铁磁性物质的基本特征是物质内部存在自发磁化与磁畴结.
- 格式:ppt
- 大小:691.50 KB
- 文档页数:14
铁磁质的特性在磁场作用下能发生变化并能反过来影响磁场的媒质叫做磁介质。
磁介质在磁场作用下的变化叫做磁化。
铁磁质是一种性能特异、用途广泛的磁介质,铁、钻、镍及其许多合金以及含铁的氧化物(铁氧体)都属于铁磁质。
铁磁质的主要特点有三个方面:高导磁率;非线性;磁滞。
高磁导率是铁磁质应用特别广泛的主要原因。
从铁磁质的性能和使用方面来说,它主要按矫顽力的大小分为软磁材料和硬磁材料两大类:矫顽力很小的叫做软磁材料,矫顽力很大的叫做硬磁材料,矫顽力小就意味着磁滞回线狭长,它所包围的“面积”小,从而在交变磁场中的磁滞损耗小;矫顽力大说明磁质回线接近矩形,它所包围的“面积”大,从而在交变磁场中的磁滞损耗大。
对于铁磁材料的磁滞损耗可以计算出来,当磁场强度变化完整的一周期时,每立方米的总能量损失是由磁滞回线的面积来代表的,每个周期的这种能量损失可更具体地用数学表示为:从上式可看出,磁滞回线的面积越大,磁滞损耗越大。
铁磁性,是指一种材料的磁性状态,具有自发性的磁化现象的性质。
什么是自发性的磁化现象?简单的说,对于某种材料而言,他们受到外界磁场的影响而被磁化,然而当外部磁场取消之后却依然能够保持这种磁性,那么我们就说,这种材料具有自发性的产化现象,也就是具有铁磁性了’这样说来,就可以很容易地把永久磁铁和这种性质相联系吧?是的,永久磁铁都具有铁磁性或亚铁磁性。
在磁场的作用下能发生变化并能反过来影响磁场的媒介叫做磁介质。
磁介质在磁场作用下的变化叫做磁化。
铁磁质是一种性能特异、‘用途广泛的磁介质,铁、钻、镍及其许多合金、稀上族金属(在低温下)以及含铁的氧化物(如Cr0 2)等铁介质都属于铁磁质.磁场对磁场中的物质的作用称为磁化,在磁场中影响原磁场的物质称为磁介质。
磁化后介质内部的磁场与附加磁场和外磁场的关系为(B是总磁感强度,Bo 是外加磁感强度,B'是附加磁感强度):(1)顺磁质的磁化顺磁体的特征是组成这些物质的原子具有恒定的与外磁场无关的磁矩,在无外加磁场(H =0)时,由于热运动的扰乱作用,这些恒定的原子磁矩没有特定的取向,只有引入和加大磁场时,磁化强度才开始产生并逐渐增长。
铁磁性的原理与应用一、背景介绍铁磁性是物质在外磁场作用下表现出来的一种特性,其中铁磁性最为显著。
铁磁性是指物质在外磁场作用下可以产生自发磁化的现象,即通过调整自身内部的磁矩方向来与外磁场相互作用,从而形成一个新的磁性样貌。
铁磁性的原理和应用十分广泛,本文将从原理和应用两个方面进行介绍。
二、铁磁性的原理铁磁性的原理主要涉及到以下几个方面:1.原子磁矩:铁磁性物质由许多微小的磁性原子组成,每个原子都有一个自旋和轨道磁矩。
这些磁矩相互作用形成自发磁化。
2.磁畴:铁磁性物质内部的磁性原子聚集在一起形成磁畴,每个磁畴都有一个统一的磁矩方向。
在无外磁场作用下,磁畴的磁矩方向是随机的,呈无序状态。
而在外磁场作用下,磁畴的磁矩方向趋于统一,形成有序的磁性样貌。
3.居里温度:铁磁性物质中的自旋和轨道磁矩在一定温度下可以被热引起的热运动破坏,从而磁矩的方向变得随机。
这个临界温度称为居里温度,超过居里温度后,铁磁性物质不再呈现铁磁性。
三、铁磁性的应用铁磁性在许多领域有广泛的应用,下面列举了几个主要的应用领域:1.磁存储器:铁磁性材料的磁畴结构可以被外磁场重新调整,这使得它们在信息存储领域起到了重要的作用。
铁磁性材料被广泛应用于硬盘驱动器、磁带、闪存等存储设备。
2.电动机和发电机:铁磁性材料可以产生强大的磁场,因此在电动机和发电机的制造过程中广泛使用。
铁磁性材料的磁场可以与电流相互作用,从而产生转矩和电能转换。
3.传感器:铁磁性材料的磁性特性使其在传感器领域有重要的应用。
例如,磁传感器可以基于铁磁性材料的磁场变化来检测位置、速度和方向等参数。
4.磁制冷:铁磁性材料在外磁场作用下可以通过磁热效应实现制冷。
