基于有限元ANSYS的压力容器应力分析报告
- 格式:doc
- 大小:487.17 KB
- 文档页数:25
利用ANSY S软件对压力容器进行应力分析韩 敏(西安科技大学,西安710054)摘要:利用ANSY S有限元软件对压力容器进行应力分析,获得了压力容器的应力分布图。
经分析发现,ANSY S软件分析的结果与真实情况基本一致。
整个建模、分析过程充分说明ANSY S 软件为压力容器的结构设计提供了可靠、高效的理论依据。
关键词:压力容器;ANSY S;有限元;应力分析中图分类号:TH49 文献标志码:A 文章编号:100320794(2008)0120073202Stress Analysis of Pressure Contain with ANSY S Softw areH AN Min(X i’an University of Science and T echnology,X i’an710054,China)Abstract:The static force im paction of a pressure contain with ANSY S s oftware was analysed and the stress distribution drafts of them were g otten.Through theories analysis,the result of finite-element analysis is proved to be acceptable,and it provides the theories support to today’s machine optimize design.K ey w ords:pressure contain;ANSY S;finite-element;stress analysis计方法,得出的结构强度结果比较保守,这就限制了容器整体性能的提高和材料的有效利用。
分析设计依据标准JB4732《钢制压力容器—分析设计标准》,它是基于“塑性失效”与“弹塑性失效”准则,其理论基础是板壳力学、弹性与塑性理论及有限元法,是根据具体工况,对容器各部位进行详细地应力计算与分析,在不降低设备安全性的前提下选取相对较低的安全系数,从而降低了结构的厚度,使材料得到了有效的利用。
基于 ANSYS的典型压力容器应力分析设计2010 年第 3 期(总第 136 期)业东,农琪(广西工业职业技术学院,广西530001 )【摘要】研究从工程实践应用需求出发,采用ANASYS9.0有限元软件对容器进行详细的应力分析计算,对不同类别的应力进行分类和强度评定。
应力强度满足分析设计标准,确保了容器的安全可靠性。
【关键词】应力;强度;压力容器;分析设计;有限元1研究的目的和意义过去,压力容器及其部件的设计基本采用常规设计法, 以弹性失效准则为基础,材料的许用应力采用较大的安全系数来保证,一般情况常规设计仅考虑容器壁厚中均匀分布的薄膜应力,不考虑其他类型的应力,如局部高应力和边缘应力均不考虑等 , 常规设计不讨论由此而产生的多种失效形式。
分析设计以塑性失效和弹塑性失效准则为基础,并引入安全寿命的概念,对具有循环加载特征的部件进行疲劳分析。
比较详细地计算了容器和承压部件的各种应力,对应力进行分类,再采用不同的应力强度条件给予限制[1]。
本课题研究的目的是对石油化工生产中广泛使用的典型压力容器进行应力分析,应用ANSYS软件编写参数化设计程序,对典型压力容器中的筒体、椭圆形封头、锥形封头,开设人孔、接管等进行应力分析,为压力容器的分析设计提供一种比较通用的设计方法。
