第二册数学教案
- 格式:doc
- 大小:208.50 KB
- 文档页数:37
小学数学第二册第二单元教案2:减数和被减数的含义数学是一门基础而重要的学科,它涵盖了我们日常生活中的各个方面。
作为小学生,数学的学习对其学习通识素质和具有逻辑思维能力的重要性不言而喻。
本文将介绍小学数学第二册第二单元教案2:减数和被减数的含义,帮助学生更好地理解减法运算。
1.减法简介减法是数学中的四则运算之一,它指的是计算两个数的差。
简单来说,减法是一种运算,可以求出一个数与另一个数的差。
减法的符号为“-”,例如,10减去5,可以表示为10-5。
2.减数和被减数在减法运算中,有两个重要的概念,分别是减数和被减数。
减数是被减去的数,也就是要被减去的数量。
而被减数则是被减数中的一个数,也就是减去另一个数后的结果。
例如,10-5中,10是被减数,5是减数。
3.减数和被减数的含义3.1.减数了解减数的含义很重要。
减数是一个数,它需要被减去另一个数,即减去的数量。
减数通常是比被减数小的数,用于计算两个数之间的差,它也可以是一个变量或表达式。
例如,如果我们要计算5减去3,3就是减数,因为它是被减去的数量。
同样地,如果我们要计算y减去x,x就是减数,因为它是要减去的数量。
3.2.被减数被减数是一个数,它需要减去另一个数,即减数,以得出差。
被减数通常是比减数大的数,它也可以是一个变量或表达式。
例如,如果我们要计算5减去3,5就是被减数,因为它是被减数减去3得到的结果。
同样地,如果我们要计算y减去x,y就是被减数,因为要减去的量是x。
4.总结在减法运算中,减数和被减数是两个重要的概念。
减数是需要减去的数量,而被减数则是减去数量的数。
这两个概念非常重要,它们可以帮助学生更好地理解减法运算。
通过掌握减法的基本概念,学生可以更好地理解数学中的其他概念,并开展更深入的学习。
小学阶段的数学学习对于培养良好的数学素养至关重要。
通过学习减法运算,孩子们可以更好地理解数学概念,提高数学计算能力,加强逻辑思维能力,为日后的学习打下坚实的基础。
8.6 抛物线的简单几何性质我们根据抛物线的标准方程y2=2px(p>0)①来研究它的几何性质.1.范围因为p>0,由方程①可知,这条抛物线上的点M的坐标(x,y)满足不等式x≥0,所以这条抛物线在y轴的右侧;当x的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸.2.对称性以-y代y,方程①不变,所以这条抛物线关于x轴对称,我们把抛物线的对称轴叫做抛物线的轴.3.顶点抛物线和它的轴的交点叫做抛物线的顶点.在方程①中,当y=0时,x=0,因此抛物线①的顶点就是坐标原点.4.离心率抛物线上的点M与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e表示.由抛物线的定义可知,e=1.例1已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过解:因为抛物线关于x轴对称,它的顶点在原点,并且经过点M (2,y2=2px(p>0).因为点M在抛物线上,所以即p=2.因此所求方程是y2=4x.的范围内几个点的坐标,得描点画出抛物线的一部分,再利用对称性,就可以画出抛物线的另一部分(图8-23).在本题的画图过程中,如果描出抛物线上更多的点,可以发现这条抛物线虽然也向右上方和右下方无限延伸,但并不能像双曲线那样无限地接近于某一直线,也就是说,抛物线没有渐近线.这就是标准方程中2p的一种几何意义(图8-24).利用抛物线的几何性抛物线基本特征的草图.例2探照灯反射镜的轴截面是抛物线的一部分(图8-25(1)),光源位于抛物线的焦点处.已知灯口圆的直径为60cm,灯深40cm,求抛物线的标准方程和焦点的位置.解:如图8-25(2),在探照灯的轴截面所在平面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合,x轴垂直于灯口直径.设抛物线的标准方程是y2=2px(p>0).由已知条件可得点A的坐标是(40,30),代入方程,得302=2p×40,练习1.求适合下列条件的抛物线方程:(1)顶点在原点,关于x轴对称,并且经过点M(5,-4);(2)顶点在原点,焦点是F(0,5);(3)顶点在原点,准线是x=4;(4)焦点是F(0,-8),准线是y=8.小结:1、抛物线的几何性质2、在解题过程中要注意利用数形结合的数学思想作业:课本P123 1、2、3。
【导语】教案是教师为顺利⽽有效地开展教学活动,根据课程标准,教学⼤纲和教科书要求及学⽣的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学⽅法等进⾏的具体设计和安排的⼀种实⽤性教学⽂书。
以下是整理的《⼩学⼆年级下册数学教案5篇》相关资料,希望帮助到您。
1.⼩学⼆年级下册数学教案 ⼀、复习 1、说出得数,并说出⽤哪句⼝诀。
6×2= 4×3= 2×5= 3×3= 2、填空。
2×()=4 3×()=6 4×()=8 ()×3=12 ()×4=20 5×()=15 说⼀说()⾥的数是⽤哪句乘法⼝诀想出来的。
3、把12个○卡⽚平均分⼀分,并写出除法算式。
请学⽣交流⾃⼰的分法和写出的除法算式。
⼆、新课 1、引出除法算式12÷3。
呈现例1放⼤图,讲述猴妈妈给⼩猴分桃的事。
提出第(1)个问题:12个桃,每只⼩猴分3个,可以分给⼏只⼩猴? 请学⽣列出除法算式:12÷3。
2、探讨计算⽅法。
(1)引导:我们会⽤动⼿分⼀分的⽅法解决“可以分给⼏只⼩猴”的问题。
如果不动⼿操作学具,怎样算出结果呢?请各⼩组探讨计算⽅法。
(2)交流。
请学⽣说⼀说探讨出的计算⽅法。
(3)根据学⽣探讨的情况,给予积极评价。
并且,突出强调:可以⽤乘法⼝诀想商。
3、尝试⽤乘法⼝诀求商。
(1)出⽰例1的第(2)个问题,并让学⽣列出算式。
(2)请学⽣⽤乘法⼝诀想:商⼏? (3)交流。
请学⽣说⼀说想商的过程和使⽤了哪句⼝诀。
(4)交流想商的过程。
根据学⽣的交流,教师重述:求12÷4的商,想4和⼏相乘得12,因为三四⼗⼆,所以商是3。
三、练习 1、练习五的第1题。
依据画⾯请学⽣解决“每个⼩朋友⼏个⽓球”的问题。
让学⽣说⼀说题意,再计算。
2、练习五的第2题。
(1)让学⽣根据画⾯信息,完成填空。
抛物线的性质教学目标教学知识点:1、抛物线的性质的运用。
2、与抛物线有关的轨迹的求法。
3、直线与抛物线的位置关系。
能力训练要求:1、灵活运用抛物线的性质2、掌握与抛物线有关的轨迹的求法及直线与抛物线的位置关系。
德育渗透目标:训练学生分析问题、解决问题的能力,培养学生数形结合思想、化归思想及方程的思想,提高学生的综合能力。
教学重点抛物线几何性质的运用,与抛物线有关的轨迹的求法及直线与抛物线的位置关系。
教学难点抛物线几何性质的综合运用教学方法讲练结合法教学过程一、课题引入先复习抛物线的定义、四类标准方程以及相应的焦点坐标、准线方程。
然后提出:为了准确而简便地画出抛物线的图形,应对抛物线的标准方程所对应的图形的位置有一个大体的估计,为此要先对抛物线的范围、对称性、截距进行讨论。
还应明确,把抛物线的定义与椭圆、双曲线的第二定义加以对比,提出抛物线的离心率等于1。
二、知识讲解1、抛物线对学生来说是比较熟悉的,有了讨论椭圆、双曲线几何性质的基础,再讨论抛物线的几何性质(范围、对称性、顶点、离心率)不会遇到什么障碍。
但要注意:抛物线的性质和椭圆、双曲线比较起来,差别较大,它的离心率等于1,它只有一个焦点、一个顶点、一条对称轴、一条准线,它没有中心,通常称抛物线为无心圆锥曲线,而称椭圆和双曲线为有心圆锥曲线。
