FSC赛车双横臂悬架受力与有限元分析
- 格式:pdf
- 大小:1.50 MB
- 文档页数:6
基于ADAMS/CAR的FSC赛车悬架仿真与分析摘要本文在多体系统动力学相关理论的基础上,运用笛卡尔方法建模的有关知识,主要采用ADAMS/CAR建立FSC赛车悬架的动力学仿真模型,然后将该仿真模型与其他子系统一起组装形成虚拟样机,并与试验台连接进行仿真分析,然后分析车轮定位参数随车轮跳动量的变化情况,以车轮定位参数的变化量反映悬架的运动学性能。
这些为FSC赛车悬架的设计制造提供了可观的依据,为赛车悬架的性能优化指明了一定的方向。
关键词多体系统动力学;FSC;悬架;仿真模型;车轮定位参数本文运用多体系统动力学相关理论,采用ADAMS/CAR建立FSC赛车前后悬架的动力学仿真模型,然后调用其他子系统与前后悬架仿真模型共同组装成虚拟样车即整车动力学模型进行仿真分析,以车轮定位参数随车轮跳动量的变化情况反映悬架的运动学性能,并提出车轮定位参数的改进意见,为今后FSC赛车悬架仿真模型的建立积累了经验,并为整车模型的进一步优化奠定了基础。
一、多体系统动力学基本理论多体系统是指由多个物体通过运动副连接的复杂机械系统。
任何一个复杂的机械系统进行动力学分析和计算时,首要的任务就是将这个系统进行合理的简化,建立一个由多个刚体(或刚柔体)组成的系统替代模型。
大部分常规的机械系统都可以描述成刚体和柔性多体系统模型。
目前在机械领域所采用的建模方法主要是20世纪80年代Chace和Haug提出的笛卡尔方法,而Garcia和Bayo于1994在笛卡尔方法的基础上又提出了完全笛卡尔方法。
目前国际上最著名的两个动力学分析商业软件ADAMS和DADS都是采用笛卡尔方法建模。
机械领域形成的笛卡尔方法是一种绝对坐标方法,以系统中每一个物体为单元,建立固结在刚体上的坐标系,刚体的位置相对于一个公共参考基进行定义,其位置坐标(也可称为广义坐标)统一为刚体坐标系基点的笛卡尔坐标与坐标系的方位坐标,方位坐标可以选用欧拉角或欧拉参数。
单个物体位置坐标在二维系统中为3个,三维系统中为6个(如果采用欧拉参数为7个)。
10.16638/ki.1671-7988.2018.15.053基于有限元分析的FSC赛车车架轻量化设计徐森,曹晓辉,胡朝磊(江苏大学汽车与交通工程学院,江苏镇江212013)摘要:以大学生方程式赛车为实例,为了设计更高性能的车架,利用ANSYS软件校核车架的刚度,结合实验数据作为参考,在保证车架扭转刚度在目标值以上的前提下,不断修改车架的结构、钢管尺寸等,达到轻量化优化设计的目的,再通过软件分析车架强度与模态,保证车架的工作稳定性。
优化后车架扭转刚度达到了2468.5N*m/deg,质量为27.659kg,达到预期设计目标。
关键词:FSC 赛车;车架设计;有限元分析;轻量化设计中图分类号:U467 文献标识码:B 文章编号:1671-7988(2018)15-143-04Lightweight Design of FSC Racing Car Frame Based on Finite Element AnalysisXu Sen, Cao Xiaohui, Hu Chaolei( Automotive and Traffic Engineering College, Jiangsu University, Jiangsu Zhenjiang 212013 )Abstract:Taking the student equation racing car as an example, in order to design a more high performance frame, use ANSYS software to check the stiffness of the frame, combined with the experimental data as a reference, the structure of the frame and the size of the steel tube are constantly modified under the premise that the frame's torsion stiffness is above the target value, so as to achieve the purpose of lightening and optimizing the design. The strength and mode of the frame are analyzed by software to ensure the working stability