2钢制压力容器设计的两种规GB 150- 1998《钢制压力容器》是以弹性失效准则为理论基础,导出较为简单的适合于工程应用的计算公式,求出容器在载荷作用下的最大主应力,将其限制在许用应力值以,即可确定容器的壁厚。
在标准所规定的适用围,按标准要求所设计、制造的容器是安全可靠的。
JB 4732- 1995《钢制压力容器——分析设计标准》是以弹塑性失效准则为理论基础,应用极限分析和安定性原理,允许容器材料局部屈服,采用最大剪应力理论,以主应力差的最大值作为容器发生垮塌和破坏的依据。
标准要求对容器所需部位的应力作详细计算,并进行强度评定和疲劳分析。
317压力容器是一种能够承受压力的密闭容器,广泛应用于煤化工生产领域。
煤化工生产作业环境苛刻,需要其外壳具备较高的强度,保护内部电子元器件不被损坏。
为验证压力容器的耐压性能,需根据其工作条件设计压力容器,将机器人安装在压力容器内部,对压力容器进行加压以模拟其高压工作环境,检测外壳的耐压性能是否符合要求。
本文基于国标 GB150-2011中关于压力容器的规定,完成压力容器的各项参数的计算取值。
利用 ANSYS 有限元仿真软件对其进行校核,对该压力容器工作状态下的应力及变形情况进行分析,判断其结构强度及 O 形圈的密封效果是否符合要求[1]。
1 压力容器参数化设计 对实际工况进行分析,根据要求完成压力容器的初步设计,结构如图 1 所示。
图1 压力容器三维模型该压力容器主要由两部分组成:压力舱和平盖,两个部件通过螺栓连接,平盖挤压压力舱端面上的 O 形圈完成密封。
由于采用水作为介质进行加压维持压力舱内压力处于预定值,压力容器需经常浸泡在水环境中,容易腐蚀生锈,会对密封结构造成破坏,且存在安全隐患,因此采用不锈钢完成该压力容器的设计和制造。
平盖所承受的应力较大,工作时容易产生较大变形导致 O 形圈密封失效,因此平盖需采用高强度不锈钢材料。
20Cr13是一种常用的高强度马氏体不锈钢材料,具有高抗蚀性、高强度、高韧性和较强抗氧化性,被广泛应用于制造各种承受高应力的零件。
基于20Cr13的优良性能,选用该材料用于平盖的设计和制造[2]。
与平盖相比较,压力舱承受应力相对较小,选用 304 不锈钢用于压力舱的设计和制造。
基于国标 GB150-2011 关于压力容器的规定,对压力容器各部分的参数进行计算如下:(1)壳体厚度计算: 圆筒厚度计算公式如下:[]c ii c P D −=φσδ2P(1)式中,σ为圆筒壳体计算厚度(mm);p c 为计算压力(MPa);D i 为圆筒内直径(mm),[σ]i 为壳体材料的许用应力(MPa),φ为焊接接头系数。
用ANSYS软件进行压力容器管板的有限元分析序言压力容器管板是压力容器重要部件,根据管板结构的特点,它直接影响着管箱的承压能力。
它的变形情况及应力分析对整个箱管结构的应力分析起着决定性的作用。
然而J摺佣解析法对压力容器管板所受的应力和应变情况分析,解析误差太大。
采用ANSYS有限元分析软件建立压力容器管板的有限元模型,加载求解进行应力场分析对算出压力容器管板的最大应力泣变,利用ANSYS的有限元分析和计算机图形学功能显示三维应力等值面应移等值面,从而为压力容器管板机构的优化分析提供了充分的理论依据。
1基本分过程1.1创建有限元模型本文选用一种U型管式的压力容器来建模,管板材料选用20MuMo 锻件。
球形封头材料16MnR,材料的弹性模量E=20E+05MPa.泊松比为03,密度为7.8t/m3,设计压力P=31.4MPa,许用应力为196MPa。
在压力容器的应力的分析中,压力容器部件设计关心的是应力沿壁厚的分布规律及其大小,可采用沿壁厚方向的校核线代替校核面。
另外由于压力容器是轴对称结构,所以可选其一半结构来建模。
为了节省时间和存储空间,而又不影响分析结果,根据其结构,略去一些细节。