2、在抛物线的标准方程y 2=2px (p >0)中,令x =2p,则y =±p 。
这就是说,通过焦点而垂直于x 轴的直线与抛物线两交点的坐标为(2p ,p ),(2p,-p ),连结这两点的线段叫做抛物线的通径,它的长是2p .利用抛物线的几何性质及抛物线上坐标为(2p,p ),(2p,-p )的两点,能够方便地画出反映抛物线基本特征的草图。
3、抛物线的几何性质:(1)范围:x ≥0,y ∈R 。
因为 p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧,当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸。
空间直线、平面的垂直【第一课时】【教学目标】1.会用两条异面直线所成角的定义,找出或作出异面直线所成的角,会在三角形中求简单的异面直线所成的角2.理解并掌握直线与平面垂直的定义,明确定义中“任意”两字的重要性3.掌握直线与平面垂直的判定定理,并能解决有关线面垂直的问题【教学重难点】1.异面直线所成的角2.直线与平面垂直的定义3.直线与平面垂直的判定定理【核心素养】1.直观想象、逻辑推理、数学运算2.直观想象【教学过程】一、问题导入预习教材内容,思考以下问题:1.异面直线所成的角的定义是什么?2.异面直线所成的角的范围是什么?3.异面直线垂直的定理是什么?4.直线与平面垂直的定义是什么?5.直线与平面垂直的判定定理是什么?二、基础知识1.异面直线所成的角(1)定义:已知两条异面直线a,b,经过空间任一点O分别作直线a′∥a,b′∥b,把直线a′与b′所成的角叫做异面直线a与b所成的角(或夹角).(2)垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.直线a与直线b垂直,记作a⊥b.(3)范围:设θ为异面直线a与b所成的角,则0°<θ≤90°.[名师点拨]当两条直线a ,b 相互平行时,规定它们所成的角为0°.所以空间两条直线所成角α的取值范围是0°≤α≤90°.注意与异面直线所成的角的范围的区别.2.直线与平面垂直定义一般地,如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直记法l ⊥α有关概念直线l 叫做平面α的垂线,平面α叫做直线l 的垂面.它们唯一的公共点P叫做垂足图示及画法画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直名师点拨(1)直线与平面垂直是直线与平面相交的特殊情形.(2)注意定义中“任意一条直线”与“所有直线”等同但不可说成“无数条直线”.3.直线与平面垂直的判定定理文字语言如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直图形语言符号语言l ⊥a ,l ⊥b ,a ⊂α,b ⊂α,a ∩b =P ⇒l ⊥α名师点拨判定定理条件中的“两条相交直线”是关键性词语,此处强调“相交”,若两条直线平行,则直线与平面不一定垂直.三、合作探究异面直线所成的角如图,在正方体ABCD EFGH 中,O 为侧面ADHE 的中心.求:(1)BE 与CG 所成的角;(2)FO 与BD 所成的角.【解】(1)如图,因为CG ∥BF .所以∠EBF (或其补角)为异面直线BE 与CG 所成的角,又在△BEF 中,∠EBF =45°,所以BE 与CG 所成的角为45°.(2)连接FH ,因为HD ∥EA ,EA ∥FB ,所以HD ∥FB ,又HD =FB ,所以四边形HFBD 为平行四边形.所以HF ∥BD ,所以∠HFO (或其补角)为异面直线FO 与BD 所成的角.连接HA ,AF ,易得FH =HA =AF ,所以△AFH 为等边三角形,又知O 为AH 的中点,所以∠HFO =30°,即FO 与BD 所成的角为30°.1.[变条件]在本例正方体中,若P 是平面EFGH 的中心,其他条件不变,求OP 和CD 所成的角.解:连接EG ,HF ,则P 为HF 的中点,连接AF ,AH ,OP ∥AF ,又CD ∥AB ,所以∠BAF (或其补角)为异面直线OP 与CD 所成的角,由于△ABF 是等腰直角三角形,所以∠BAF =45°,故OP 与CD 所成的角为45°.2.[变条件]在本例正方体中,若M ,N 分别是BF ,CG 的中点,且AG 和BN 所成的角为39.2°,求AM 和BN 所成的角.解:连接MG ,因为BCGF 是正方形,所以BF═∥ CG ,因为M ,N 分别是BF ,CG 的中点,所以BM ═∥ NG ,所以四边形BNGM 是平行四边形,所以BN ∥MG ,所以∠AGM (或其补角)是异面直线AG 和BN 所成的角,∠AMG (或其补角)是异面直线AM和BN所成的角,因为AM=MG,所以∠AGM=∠MAG=39.2°,所以∠AMG=101.6°,所以AM和BN所成的角为78.4°.[规律方法]求异面直线所成的角的步骤(1)找出(或作出)适合题设的角——用平移法,遇题设中有中点,常考虑中位线;若异面直线依附于某几何体,且对异面直线平移有困难时,可利用该几何体的特殊点,使异面直线转化为相交直线.(2)求——转化为求一个三角形的内角,通过解三角形,求出所找的角.(3)结论——设由(2)所求得的角的大小为θ.若0°<θ≤90°,则θ为所求;若90°<θ<180°,则180°-θ为所求.[提醒]求异面直线所成的角,通常把异面直线平移到同一个三角形中去,通过解三角形求得,但要注意异面直线所成的角θ的范围是0°<θ≤90°.直线与平面垂直的定义(1)直线l⊥平面α,直线m⊂α,则l与m不可能()A.平行.相交C.异面.垂直(2)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m【解析】(1)因为直线l⊥平面α,所以l与α相交.又因为m⊂α,所以l与m相交或异面.由直线与平面垂直的定义,可知l⊥m.故l与m不可能平行.(2)对于A,直线l⊥m,m并不代表平面α内任意一条直线,所以不能判定线面垂直;对于B,因为l⊥α,则l垂直于α内任意一条直线,又l∥m,由异面直线所成角的定义知,m与平面α内任意一条直线所成的角都是90°,即m⊥α,故B正确;对于C,也有可能是l,m异面;对于D,l,m还可能相交或异面.【答案】(1)A(2)B[规律方法]对线面垂直定义的理解(1)直线和平面垂直的定义是描述性定义,对直线的任意性要注意理解.实际上,“任何一条”与“所有”表达相同的含义.当直线与平面垂直时,该直线就垂直于这个平面内的任何直线.由此可知,如果一条直线与一个平面内的一条直线不垂直,那么这条直线就一定不与这个平面垂直.(2)由定义可得线面垂直⇒线线垂直,即若a⊥α,b⊂α,则a⊥b.直线与平面垂直的判定如图,PA⊥平面ABCD,底面ABCD为矩形,AE⊥PB于点E,AF⊥PC于点F.(1)求证:PC⊥平面AEF;(2)设平面AEF交PD于点G,求证:AG⊥PD.【证明】(1)因为PA⊥平面ABCD,BC⊂平面ABCD,所以PA⊥BC.又AB⊥BC,PA∩AB=A,所以BC⊥平面PAB,AE⊂平面PAB,所以AE⊥BC.又AE⊥PB,PB∩BC=B,所以AE⊥平面PBC,PC⊂平面PBC,所以AE⊥PC.又因为PC⊥AF,AE∩AF=A,所以PC⊥平面AEF.(2)由(1)知PC⊥平面AEF,又AG⊂平面AEF,所以PC⊥AG,同理CD⊥平面PAD,AG⊂平面PAD,所以CD⊥AG,又PC∩CD=C,所以AG⊥平面PCD,PD⊂平面PCD,所以AG⊥PD.1.[变条件]在本例中,底面ABCD是菱形,H是线段AC上任意一点,其他条件不变,求证:BD⊥FH.