这种磁制冷技术被广泛应用于低温制冷、航空航天等领域。
5.磁力催化剂:铁磁性材料在有机合成反应中可以作为磁力分离催化剂使用。
通过磁力分离可以简化分离和回收的过程,提高反应效率。
四、总结铁磁性作为一种特殊的磁性现象,其原理和应用都具有重要的意义。
铁磁材料的特性铁磁材料是一类在外加磁场作用下表现出强磁性的材料。
它们具有许多独特的特性,这些特性使得它们在许多工业和科学应用中发挥着重要作用。
本文将深入探讨铁磁材料的特性,包括磁化、磁滞回线、饱和磁化强度、磁导率等方面。
首先,铁磁材料的一个重要特性是磁化。
当外加磁场作用于铁磁材料时,材料内部的微观磁矩会发生重新排列,从而导致材料整体上出现磁化。
这种磁化是可逆的,即在去除外加磁场后,材料会恢复到无磁化状态。
这种特性使得铁磁材料可以用于制造磁铁和电磁设备。
其次,铁磁材料还表现出磁滞回线。
在外加磁场的作用下,铁磁材料的磁化不是完全线性的,而是存在一定的滞后效应。
这意味着在去除外加磁场后,材料的磁化并不会立即消失,而是会留下一定的残留磁化。
这种特性对于制造电感器和磁记录材料非常重要。
另外,铁磁材料的饱和磁化强度也是其重要特性之一。
在外加磁场的作用下,铁磁材料的磁化会随着磁场的增加而增加,但当磁场达到一定强度时,材料的磁化将不再增加,达到饱和状态。
这种特性对于制造磁性材料和磁存储器件具有重要意义。
此外,铁磁材料的磁导率也是其重要特性之一。
磁导率是衡量材料对磁场的响应能力的物理量,它描述了材料中磁感应强度和磁场强度之间的关系。
铁磁材料通常具有较高的磁导率,这使得它们在电磁设备和变压器等领域得到广泛应用。
总之,铁磁材料具有许多独特的特性,这些特性使得它们在许多领域都发挥着重要作用。
通过对铁磁材料特性的深入了解,人们可以更好地利用这些材料,从而推动科学技术的发展。
希望本文能够帮助读者更好地理解铁磁材料的特性,并进一步推动相关领域的研究和应用。
有关磁的概念磁,是指具有磁性的物质或物体所表现出的特性和现象。
磁性是物质的一种固有属性,它是由于物质内部存在磁性微区域(即磁畴)并且这些磁畴的磁矩方向具有相对的规则排列而产生的。
磁性主要分为铁磁、顺磁和抗磁三类。
首先,我们来介绍一下铁磁物质。
铁磁物质是指具有自发磁化并能持续保持较强磁性的物质。
常见的铁磁物质有铁、镍、钴等。
这些物质在外磁场作用下会自发形成磁畴,并且这些磁畴的磁矩方向在整个物体中具有相对一致的排列。
当外磁场消失时,这些磁畴并不会立即消失,而是会保持一部分磁性,形成物体的剩磁。
铁磁物质具有较强的磁性,可以被用于制造磁体、电机、传感器等。
顺磁物质是指在外磁场作用下形成磁畴,但是磁畴的磁矩方向是相互随机的,没有整体的排列现象。
顺磁物质受热时,由于热运动引起的磁畴翻转和短路,导致磁畴的平均磁矩为零,因此顺磁物质在无外磁场时没有自发磁化,只有在外磁场作用下才会出现尾磁。
常见的顺磁物质有铁矿石、铁氧体等。
顺磁物质的磁性较弱,常用于制造磁制冷、磁存储器等。
抗磁物质是指在外磁场作用下,形成磁畴并且这些磁畴的磁矩方向与外磁场相反,导致整个物体的总磁矩减弱,甚至消失。
常见的抗磁物质有铬、铜等。
抗磁物质的磁性非常弱,只有极强磁场作用下才能显现出微弱的磁性。
磁性是由物质内部的电子自旋和轨道运动产生的。
在原子或离子中,电子具有自旋磁矩和轨道磁矩。
自旋磁矩和轨道磁矩由于量子力学的叠加作用而形成原子磁矩,而原子磁矩又进一步叠加形成物质磁矩。
当物质内部的磁矩排列有序时,就会出现宏观的磁性。
物质的磁性还与温度有关。
一般情况下,高温下磁性较弱,低温下磁性较强。
由于高温下,热运动较为剧烈,会导致磁畴的不规则翻转和短路,从而减弱物质的整体磁性。
低温下,热运动减弱,磁畴的排列更加有序,进一步增强了物质的磁性。
磁性不仅存在于物质中,还可以通过电流产生磁场。
根据奥斯特定律,当电流通过导线时,会形成一个磁场。
这个现象被称为电磁感应。