其中管孔对于管板强度的削弱,可以采用有效弹性模量E1和有效泊松比V1的概念将管板折算为同厚度的当量无孔圆平板,因此管板区域分为两大部分,1区按等效圆板来处理,而2区按实际悄况处理。
根据相关文献得到E1=054F,V1=0360综上所述,所得简化后有限元分析模型如图1所示:图1有限元分析模型1.2网格划分通常ANSYS的网格划分有两种方法,即自由划分和映射划分。
自由划分网格主要用于划分边界形状不规则的区域,分析稍度不够高,但要求划分的区域满足一定的拓补条件。
奕淞」分网格主要适合与敖钡臼形体,分析精度高。
鉴于压力容器管板的结构特点,本文同时采用了这两种方法。
在非边界区域采用醉编寸网格划分,在边界区域及梢度要求不是很高的区域采用自由网格划分。
《装备制造技术)20lo年第12期基于ANSYS的压力容器应力分析龙志勤。
王志刚(广东石油化工学院力学实验中心,广东茂名525000)摘要:在压力容器的设计过程中,利用ANSYS有限元软件进行应力分析,获得了压力容器的最大应力和应变,ANSYS分析结果与实际情况基本相符。
表明ANSYS软件可为压力容器的结构设计及优化设计提供充分的理论依据。
关键词:应力分析;压力客器;ANSYS中图分类号:T卜协9文献标识码:A压力容器是石油化工、机械、轻工、食品等多种工业领域中广泛使用的承压容器设备。
压力容器的设计,目前可分为规则设计和分析设计两种。
规则设计的理论基础,是材料力学和板壳理论,以弹性失效为设计准则111。
认为容器只有处于弹性阶段才是安全的,如果容器内某点的最大应力达到或超出材料的屈服极限,就认为容器失效。
按这种方法设计的容器,是偏于安全的,设计结果比较保守。
分析设计的理论基础,是板壳力学、弹塑性理论及有限元法,以塑性失效与弹塑性失效为设计准则翻。
此方法通过对容器进行全面的应力计算与分析,对载荷和应力进行分类给予不同的限制条件,以达到降低安全系数的目的,从而减小结构的厚度,使材料得到有效利用。
ANSYS软件是融结构、热、流体、电磁、声学于一体的大型通用有限元商用分析软件D】,是目前最主要的FEA程序。
在压力容器的应力分析设计中,得到了广泛应用。
本文采用ANSYS软件对压力容器进行应力和变形分析,为压力容器的结构设计及优化分析提供理论依据。
1压力容器力学模型以一个双支座卧式压力容器为例,容器的设计条件为:设计压力0.6MPa;工作温度40℃;压力容器壳体材料密度7800kg/m3;物料密度1080k#m3:在鞍座处,一端采用固支约束,另一端采用简支约束;壳体材料为ooCrl9Nil0,屈服强度177MPa,抗拉强度480MPa,弹性模量2X10sMPa,泊松比O.3;不考虑容器两端的封头,在容器与封头相连接的横截面上作用着等效轴向拉力,其数值为8.57MPa;在卧式压力容器的上端连接有一立式容器,在相互连接的横截面上作用着铅直向下的压力,其数值为O.55MPa。
压力容器的应力分析报告1、分析目的应用ANSYS10.0进行压力容器的应力分析,从而肯定容器的最大应力和变形,为容器设计提供参考。
2、几何模型容器设计压力13.5MPa,工作压力12.3MPa,弹性模量201MPa,泊松比0.3。
图1 1/4容器模型图3、划分网格采用Plane82单元对模型进行有限元划分,包括907个节点,256个单元。
图2 网格划分3、边界条件1)对称条件约束在容器对称的部份施加固定位移载荷。
2)在线上施加面载荷容器经受内压力,故在线上施加面载荷P=13.5MPa。
3)施加集中载荷法兰上的螺栓力转化为一个集中力作用,故可在此处一节点上施加集中力,且F=82109N。
图3 对称位移和面载荷图4 集中力载荷4、静力分析结果1)变形分析图5 变形图图中蓝色单元为变形后的形状,白色单元是为变形的图形。