证明:因为四边形ABCD是菱形,所以BD⊥AC,又PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥PA ,因为PA ∩AC =A ,所以BD ⊥平面PAC ,又FH ⊂平面PAC ,所以BD ⊥FH .2.[变条件]若本例中PA =AD ,G 是PD 的中点,其他条件不变,求证:PC ⊥平面AFG .证明:因为PA ⊥平面ABCD ,DC ⊂平面ABCD ,所以DC ⊥PA ,又因为ABCD 是矩形,所以DC ⊥AD ,又PA ∩AD =A ,所以DC ⊥平面PAD ,又AG ⊂平面PAD ,所以AG ⊥DC ,因为PA =AD ,G 是PD 的中点,所以AG ⊥PD ,又DC ∩PD =D ,所以AG ⊥平面PCD ,所以PC ⊥AG ,又因为PC ⊥AF ,AG ∩AF =A ,所以PC ⊥平面AFG .3.[变条件]本例中的条件“AE ⊥PB 于点E ,AF ⊥PC 于点F ”,改为“E ,F 分别是AB ,PC 的中点,PA =AD ”,其他条件不变,求证:EF ⊥平面PCD .证明:取PD 的中点G ,连接AG ,FG .因为G ,F 分别是PD ,PC 的中点,所以GF ═∥ 12CD ,又AE ═∥ 12CD ,所以GF ═∥ AE ,所以四边形AEFG 是平行四边形,所以AG ∥EF .因为PA =AD ,G 是PD 的中点,所以AG ⊥PD ,所以EF ⊥PD ,易知CD ⊥平面PAD ,AG ⊂平面PAD ,所以CD ⊥AG ,所以EF ⊥CD .因为PD ∩CD =D ,所以EF ⊥平面PCD .(1)线线垂直和线面垂直的相互转化(2)证明线面垂直的方法①线面垂直的定义.②线面垂直的判定定理.③如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面.④如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.[提醒]要证明两条直线垂直(无论它们是异面还是共面),通常是证明其中的一条直线垂直于另一条直线所在的一个平面.【课堂检测】1.若直线a⊥平面α,b∥α,则a与b的关系是()A.a⊥b,且a与b相交B.a⊥b,且a与b不相交C.a⊥bD.a与b不一定垂直解析:选C.过直线b作一个平面β,使得β∩α=c,则b∥c.因为直线a⊥平面α,c⊂α,所以a⊥c.因为b∥c,所以a⊥b.当b与a相交时为相交垂直,当b与a不相交时为异面垂直.2.在正方体ABCDA1B1C1D1中,与AD1垂直的平面是()A.平面DD1C1C B.平面A1DB1C.平面A1B1C1D1D.平面A1DB解析:选B.因为AD1⊥A1D,AD1⊥A1B1,且A1D∩A1B1=A1,所以AD1⊥平面A1DB1.3.空间四边形的四边相等,那么它的对角线()A.相交且垂直B.不相交也不垂直C.相交不垂直D.不相交但垂直解析:选D.如图,空间四边形ABCD,假设AC与BD相交,则它们共面α,从而四点A,B,C,D都在α内,这与ABCD为空间四边形矛盾,所以AC与BD不相交;取BD的中点O,连接OA与OC,因为AB=AD=DC=BC,所以AO⊥BD,OC⊥BD,从而可知BD⊥平面AOC,故AC⊥BD.4.已知a,b是一对异面直线,而且a平行于△ABC的边AB所在的直线,b 平行于边AC所在的直线,若∠BAC=120°,则直线a,b所成的角为________.解析:由a∥AB,b∥AC,∠BAC=120°,知异面直线a,b所成的角为∠BAC 的补角,所以直线a,b所成的角为60°.答案:60°【第二课时】【教学目标】1.了解直线和平面所成的角的含义,并知道其求法2.理解直线和平面垂直的性质定理,并能用文字、符号和图形语言描述定理,能应用线面垂直的性质定理解决有关的垂直问题【教学重难点】1.直线与平面所成的角2.直线与平面垂直的性质【核心素养】1.直观想象、逻辑推理、数学运算2.直观想象、逻辑推理【教学过程】一、问题导入预习教材内容,思考以下问题:1.直线与平面所成的角的定义是什么?2.直线与平面所成的角的范围是什么?3.直线与平面垂直的性质定理的内容是什么?4.如何求直线到平面的距离?5.如何求两个平行平面间的距离?二、基础知识1.直线与平面所成的角(1)定义:如图,一条直线PA和一个平面α相交,但不与这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A叫做斜足.过斜线上斜足以外的一点P向平面α引垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的角,叫做这条直线和这个平面所成的角.(2)规定:一条直线垂直于平面,称它们所成的角是90°;一条直线和平面平行,或在平面内,称它们所成的角是0°.(3)范围:直线与平面所成的角θ的取值范围是0°≤θ≤90°.名师点拨把握定义应注意两点:①斜线上不同于斜足的点P的选取是任意的;②斜线在平面上的射影是过斜足和垂足的一条直线而不是线段.2.直线与平面垂直的性质定理文字语言垂直于同一个平面的两条直线平行符号语言Error!⇒a∥b图形语言作用①线面垂直⇒线线平行②作平行线名师点拨(1)直线与平面垂直的性质定理给出了判定两条直线平行的另一种方法.(2)定理揭示了空间中“平行”与“垂直”关系的内在联系,提供了“垂直”与“平行”关系转化的依据.3.线面距与面面距(1)一条直线与一个平面平行时,这条直线上任意一点到这个平面的距离,叫做这条直线到这个平面的距离.(2)如果两个平面平行,那么其中一个平面内的任意一点到另一个平面的距离都相等,我们把它叫做这两个平行平面间的距离.三、合作探究直线与平面所成的角在正方体ABCDA1B1C1D1中,E是棱DD1的中点,求直线BE与平面ABB1A1所成的角的正弦值.【解】取AA1的中点M,连接EM,BM.因为E是DD1的中点,四边形ADD1A1为正方形,所以EM∥AD.又在正方体ABCDA1B1C1D1中,AD⊥平面ABB1A1,所以EM⊥平面ABB1A1,从而BM为直线BE在平面ABB1A1内的射影,∠EBM即为直线BE与平面ABB1A1所成的角.设正方体的棱长为2,则EM=AD=2,BE=22+22+12=3.于是在Rt△BEM中,sin∠EBM=EMBE=23,即直线BE与平面ABB1A1所成的角的正弦值为2 3.[规律方法]线面垂直的性质定理的应用如图,已知正方体A1C.(1)求证:A1C⊥B1D1;(2)M,N分别为B1D1与C1D上的点,且MN⊥B1D1,MN ⊥C1D,求证:MN∥A1C.【证明】(1)如图,连接A1C1.因为CC 1⊥平面A 1B 1C 1D 1,B 1D 1⊂平面A 1B 1C 1D 1,所以CC 1⊥B 1D 1.因为四边形A 1B 1C 1D 1是正方形,所以A 1C 1⊥B 1D 1.又因为CC 1∩A 1C 1=C 1,所以B 1D 1⊥平面A 1C 1C .又因为A 1C ⊂平面A 1C 1C ,所以B 1D 1⊥A 1C .(2)如图,连接B 1A ,AD 1.因为B 1C 1═∥ AD ,所以四边形ADC 1B 1为平行四边形,所以C 1D ∥AB 1,因为MN ⊥C 1D ,所以MN ⊥AB 1.又因为MN ⊥B 1D 1,AB 1∩B 1D 1=B 1,所以MN ⊥平面AB 1D 1.由(1)知A 1C ⊥B 1D 1.同理可得A 1C ⊥AB 1.又因为AB 1∩B 1D 1=B 1,所以A 1C ⊥平面AB 1D 1.所以A 1C ∥MN . [规律方法](1)若已知一条直线和某个平面垂直,证明这条直线和另一条直线平行,可考虑利用线面垂直的性质定理,证明另一条直线和这个平面垂直,证明时注意利用正方形、平行四边形及三角形中位线的有关性质.