of the frame. After optimization, the torsion stiffness of the frame reaches 2468.5N*m/deg and the mass is 27.659kg.Keywords: FSC car; design of frame; finite element analysis; lightweight designCLC NO.: U467 Document Code: B Article ID: 1671-7988(2018)15-143-04前言轻量化是所有赛车及乘用车追求的目标,根据牛顿第二定律,F= m *a,在相同的牵引力下,质量减轻能获得更大的加速度,这是评判赛车动力性的三大指标之一。
基于ANSYS的FSC赛车车架有限元分析【摘要】中国大学生方程式汽车大赛(简称“中国FSC”)是一项由高等院校汽车工程相关专业在校学生组队参加的汽车设计与制造比赛[1]。
对于非承载式车身的赛车,车架承载着赛车整个车体,车架的结构强度很大程度上影响着整车的安全性、动力性、舒适性、操纵稳定性等多种综合性能。
本文对FSC赛车车架进行典型工况下的强度和刚度校核,确定其固有频率及稳定性,并进行疲劳分析,得出车架应力应变结果,为结构的改进提供合理化建议。
【关键词】FSC;ANSYS/Workbench;车架;分析1 车架有限元模型建立1.1三维模型导入及网格划分本文FSC赛车车架采用桁架式结构,在Catia中完成三维模型建立,将其转化成IGS文件导入到ANSYS Workbench中,车架选用4130合金钢,弹性模量为2.11E11Pa,泊松比为0.279,密度为7850 kg·m-3,屈服强度为785MPa,强度极限930MPa。
文中将车架的CATIA模型导入到ANSYS Workbench中,进行模型简化处理[2]。
网格划分是有限元分析前处理中的关键步骤,对后面分析的结果有重要影响。
在进行网格划分时,本文对一些主要的受力部位进行网格细化,取1mm的网格大小,对一些非重要受力部位统一采用10mm的网格大小来进行划分,在保证分析精确度的同时还可以提高整个网格分析的效率。
划分结果为分成7809个节点,4423个单元[3]。
2车架工况分析2.1弯曲工况分析:弯曲工况是指赛车在满载状态下匀速行驶的状况。
计算弯曲工况时,由于车辆行驶的动态效应,车架承受的实际载荷需乘上一个动载因数,一般为 2.0-2.5,本文取 2.5,车架静态工况加载方式为:重力场加载800N;座舱底杆集中载荷1875N;发动机固定杆集中载荷2000N;差速器支撑杆集中载荷300N。
在分析中忽略对整车分析影响较小的零件,重力加速度取10m/s?[4]。
FSC赛车车架的静态结构与模态分析阎力;史青录;连晋毅【摘要】以太原科技大学万里车队自主研制的首辆FSC赛车车架为研究对象,基于CATIA和Hy-perMesh软件平台,分别建立车架的几何模型和有限元模型,利用有限元原理对车架进行多工况下的静态结构与自由模态分析.分析结果表明,车架强度与刚度均符合要求,同时车架低阶固有频率未与外界激励重合.避免了共振现象.经验证,该设计安全可靠,可为我校日后参赛提供保障.【期刊名称】《太原科技大学学报》【年(卷),期】2017(038)002【总页数】6页(P98-103)【关键词】FSC赛车;车架;刚度;静态分析;模态分析【作者】阎力;史青录;连晋毅【作者单位】太原科技大学机械工程学院,太原030024;太原科技大学机械工程学院,太原030024;太原科技大学机械工程学院,太原030024【正文语种】中文【中图分类】U469.696大学生方程式汽车大赛起源于美国,是一项由高等院校在校生参加的汽车设计与制造竞赛,简称FSAE(Formula SAE),目前全球已有10余个国家举办,2010年中国汽车工程学会将该项赛事引入国内并命名为FSC [1]。
在FSC项目中,车架是支承车身的基础构件,作为安装基体,它承载并连结所有的系统组件(包括发动机、传动、悬架等),同时承受这些组件的重量和传递给车架的各种复杂载荷。
因此,车架性能的优劣将影响整车的表现[2]。
现针对我校首辆FSC赛车车架,简述其设计流程并分析在多种典型工况下的静态结构与模态特性。
1.1 车架形式FSC赛车车架的结构形式主要包括空间管阵式、单体壳和混合式(前单体壳后空间管阵)三类。
单体壳重量轻、扭转刚度大,但成本高昂、设计复杂、工艺要求高、维修困难,目前国外车队运用较多。
相对而言,空间管阵式车架结构简单、成本低廉、方便制造、易于维修,现阶段国内FSC赛车车架仍普遍采用该传统形式进行设计和优化,并以此作为单体壳的低成本可持续替代品。