1. 顺磁性:顺磁性物质在外磁场作用下,磁化强度增大,并且磁滞回线是一个闭环。
常见的顺磁性物质有氧气、铜等。
2. 铁磁性:铁磁性物质在外磁场作用下,磁化强度可以达到很高,并且磁滞回线是一个闭环。
常见的铁磁性物质有铁、镍、钴等。
3. 抗磁性:抗磁性物质在外磁场作用下,磁化强度几乎为零,并且磁滞回线是一个开环。
常见的抗磁性物质有金铜合金、银等。
四、磁性物质的应用磁性物质在生活和科技领域中广泛应用,以下是一些典型的例子:1. 医学:磁性物质在医学成像中被广泛使用,如磁共振成像(MRI)。
1. 顺磁性、抗磁性、铁磁性、反磁性的物理特征及代表性材料一、两种,它们的磁化率的温度关系。
金属导电电子的顺磁性(泡利顺磁性)磁化率FB E n 232μχ=的推导、各种抗磁性的来源。
顺磁性:一种弱磁性,呈现正的磁化率,数量级为10-5-10-2,磁性离子之间不存在明显的相互作用。
代表材料:FeCl2,CoCl2。
磁化率与温度的关系:居里定律和居里-外斯定律。
抗磁性:一种弱磁性,呈现负的磁化率,数量级为10-5,磁性离子之间不存在明显的相互作用,主要分为正常抗磁性和反常抗磁性(Bi )。
代表材料:Ag,Ag,Cu 。
磁化率与温度的关系:正常抗磁性磁化率基本不随温度和磁场变化;反常抗磁性与温度和磁场有明显的依赖关系,在极低温下出现德哈斯-范阿尔芬效应。
正常抗磁性:电磁感应;反常抗磁性:导电电子受周期性晶格场的作用而引起的。
铁磁性:一种强磁性,在居里温度以下,存在自发磁化现象和分畴现象,近邻磁矩排列平行。
代表材料:Fe ,Co ,Ni,Fe3O4,Fe2O3。
磁化率与温度的关系:在居里温度以上,满足居里-外斯定律。
反铁磁性:一种强磁性,在居里温度以下,存在自发磁化现象和分畴现象,近邻磁矩排列反平行。
代表材料:MnO ,FeO 。
磁化率与温度的关系:在居里温度以上,满足居里-外斯定律。
金属导电电子的顺磁性推导:《铁磁学上》P57 2. 孤立原子的磁矩的组成。
用洪德法则分析单个离子(d 电子和f 电子)的磁矩。
原子组成晶体时轨道角动量冻结现象的理解、轨道角动量冻结的本质及其对磁矩的影响。
组成:轨道磁矩与自旋磁矩的耦合。
上P24分析例子:上P25。
轨道冻结:上P73。
3. 铁磁性的基本特征。
从唯象理论和交换作用理论的角度理解铁磁性物质的自发磁化和居里温度(包括反铁磁和亚铁磁情况)。
居里—外斯定律的推导、分子场的本质。
自旋波的理解与低温下铁磁体的磁化强度与温度的关系。
铁磁性基本特征:一种强磁性,在居里温度以下,存在自发磁化现象和分畴现象,近邻磁矩排列平行。
铁磁、反铁磁、顺磁、抗磁铁磁性铁磁性Ferromagnetism过渡族金属(如铁)及它们的合金和化合物所具有的磁性叫做铁磁性,这个名称的由来是因为铁是具有铁磁性物质中最常见也是最典型的。
钐(Samarium),钕(neodymium)与钴的合金常被用来制造强磁铁。
铁磁性材料存在长程序,即磁畴内每个原子的未配对电子自旋倾向于平行排列。
因此,在磁畴内磁性是非常强的,但材料整体可能并不体现出强磁性,因为不同磁畴的磁性取向可能是随机排列的。
如果我们外加一个微小磁场,比如螺线管的磁场会使本来随机排列的磁畴取向一致,这时我们说材料被磁化[1]。
材料被磁化后,将得到很强的磁场,这就是电磁铁的物理原理。
当外加磁场去掉后,材料仍会剩余一些磁场,或者说材料"记忆"了它们被磁化的历史。
这种现象叫作剩磁,所谓永磁体就是被磁化后,剩磁很大。
当温度很高时,由于无规则热运动的增强,磁性会消失,这个临界温度叫居里温度(C urie temperature)。
如果我们考察铁磁材料在外加磁场下的机械响应,会发现在外加磁场方向,材料的长度会发生微小的改变,这种性质叫作磁致伸缩(magnetostriction)。
产生铁磁性条件:铁磁质的自发磁化:铁磁现象虽然发现很早,然而这些现象的本质原因和规律,还是在本世纪初才开始认识的。
1907年法国科学家外斯系统地提出了铁磁性假说,其主要内容有:铁磁物质内部存在很强的“分子场”,在“分子场”的作用下,原子磁矩趋于同向平行排列,即自发磁化至饱和,称为自发磁化;铁磁体自发磁化分成若干个小区域(这种自发磁化至饱和的小区域称为磁畴),由于各个区域(磁畴)的磁化方向各不相同,其磁性彼此相互抵消,所以大块铁磁体对外不显示磁性。
外斯的假说取得了很大成功,实验证明了它的正确性,并在此基础上发展了现代的铁磁性理论。
在分子场假说的基础上,发展了自发磁化(spontaneous magnetization)理论,解释了铁磁性的本质;在磁畴假说的基础上发展了技术磁化理论,解释了铁磁体在磁场中的行为。