(2)直线与平面垂直的其他性质①如果一条直线和一个平面垂直,则这条直线和这个平面内任一条直线垂直;②若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面;③若l ⊥α于A ,AP ⊥l ,则AP ⊂α;④垂直于同一条直线的两个平面平行;⑤如果一条直线垂直于两个平行平面中的一个,则它必垂直于另一个平面.求点到平面的距离如图,四棱锥P ABCD 中,底面ABCD 为矩形,PA⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设AP =1,AD =3,三棱锥P ABD 的体积V =34,求A 到平面PBC 的距离.【解】(1)证明:如图,设BD 与AC 的交点为O ,连接EO .因为四边形ABCD 为矩形,所以点O 为BD 的中点.又点E 为PD 的中点,所以EO ∥PB .因为EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥平面AEC .(2)V =16AP ·AB ·AD =36AB .由V =34,可得AB =32.作AH ⊥PB 于点H .由题设知BC ⊥平面PAB ,所以BC ⊥AH ,故AH ⊥平面PBC ,即AH 的长就是点A 到平面PBC 的距离.因为PB =AP 2+AB 2=132,所以AH =AP ·AB PB =31313,所以点A 到平面PBC 的距离为31313.[规律方法]从平面外一点作一个平面的垂线,这个点与垂足间的距离就是这个点到这个平面的距离.当该点到已知平面的垂线不易作出时,可利用线面平行、面面平行的性质转化为与已知平面等距离的点作垂线,然后计算,也可以利用等换法转换求解.【课堂检测】1.若斜线段AB 是它在平面α内射影长的2倍,则AB 与平面α所成角的大小为()A .60°B .45°C .30°D .90°解析:选A .斜线段、垂线段以及射影构成直角三角形.如图所示,∠ABO 即是斜线段与平面所成的角.又AB =2BO ,所以cos ∠ABO =OB AB =12,所以∠ABO =60°.2.已知PA ⊥矩形ABCD 所在的平面,则下列结论中不正确的是()A .PB ⊥BC B .PD ⊥CD C .PD ⊥BDD .PA ⊥BD解析:选C .PA ⊥平面ABCD ⇒PA ⊥BD ,D 正确;Error!⇒BC ⊥平面PAB ⇒BC ⊥PB .故A 正确;同理B 正确;C 不正确.3.如图,正方体ABCD A 1B 1C 1D 1中,M 是棱DD 1的中点,则过M 且与直线AB 和B 1C 1都垂直的直线有()A .1条B .2条C .3条D .无数条解析:选A .显然DD 1是满足条件的一条,如果还有一条l 满足条件,则l ⊥B 1C 1,l ⊥AB .又AB ∥C 1D 1,则l ⊥C 1D 1.又B 1C 1∩C 1D 1=C 1,所以l ⊥平面B 1C 1D 1.同理DD 1⊥平面B 1C 1D 1,则l ∥DD 1.又l 与DD 1都过M ,这是不可能的,因此只有DD 1一条满足条件.4.如图,已知AD ⊥AB ,AD ⊥AC ,AE ⊥BC 交BC 于点E ,D 是FG 的中点,AF =AG ,EF =EG .求证:BC ∥FG .证明:连接DE .因为AD ⊥AB ,AD ⊥AC ,所以AD ⊥平面ABC .又BC ⊂平面ABC ,所以AD⊥BC.又AE⊥BC,所以BC⊥平面ADE.因为AF=AG,D为FG的中点,所以AD⊥FG.同理ED⊥FG.又AD∩ED=D,所以FG⊥平面ADE.所以BC∥FG.【第三课时】【学习目标】1.理解二面角的有关概念,会求简单的二面角的大小2.理解两平面垂直的定义,掌握两平面垂直的判定定理3.理解平面和平面垂直的性质定理,并能用文字、符号和图形语言描述定理,能应用面面垂直的性质定理解决有关的垂直问题【学习重难点】1.二面角2.平面与平面垂直的判定定理3.平面与平面垂直的性质定理【核心素养】1.直观想象、数学运算2.直观想象、数学运算【教学过程】一、问题导入预习教材内容,思考以下问题:1.二面角的定义是什么?2.如何表示二面角?3.二面角的平面角的定义是什么?4.二面角的范围是什么?5.面面垂直是怎样定义的?6.面面垂直的判定定理的内容是什么?7.面面垂直的性质定理的内容是什么?二、基础知识1.二面角(1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.(2)图形和记法图形:记作:二面角αABβ或二面角αlβ或二面角PABQ或二面角PlQ.2.二面角的平面角(1)定义:在二面角αlβ的棱l上任取一点O,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的∠AOB叫做二面角的平面角.(2)图形、符号及范围图形:符号:Error!⇒∠AOB是二面角的平面角.范围:0°≤∠AOB≤180°.(3)规定:二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度.平面角是直角的二面角叫做直二面角.名师点拨(1)二面角的大小与垂足O在l上的位置无关.一个二面角的平面角有无数个,它们的大小是相等的.(2)构成二面角的平面角的三要素:“棱上”“面内”“垂直”.即二面角的平面角的顶点必须在棱上,角的两边必须分别在两个半平面内,角的两边必须都与棱垂直,这三个条件缺一不可.这三个要素决定了二面角的平面角大小的唯一性和平面角所在的平面与棱垂直.3.平面与平面垂直(1)定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直,平面α与β垂直,记作α⊥β.(2)判定定理文字语言图形语言符号语言如果一个平面过另一个平面的垂线,那么这两个平面垂直Error!⇒α⊥β名师点拨定理的关键词是“过另一个平面的垂线”,所以应用的关键是在平面内寻找另一个平面的垂线.4.平面与平面垂直的性质定理文字语言两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直符号语言Error!⇒a ⊥β图形语言作用①面面垂直⇒线面垂直②作面的垂线名师点拨对面面垂直的性质定理的理解(1)定理的实质是由面面垂直得线面垂直,故可用来证明线面垂直.(2)已知面面垂直时,可以利用此定理转化为线面垂直,再转化为线线垂直.三、合作探究二面角的概念及其大小的计算(1)在正方体ABCD A 1B 1C 1D 1中,截面A 1BD 与底面ABCD 所成锐二面角A 1BD A 的正切值为()A .32B .22C .2D .3(2)一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的大小关系为()A .相等B .互补C .相等或互补D .不确定【解析】(1)如图所示,连接AC 交BD 于点O ,连接A 1O ,O 为BD 的中点,因为A 1D =A 1B ,所以在△A 1BD 中,A 1O ⊥BD .又因为在正方形ABCD 中,AC ⊥BD ,所以∠A 1OA 为二面角A 1BD A 的平面角.设AA 1=1,则AO =22.所以tan ∠A 1OA =122=2.(2)反例:如图,在正方体ABCD A 1B 1C 1D 1中,E ,F 分别是CD ,C 1D 1的中点,二面角D AA 1E 与二面角B 1AB C 的两个半平面就是分别对应垂直的,但是这两个二面角既不相等,也不互补.【答案】(1)C (2)D(1)求二面角大小的步骤简称为“一作二证三求”.(2)作出二面角的平面角的方法方法一:(定义法)在二面角的棱上找一个特殊点,在两个半平面内分别作垂直于棱的射线.如图所示,∠AOB 为二面角αa β的平面角.方法二:(垂线法)过二面角的一个面内一点作另一个平面的垂线,过垂足作棱的垂线,连接该点与垂足,利用线面垂直可找到二面角的平面角或其补角.如图所示,∠AFE为二面角ABC D 的平面角.方法三:(垂面法)过棱上一点作棱的垂直平面,该平面与二面角的两个半平面产生交线,这两条交线所成的角即为二面角的平面角.如图所示,∠AOB 为二面角αl β的平面角.[提醒]二面角的平面角的大小与顶点在棱上的位置无关,通常可根据需要选择特殊点作平面角的顶点.平面与平面垂直的判定角度一利用定义证明平面与平面垂直如图,在四面体ABCD 中,BD =2a ,AB =AD =CB =CD=AC =a .求证:平面ABD ⊥平面BCD .【证明】因为△ABD 与△BCD 是全等的等腰三角形,所以取BD 的中点E ,连接AE ,CE ,则AE ⊥BD ,BD⊥CE .在△ABD 中,AB =a ,BE =12BD =22a ,所以AE = AB 2-BE 2=22a .同理CE =22a ,在△AEC 中,AE =CE =22a ,AC =a .由于AC 2=AE 2+CE 2,所以AE ⊥CE ,∠AEC 是二面角A BD C 的平面角,又因为∠AEC =90°,所以二面角A BD C 为直二面角,所以平面ABD ⊥平面BCD .角度二利用判定定理证明平面与平面垂直如图,在四棱锥P ABCD 中,若PA ⊥平面ABCD 且四边形ABCD 是菱形.求证:平面PAC ⊥平面PBD .【证明】因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥PA .因为四边形ABCD是菱形,所以BD⊥AC.又PA∩AC=A,所以BD⊥平面PAC.又因为BD⊂平面PBD,所以平面PAC⊥平面PBD.[规律方法]证明平面与平面垂直的两种常用方法(1)利用定义:证明二面角的平面角为直角,其判定的方法是:①找出两相交平面的平面角;②证明这个平面角是直角;③根据定义,这两个相交平面互相垂直.(2)利用面面垂直的判定定理:要证面面垂直,只要证线面垂直.即在其中一个平面内寻找一条直线与另一个平面垂直.这是证明面面垂直的常用方法,其基本步骤是:面面垂直的性质定理的应用已知P是△ABC所在平面外的一点,且PA⊥平面ABC,平面PAC⊥平面PBC,求证:BC⊥AC.【证明】如图,在平面PAC内作AD⊥PC于点D,因为平面PAC⊥平面PBC,平面PAC∩平面PBC=PC,AD⊂平面PAC,且AD⊥PC,所以AD⊥平面PBC,又BC⊂平面PBC,所以AD⊥BC.因为PA ⊥平面ABC ,BC ⊂平面ABC ,所以PA ⊥BC ,因为AD ∩PA =A ,所以BC ⊥平面PAC ,又AC ⊂平面PAC ,所以BC ⊥AC . [反思归纳]利用面面垂直的性质定理应注意的问题若所给题目中有面面垂直的条件,一般要利用面面垂直的性质定理将其转化为线面垂直、线线垂直.应用面面垂直的性质定理,应注意三点:①两个平面垂直是前提条件;②直线必须在其中一个平面内;③直线必须垂直于它们的交线.垂直关系的综合问题如图,△ABC 为正三角形,EC ⊥平面ABC ,BD ∥CE ,且CE=CA =2BD ,M 是EA 的中点,求证:(1)DE =DA ;(2)平面BDM ⊥平面ECA ;(3)平面DEA ⊥平面ECA .【证明】(1)如图,取EC 的中点F ,连接DF .因为EC ⊥平面ABC ,BC ⊂平面ABC ,所以EC ⊥BC .同理可得BD ⊥AB ,易知DF ∥BC ,所以DF ⊥EC .在Rt △EFD 和Rt △DBA 中,因为EF =12EC ,EC =2BD ,所以EF =BD .又FD =BC =AB ,所以Rt △EFD ≌Rt △DBA ,故DE =DA .(2)取CA 的中点N ,连接MN ,BN ,则MN ∥EC ,且MN =12EC .因为EC ∥BD ,BD =12EC ,所以MN綊BD,所以N点在平面BDM内.因为EC⊥平面ABC,所以EC⊥BN.又CA⊥BN,EC∩CA=C,所以BN⊥平面ECA.因为BN在平面MNBD内,所以平面MNBD⊥平面ECA,即平面BDM⊥平面ECA.(3)由(2)易知DM∥BN,BN⊥平面ECA,所以DM⊥平面ECA.又DM⊂平面DEA,所以平面DEA⊥平面ECA.[规律方法]垂直关系的转化在关于垂直问题的论证中要注意线线垂直、线面垂直、面面垂直的相互转化.每一种垂直的判定都是从某一垂直开始转向另一垂直,最终达到目的,其转化关系如下:【课堂检测】1.给出以下四个命题,其中真命题的个数是()①如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行;②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面;③如果两条直线都平行于一个平面,那么这两条直线相互平行;④如果一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直.A.4B.3C.2 D.1解析:选B.①②④正确.①线面平行的性质定理;②线面垂直的判定定理;③这两条直线可能相交或平行或异面;④面面垂直的判定定理.2.在下列关于直线m,l和平面α,β的说法中,正确的是()A.若l⊂β,且α⊥β,则l⊥αB.若l⊥β,且α∥β,则l⊥αC.若l⊥β,且α⊥β,则l∥αD.若α∩β=m,且l∥m,则l∥α解析:选B.A项中l与α可以平行或斜交,A项错.B项中,l⊥β且α∥β,所以l⊥α正确.C项中,l可在α内,C项错.D项中,l可在α内,D项错.3.在三棱锥PABC中,PA=PB=AC=BC=2,PC=1,AB=23,则二面角PABC的大小为W.解析:取AB的中点M,连接PM,MC,则PM⊥AB,CM⊥AB,所以∠PMC就是二面角PABC的平面角.在△PAB中,PM=22-(3)2=1,同理MC=PC=1,则△PMC是等边三角形,所以∠PMC=60°.答案:60°4.已知平面α,β和直线m,l,则下列说法:①若α⊥β,α∩β=m,l⊥m,则l⊥β;②若α∩β=m,l⊂α,l⊥m,则l⊥β;③若α⊥β,l⊂α,则l⊥β;④若α⊥β,α∩β=m,l⊂α,l⊥m,则l⊥β.其中正确的说法序号为W.解析:对于说法①缺少了条件:l⊂α;说法②缺少了条件:α⊥β;说法③缺少了条件:α∩β=m,l⊥m;说法④具备了面面垂直的性质定理的所有条件.答案:④5.如图,四边形ABCD,BD=23,AB=2,AD=4,将△CBD沿BD折起到△EBD的位置,使平面EDB⊥平面ABD.求证:AB⊥DE.证明:在△ABD中,因为AB=2,AD=4,BD=23,所以AB2+BD2=AD2,所以AB⊥BD.又因为平面EBD⊥平面ABD,平面EBD∩平面ABD=BD,AB⊂平面ABD,所以AB⊥平面EBD.因为DE⊂平面EBD,所以AB⊥DE.。
两条直线的平行与垂直一、教学目标(一)知识教学点掌握两条直线平行与垂直的条件,会运用条件判断两直线是否平行或垂直,能运用条件确定两平行或垂直直线的方程系数.一条直线与另一条直线所成角的概念及其公式,两直线的夹角公式,能熟练运用公式解题.(二)能力训练点通过研究两直线平行或垂直的条件的讨论,培养学生运用已有知识解决新问题的能力以及学生的数形结合能力.通过课题的引入,训练学生由特殊到一般,定性、定量逐层深入研究问题的思想方法;通过公式的推导,培养学生综合运用知识解决问题的能力.(三)学科渗透点通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,激发学生学习的兴趣.训练学生由特殊到一般,定性、定量逐步深入地研究问题的习惯.二、教材分析1.重点:两条直线平行和垂直的条件是解析几何中的一个重点,要求学生能熟练掌握,灵活运用.2.难点:启发学生把研究两直线的平行与垂直问题转化为考查两直线的斜率的关系问题.公式的记忆与应用.3.疑点:对于两直线中有一条直线斜率不存在的情况课本上没有考虑,上课时要注意解决好这个问题.推导l1、l2的角公式时的构图的分类依据.三、活动设计提问、讨论、解答.四、教学过程(一)特殊情况下的两直线平行与垂直这一节课,我们研究怎样通过两直线的方程来判断两直线的平行与垂直.当两条直线中有一条直线没有斜率时:(1)当另一条直线的斜率也不存在时,两直线的倾斜角为90°,互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.(二)斜率存在时两直线的平行与垂直设直线l1和l2的斜率为k1和k2,它们的方程分别是l1: y=k1x+b1; l2: y=k2x+b2.两直线的平行与垂直是由两直线的方向来决定的,两直线的方向又是由直线的倾斜角与斜率决定的,所以我们下面要解决的问题是两平行与垂直的直线它们的斜率有什么特征.我们首先研究两条直线平行(不重合)的情形.如果l1∥l2(图1—29),那么它们的倾斜角相等:α1=α2.∴tgα1=tgα2.即k1=k2.反过来,如果两条直线的斜率相等,k1=k2,那么tgα1=tgα2.由于0°≤α1<180°,0°≤α<180°,∴α1=α2.∵两直线不重合,∴l1∥l2.两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,则它们平行,即eq \x( )要注意,上面的等价是在两直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不存立.现在研究两条直线垂直的情形.如果l1⊥l2,这时α1≠α2,否则两直线平行.设α2<α1(图1—30),甲图的特征是l1与l2的交点在x轴上方;乙图的特征是l1与l2的交点在x轴下方;丙图的特征是l1与l2的交点在x轴上,无论哪种情况下都有α1=90°+α2.因为l1、l2的斜率是k1、k2,即α1≠90°,所以α2≠0°.可以推出α1=90°+α2.l1⊥l2.两条直线都有斜率,如果它们互相垂直,则它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,则它们互相垂直,即(三)例题例1 已知两条直线l1:2x—4y+7=0,L2:x—2y+5=0.求证:l1∥l2.证明两直线平行,需说明两个要点:(1)两直线斜率相等;(2)两直线不重合.证明:把l1、l2的方程写成斜截式:∴两直线不相交.∵两直线不重合,∴l1∥l2.例2求过点A(1,-4),且与直线2x+3y+5=0平等的直线方程.即2x+3y+10= 0.解法2 因所求直线与2x+3y+5=0平行,可设所求直线方程为2x+3y+m=0,将A(1,-4)代入有m=10,故所求直线方程为2x+3y+10=0.例3 已知两条直线l1:2x—4y+7=0,l2:2x+y—5=0.求证:l1⊥l2.∴l1⊥l2.例4 求过点A(2,1),且与直线2x+y—10=0垂直的直线方程.解法1 已知直线的斜率k1=-2.∵所求直线与已知直线垂直,根据点斜式得所求直线的方程是就是x—2y=0.解法2 因所求直线与已知直线垂直,所以可设所求直线方程是x-2y+m=0,将点A(2,1)代入方程得m=0,所求直线的方程是x—2y=0.(四)两条直线的夹角两条直线l1和l2相交构成四个角,它们是两对对顶角.为了区别这些角,我们把直线l1依逆时针方向旋转到与l2重合时所转的角,叫做l1到l2的角.图1-27中,直线l1到l2的角是θ1,l2到l1的角是θ2(θ1+θ2=180°).l1到l2的角有三个要点:始边、终边和旋转方向.现在我们来求斜率分别为k1、k2的两条直线l1到l2的角,设已知直线的方程分别是l1∶y=k1x+b1 l2∶y=k2x+b2如果1+k1k2=0,那么θ=90°,下面研究1+k1k2≠0的情形.由于直线的方向是由直线的倾角决定的,所以我们从研究θ与l1和l2的倾角的关系入手考虑问题.设l1、l2的倾斜角分别是α1和α2(图1—32),甲图的特征是l1到l2的角是l1、l2和x轴围成的三角形的内角;乙图的特征是l1到l2的角是l1、l2与x轴围成的三角形的外角.tgα1=k1,tgα2=k2.∵θ=α2—α1(图1-32),或θ=π-(α1—α2)=π+(α2-α1),∴tgθ=tg(α2-α1).或tgθ=tg[π(α2—α1)]=tg(α2-α1).可得即eq \x( )上面的关系记忆时,可抓住分子是终边斜率减始边斜率的特征进行记忆.(五)夹角公式从一条直线到另一条直线的角,可能不大于直角,也可能大于直角,但我们常常只需要考虑不大于直角的角(就是两条直线所成的角,简称夹角)就可以了,这时可以用下面的公式(六)例题解:k1=—2,k2=1.∴θ=arctg3≈71°34′.本例题用来熟悉夹角公式.例2 已知直线l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0(B1≠0、B2≠0、A1A2+B1B2≠0),l1到l2的角是θ,求证:证明:设两条直线l1、l2的斜率分别为k1、k2,则这个例题用来熟悉直线l1到l2的角.例3等腰三角形一腰所在的直线l1的方程是x-2y-2=0,底边所在的直线l2的方程是x+y-1=0,点(—2,0)在另一腰上,求这腰所在直线l3的方程.解:先作图演示一腰到底的角与底到另一腰的角相等,并且与两腰到底的角与底到另一腰的角相等,并且与两腰的顺序无关.设l1、l2、l3的斜率分别是k1、k2、k3,l1到l2的角是θ1,l2到l3的角是θ2,则.因为l1、l2、l3所围成的三角形是等腰三角形,所以θ1=θ2.tgθ2=tgθ1=-3.解得k3=2.因为l3经过点(—2,0),斜率为2,写出点斜式为y=2[x-(-2)],即2x—y+4=0.这就是直线l3的方程.讲此例题时,一定要说明:无须作图,任一腰到底的角与底到另一腰的角都相等,要为锐角都为锐角,要为钝角都为钝角.(四)课后小结(1)斜率存在的不重合的两直线平行的等价条件;(2)两斜率存在的直线垂直的等价条件;(3)与已知直线平行的直线的设法;(4)与已知直线垂直的直线的设法.(5)l1到l2的角的概念及l1与l2夹角的概念;(6)l1到l2的角的正切公式;(7)l1与l2的夹角的正切公式;(8)等腰三角形中,一腰所在直线到底面所在直线的角,等于底边所在直线到另一腰所在直线的角.五、布置作业1.7练习第1,2,3题习题三第3,10题。
本册综合-人教A版高中数学选择性必修第二册(2019版)教案一、教材简介本教案编写针对的是人教A版高中数学选择性必修第二册(2019版)教材。
本教材是为了让高中学生可以更好地学习数学并可以更好地应对高考而编写的。
本册综合是其中的一本教材,主要包括了数列的基本概念、性质、算法和应用、函数的基本概念、初等函数及其图象、三角函数及其应用、数形结合思维、平面向量及其应用等知识点。
二、教学目标(一)知识目标1.熟练掌握数列的概念、性质、算法和应用,能够灵活地运用数列的相关知识进行分析、计算和证明;2.熟悉函数的基本概念,并掌握初等函数及其图象、三角函数及其应用;3.培养数形结合思维,使学生能够行之有效地把数学知识应用于实际问题的解决过程中;4.熟悉平面向量的基本概念和相关性质,并能运用向量进行问题的解答。
(二)能力目标1.培养学生良好的数学思维和解题能力,增强学生的数学兴趣;2.提高学生的计算速度和准确率,并提高其过程掌握能力和学习能力,强化其解题和思考的能力;3.培养学生观察、分析和解决问题的能力,让其具有创新性和探究性,并能够灵活运用所学的数学知识;4.培养学生团队意识和合作精神,增强学生的自我管理能力和自我学习能力。
(三)情感目标1.教育学生勤奋努力、不断进取,积极参与学习,培养学生良好的学习态度和认真负责的精神;2.提高学生社会责任感,让学生有责任、有担当、有信仰,起到塑造学生个性和品德的作用。
三、教学重点和难点(一)教学重点1.数列的基本概念、性质、算法和应用;2.函数的基本概念、初等函数及其图象、三角函数及其应用;3.数形结合思维;4.平面向量的基本概念和相关性质。
(二)教学难点1.数列等差数列、等比数列,以及数列极限的概念和计算方法;2.函数的图象、函数的极限及其应用,三角函数的概念和特性;3.数学应用题的解题方法。
四、教学方法本教案采用多种教学方法,包括讲授、讨论、示范、实践、问题导入和启发式教学等。
2022年新课标人教版小学数学第二册教案(全册)一、位置单元分析一、教学内容:教材第1~9页,上下,前后,左右的认识,以及在此基础上从两个维度来确定物体的位置。
二、教学目标:1、通过直观演示和动手操作,使学生认识“上、下”、“前、后”、“左、右” 的基本含义,初步感受它们的相对性。
2、使学生学会用“上、下”、“前、后”、“左、右”描述物体的相对位置。
3、使学生能够在具体的情景中,根据行、列确定物体的位置。
三、教学重点:正确区分“上、下”、“前、后”、“左、右”。
四、教学难点:正确区分“左、右” 的相对性。
五、教材分析:儿童在日常生活中并通过前面的学习,对上、下、前、后、左、右等方位已积累了一些戌经验,但不一定能准确地加以判断,因此本单元进行集中教学。
本单元教材的编写特点:1、提供丰富的生活和活动情境,辅助儿音体验空间方位。
2、依照儿音空间方位的认知顺序进行编排。
六、教学建议:1、注意根据学生认识空间方位的特点部署教学。
一般学生在6岁时就能完全正确地区分“上、下”、“前、后”,但是以自身为中心的“左、右”区分尚未开展完善。
因此,对于“上、下”、“前、后”,可以尽量放手让学生独立区分,而“左、右”则要引导学生从自身为中心过渡到以自然标记为中心进行区分。
2、要适当掌握教学要求。
“左、右”的相对性比拟难理解,教材主要是通过一些活动和游戏来辅助学生区分。
教学中,教师可以利用教材提供的资源或自己创设活动,组织学生充分地体验,应防止抽象地让学生判断。
七、教学部署:1、上、下…………1课时2、前、后…………1课时3、左、右…………1课时4、位置……………1课时课题一上、下课型:新授课授课时间:第周第课时教学内容:教科书第1页教学目标:1、学生初步了解上、下的基本含义,会用上、下描述物体的相对位置。
2、使学生形成区分一定的空间方位的能力。
3、培养学生观察能力和语言表白能力。
4、使学生感受数学与现实生活的密切联系。
小学数学第二册第二单元教案2:加减法的口诀随着孩子们的年龄增加,他们开始学习更高级别的数学。
不过,在这之前,他们需要先学习基本的数学技能。
其中,最基本的技能就是加减法。
在小学二年级的数学课程中,学生将学习加减法的口诀。
这些口诀将帮助学生们更容易地学习这些基本的数学技能。
本文将介绍小学数学第二册第二单元教案2:加减法的口诀。
1.加法口诀在学习加法口诀之前,学生需要知道有关加号(+)的基本知识。
加法口诀的目的是帮助学生快速计算两个数字的和。
下面是一些最常见的加法口诀:-单位数加法口诀:这是最基本的加法口诀。
学生需要记住每个数字在1~9的范围内与另一个数字相加时的结果。
例如,当数字3和数字4相加时,结果是7。
其他的例子包括数字1加数字1等于2,数字5加数字6等于11等等。
-十位数加法口诀:当两个数字的十位数相同时,学生可以使用这个口诀。
只需将两个数字的个位数相加,再加上相同的十位数即可。
例如, 23 + 24,两个数字的十位数都是2,学生可以把3和4相加得到7,再在前面加上2,结果就是47了。
-进位加法口诀:这个口诀适用于两个数字相加的时候需要进位的情况。
例如,当数字9和数字3相加时,结果为12。
但是,因为只有一位数字,需要进位。
学生可以把这个进位的1加到10位数字上,再加上个位数字3,最终结果为12。
-步骤算法加法口诀:这个口诀可以帮助学生更有效地计算比较大的数字。
学生只需要把每个数字分开,相加。
例如,如果要计算468+357的和,学生可以先把468分成400,60和8,把357分成300,50和7,分别相加,得到结果825。
这个加法口诀有别于其他口诀的地方是,它需要学生额外的逐位计算。
2.减法口诀在学习减法口诀之前,学生同样需要了解有关减号(-)的基本知识。
减法口诀的目的是帮助学生更容易地计算出两个数字之间的差。
以下是一些最常见的减法口诀:-一位数减法口诀:这个口诀是最基本的减法技能。
学生需要知道从1~9的数字中减去另一个数字的答案是多少。
一年级数学下册教案姓名班级一年级数学下册教学计划一、学生基本情况分析学生经过上一学期的数学学习后,其基本知识、技能方面基本上已经达到学习的目标,对学习数学有着一定的兴趣,乐于参加学习活动中去。
特别是一些动手操作、需要合作完成的学习内容都比较感兴趣。
通过这段时间的学习,我发现学生们自觉性较差,上课有小部分同学不注意听讲,口算时比较马虎,课下不能及时完成作业,但是学生的学习积极性很高,小部分学生成绩较差,有待于在今后的教学中,统一规范课堂常规,及时补差,使整个教学能够顺利进行等。
因此,在本学期的教学中还有待于进一步提高。
二、教学目标这一册教材的教学目标是,使学生:1.认识计数单位“一”和“十”,初步理解个位、十位上的数表示的意义,能够熟练地数100以内的数,会读写100以内的数,掌握100以内的数是由几个十和几个一组成的,掌握100以内数的顺序,会比较100以内数的大小。
会用100以内的数表示日常生活中的事物,并会进行简单的估计和交流。
2.能够比较熟练地计算20以内的退位减法,会计算100以内两位数加、减一位数和整数,经历与他人交流各自算法的过程,会用加、减法计算知识解决一些简单的实际问题。
3.经历从生活中发现并提出问题、解决问题的过程,体验数学与日常生活的密切联系,感受数学在日常生活中的作用。
4.能用自己的语言描述长方形、正方形边的特征,初步感知所学的图形之间的关系。
5.认识人民币单位元、角、分,知道1元=10角,1角=10分;知道爱护人民币。
6.会读、写几时几分,知道1时=60分,知道珍惜时间。
7.会探索给定图形或数的排列中的简单规律,初步形成发现和欣赏数学美的意识。
8.初步体验数据的收集、整理、描述、分析的过程,会用简单的方法收集、整理数据,初步认识条形统计图和统计表,能根据统计图表中的数据提出并回答简单的问题。
9.体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
三、教材分析这册教材包括下面内容:位置,20以内的退位减法,图形的拼组,100以内数的认识,认识人民币,100以内的加法和减法(一),认识时间,找规律,统计,数学实践活动。
这册教材的重点教学内容是:100以内数的认识,20以内的退位减法和100以内的加减法口算。
在学生掌握了20以内各数的基础上,这册教材把认数的范围扩大到100,使学生初步理解数位的概念,学会100以内数的读法和写法,弄清100以内数的组成和大小,会用这些数来表达和交流,形成初步的数感。
100以内的加、减法,分为口算和笔算两部分。
这册教材出现的是口算部分,即两位数加、减一位数和整十数口算。
这些口算在日常生活中有广泛的应用,又是进一步学习计算的基础,因此,应该让学生结合计算教学,应用所学计算知识解决问题的内容,让学生了解所学知识的实际应用,学习解决现实生活中相关的计算问题,培养学生用数学解决问题的能力。
在学生初步认识了常见几何图形的基础上,本册教材安排了关于位置与拼组图形的教学内容,设计了丰富多样的探索性操作活动,让学生体验空间方位和所学图形之间的关系,发展学生的空间观念。
在量的计量方面,本册教材除了安排人民币单位元、角、分的认识外,还安排了学习具体时刻几时几分的读、写方法。
“找规律”和“统计”是两部分新的教学内容。
“找规律”引导学生探索一些图形或数字的简单排列规律,初步培养学生探索数学问题的兴趣和发现、欣赏数学美的意识。
统计是正式教学统计初步知识的开始,让学生学习收集和整理数据的简单方法,认识最简单的统计图表,经历用统计方法解决问题的过程。
教材根据学生所学习的数学知识和生活经验,安排了两个数学实践活动,让学生通过小组合作的探究活动或有现实背景的活动,运用所学知识解决问题,体会探索的乐趣和数学的实际应用,感受用数学的愉悦,培养学生的数学意识和实践能力。
四、教学措施1、在教学中不仅要考虑数学自身的特点,而且也要遵循学生学习数学的心理规律,关注每一个学生在情感态度、思维能力等方面的进步和发展。
2、重视基本口算和笔算的训练,培养和逐步提高学生的计算能力。
3、重视分析应用题的数量关系,培养学生解答应用题的能力。
4、结合教学内容,重视培养学生的数学能力。
5、注意教学的开放性,重视培养学生的创新能力。
6、结合教学内容,对学生进行思想品德教育。
五、教学进度表(一)、位置(6课时)第一周(二)、20以内的退位减法(18课时)第二周至第四周例1 …………………………………………………4课时左右例2……………………………………………………7课时左右例3……………………………………………………4课时左右整理和复习………………………………………3课时左右(三)、图形的拼组(4课时)第五周(四)、100以内数的认识(15课时)第五周至第七周数数数的组成…………………………………………4课时左右读数写数………………………………………………4课时左右数的顺序比较大………………………………………5课时左右整十数加一位数和相应的减法…………………………1课时左右摆一摆,想一想…………………………1课时(五)、人民币的认识(5课时)第八周认识人民币……………………………………………2课时简单的计算………………………………………………3课时(六)、100以内的加法和减法(一)(30课时)第九周至第十三周1.整十数加、减整十数…………………………6课时左右2.两位数加一位数和整十数……………………8课时左右3.两位数减一位数和整十数……………………12课时左右整理和复习…………………………………………4课时左右(七)、认识时间(6课时)第十四周小小店…………………………………………………1课时(八)、找规律(6课时)第十五周(九)、统计(6课时)第十六周(十)、总复习(10课时)第十六周至第十九周第一单元认识图形(二)一、单元内容及简析认识图形(二),这部分内容是在上学期“认识立体图形”的基础上教学的,通过上学期的学习学生已经能够区分常见的立体图形了,这里主要是通过一些操作活动,让学生初步体会长方形、正方形、平行四边形、三角形、圆这些平面图形的一些特征,并感知平面图形与立体图形间的一些关系。
本单元教学的关键是让学生通过摆、拼、剪等活动体会图形特征,感知图形间的关系。
二、单元教学目标1.知识与技能目标:让学生认识长方形、正方形、平行四边形、三角形和圆的特征,通过折一折、摆一摆、剪一剪、拼一拼,辨别和区分这些图形。
2.过程与方法目标:通过观察和实际操作、使学生初步感知所学图形之间的关系,培养学生初步的想象能力和创新能力。
3.情感与态度目标:在学习活动中积累对数学的兴趣,增强与他人交往、合作的意识。
三、单元教学重点:让学生认识长方形、正方形、平行四边形、三角形和圆的特征,通过折一折、摆一摆、剪一剪、拼一拼,辨别和区分这些图形。
四、单元教学难点通过观察和实际操作,使学生初步感知所学图形之间的关系,培养学生初步的想象能力和创新能力。
五、单元教学措施1.充分给学生机会,让他们通过拼、剪等操作活动,在活动中体会平面图形的一些特征。
2.让学生感知平面图形间和立体图形间以及平面图形与立体图形间的关系。
六、教具准备:课件、图形卡纸、实物等。
七、课时安排:约5课时。
第一课时教学内容::P2~P3 认识平面图形教学目标:1.通过拼、摆、画各种图形,使学生直观感受各种图形的特征。
2.培养学生初步的观察能力、动手操作能力和用数学交流的能力。
3.能辨认各种图形,并能把这些图形分类。
教学重、难点:初步认识长方形、正方形、圆形和三角形的实物与图形。
教具准备:课件、图形卡纸、实物、学具等。
教学过程:一、复习,探究新知1.(课件出示)小朋友们还记得这些图形朋友吗?(长方体正方体球圆柱)2.你能把这些图形平平的面画下来吗?学生利用学具模型在纸上画一画。
3.你们画下的图形有什么特点?学生小组讨论并且派代表全班交流。
长方形:对边相等4个角都是直直的平面的正方形:4边相等4个角都是直直的圆:没有角(即封闭的)不断开的三角形:有3条边3个角二、巩固发展1.说一说,你身边哪些物体的面是你学过的图形?2.用圆、正方形、长方形、三角形画一画自己喜欢的图形。
3.请小朋友涂一涂圆、正方形、长方形、三角形,知道各涂什么颜色吗?小组讨论合作,反馈汇报哪些涂成黄色,哪些涂成蓝色,哪些涂成紫色,哪些涂成红色?4.用圆、正方形、长方形、三角形拼一拼图形。
5.第2题:数一数有几个圆、正方形、长方形、三角形?学生独立完成,说说你是怎么数的?有什么好方法?三、提高练习取长方形纸一张,对折再对折 .取正方形纸一张,对折再对折。
取正方形纸一张,对角折再对角折。
四、总结今天你们学到了什么?长方形、正方形、三角形、圆各有什么特点?你有什么想问的?五、课堂作业板书设计:认识平面图形长方形:对边相等4个角都是直直的平面的正方形:4边相等4个角都是直直的圆:没有角(即封闭的)不断开的三角形:有3条边3个角第二课时教学内容:教科书第2—3页及练习一第1-3题。
教学目标:1. 通过把长方形或正方形折、剪、拼等活动,直观认识三角形和平行四边形,知道这两个图形的名称;并能识别三角形和平行四边形,初步知道它们在日常生活中的应用。
2.在折图形、剪图形、拼图形等活动中,体会图形的变换,发展对图形的空间想象能力。
3. 在学习活动中积累对数学的兴趣,增强与同学交往、合作的意识。
教学重点:直观认识三角形和平行四边形,知道它们的名称,并能识别这些图形,知道它们在日常生活中的应用。
教学难点:让学生动手在钉子板上围、用小棒拼平行四边形。
教学用具:长方形模型、长方形和正方形的纸、课件、小棒。
教学方法:实践操作法教学过程:一、复习铺垫出示长方形问“小朋友们,谁愿意来介绍一下这位老朋友?他介绍得对吗?”接着出示第二个图形(正方形),问:“这个老朋友又是谁呢?”再出示圆:“它叫什么名字?这是我们已经认识的长方形、正方形和圆三位老朋友。
我发现你们很喜欢折纸,是吗?今天我特意为大家准备了一个折纸的游戏,高兴吗?二、启发思维、引出新知1.认识三角形(1)教师出示一张正方形纸,提问:这是什么图形?学生回答:这是正方形。
师:你能把一张正方形纸对折成一样的两部分吗?学生活动,教师巡视,了解学生折纸的情况。
组织学生交流你是怎样折的,折出了什么图形?师:我们现在折出来的是一个什么图形呢?生答:三角形。
师:小朋友们一下就认识了我们的新朋友。
对了,这就是三角形。
出示并贴上三角形板书:三角形(2)提问:这样的图形好像在哪儿也看到过?想一想?①先在小组里交流。
②学生回答。
③老师也带来了几个三角形。
(3)师小结:在我们的生活中有许多物体的面是三角形面,只要小朋友多观察,就会有更多的发现。