图6 节点X方向位移图由上图可知,最大的X向节点最大位移值为0.209×10-6mm,最小位移为0.188×10-8mm。
2)应力分析图7 等效应力散布图上图是容器的应力散布图,由图可知,最大应力为302.054MPa,小于容器材料的极限应力,故可知足利用要求。
图8 壁厚为34mm处的应力散布图由上图可知,应力随着壁厚由内而外的增加而减小;X向的应力也是如此,但转变幅度较大;Y向的应力却相反转变,但转变的范围较小。
5、结论对容器应力分析后,可得该容器知足应力要求,可安全利用。
三角桁架受力分析1、分析目的图1所示为一三角桁架,各杆件通过铰链连接,杆件材料参数及几何参数如表1和表2所示,桁架经受集中力F1=3500N,F2=2500N。
本桁架通过有限元计算,分析桁架的受力变形和应力情形。
2、几何模型桁架在ANSYS中可用平面图形表示,如图1所示。
图1 几何模型3、划分网格这次分析采用LINK1单元,对于每一个杆件赋值材料属性和几何属性。
每一个杆件作为一个单元处置。
共划分三个节点,三个单元。
基于ANSYS对压力容器的应力分析与结构优化发表时间:2019-09-03T17:05:27.837Z 来源:《科学与技术》2019年第07期作者:杨照林[导读] 在实验中为了获得较为精准的应力分布和参数,可以用有限元分析软件ANSYS对压力容器进行分析和设计。
通用电气(上海)电力技术有限公司武汉分公司湖北省武汉市 430205摘要:在实验中为了获得较为精准的应力分布和参数,可以用有限元分析软件ANSYS对压力容器进行分析和设计。
并可以在压力容器的设计中得到最佳的方案。
关键词:ANSYS;压力容器;应力分析;结构优化在实际的应用需要中,压力容器的设计主要分为两大类;第一类是在在总体不连续区的结构中很大部分后产生应力。
应力也可以称为容器的几何形状和材料的不连续。
同时也有局部的不连续,即材料或载荷的不连续。
第二类的结构有相对较小的范围内会产生影响应力。
由于国内外的科研人员运用了有限元来对压力容器的压力的不连续区进行应力分析。
科研人员在载荷作用下,压力容器的不连续区会产生弯矩,同时也会导致压力容器的不连续区的应力大于其它压力容器的区域。
使得产生压力容器的这个区域容易失效1 问题描述在某容器中设计容器的压力为P=16 MPa。
将容器的温度为T=165℃。
同时将容器壁厚设计为 T 1 =105 mm和容器的封头内径为 R 2 =815 mm。
在压力容器的封头和压力容器筒体的连接部分进行优化设计。
在压力容器的不连续区结构中对筒体和封头厚度不变的情况下进行优化。
并改变压力容器的锥形段长度和斜边倾斜角的情况下,压力容器的不连续区的应力集中最小。
综上所述可得优化设计的数学模型为联立力平衡方程和变形协调方程的解。
在联立解中K 为应力集中系数。
2 有限元模型单元类型选择因为压力容器的几何结构是对称的,所以在压力容器的2D实体中可以运用软件来分析2D平面压力容器的应力和轴对称的问题。
因此压力容器同时受到的对称载荷作用是一样的。
压力容器分析报告目录1 设计分析依据 (1)1.1 设计参数 (1)1.2 计算及评定条件 (1)1.3 材料性能参数 (1)2 结构有限元分析 (2)2.1 理论基础 (2)2.2 有限元模型 (2)2.3 划分网格 (3)2.4 边界条件 (5)3 应力分析及评定 (5)3.1 应力分析 (5)3.2 应力强度校核 (6)4 分析结论 (8)4.1 上封头接头外侧 (9)4.2 上封头接头内侧 (11)4.3 上封头壁厚 (13)4.4 筒体上 (15)4.5 筒体左 (17)4.6 下封头接着外侧 (19)4.7 下封头壁厚 (21)1 设计分析依据(1)压力容器安全技术监察规程(2)JB4732-1995 《钢制压力容器-分析设计标准》-2005确认版1.1 设计参数表1 设备基本设计参数正常设计压力MPa 7.2最高工作压力MPa 6.3设计温度℃0~55工作温度℃5~55工作介质压缩空气46#汽轮机油焊接系数φ 1.0腐蚀裕度mm 2.0容积㎡ 4.0容积类别第二类计算厚度mm 筒体29.36 封头29.031.2 计算及评定条件(1)静强度计算条件表2 设备载荷参数设计载荷工况工作载荷工况设计压力7.2MPa 工作压力6.3MPa设计温度55℃工作温度5~55℃注:在计算包括二次应力强度的组合应力强度时,应选用工作载荷进行计算,本报告中分别选用设计载荷进行计算,故采用设计载荷进行强度分析结果是偏安全的。
1.3 材料性能参数材料性能参数见表3,其中弹性模型取自JB4732-95表G-5,泊松比根据JB4732-95的公式(5-1)计算得到,设计应力强度分别根据JB4732-95的表6-2、表6-4、表6-6确定。
表3 材料性能参数性能温度55℃材料名称厚度设计应力强度弹性模型泊松比钢管20 ≤10mm 150 MPa 1.92×10³MPa μ=0.3锻钢Q345 ≤100mm 185 MPa 1.92×10³MPa μ=0.3钢板16MnR 26~36 188 MPa 1.92×10³MPa μ=0.3锻钢16Mn ≤300mm 168 MPa 1.92×10³MPa μ=0.32 结构有限元分析2.1 理论基础传统的压力容器标准与规范,一般属于“常规设计”,以弹性失效准则为理论基础,由材料力学方法或经验得到较为简单的适合于工程应用的计算公式,求出容器在载荷作用下的最大主应力,将其限制在许用值以内,即可确认容器的壁厚。
对容器局部区域的应力、高应力区的应力不做精细计算,以具体的结构形式限制,在计算公式中引入适当的系数或降低许用应力等方法予以控制,这是一种以弹性失效准则为基础,按最大主应力理论,以长期实践经验为依据而建立的一类标准。
塑性理论指出,由于弹性应力分析求得的各类名义应力对结构破坏的危险性是不同的,随着工艺条件的苛刻和容器的大型化,常规设计标准已经不能满足要求,尤其是在应力集中区域。
若不考虑应力集中而只按照简化公式进行设计,不是为安全而过分浪费材料就是安全系数不够。
基于各方面的考虑,产生了“分析设计”这种理念。
采用以极限载荷、安定载荷和疲劳寿命为界限的“塑性失效”与“弹性失效”相结合的“弹塑性失效”准则,要求对容器所需部位的应力做详细的分析,根据产生应力的原因及应力是否有自限性,分为三类共五种,即一次总体薄膜应力( Pm) 、一次局部薄膜应力( Pc) 、一次弯曲应力( Pb) 、二次应力( Q) 和峰值应力( F) 。
对于压力容器的应力分析,重要的是得到应力沿壁厚的分布规律及大小,可采用沿壁厚方向的“校核线”来代替校核截面。
而基于弹性力学理论的有限元分析方法,是一种对结构进行离散化后再求解的方法,为了获得所选“校核线”上的应力分布规律及大小,就必须对节点上的应力值进行后处理,即应力分类,根据对所选“校核线”上的应力进行分类,得出各类应力的值,若满足强度要求,则所设计容器是安全的。
按照JB4732-1995进行分析,整个计算采用ANSYS13.0软件,建立有限元模型,对设备进行强度应力分析。
2.2 有限元模型由于主要关心容器开孔处的应力分布规律及大小,为减少计算量,只取开孔处作为分析对象,且取其中较为关心的大孔进行分析校核。
分析设计所用的几何模型如图1所示。
在上下封头和筒体之间存在不连续的壁厚,由于差距和影响量较小,此处统一采用上下封头的设计厚度。
图1 压力容器模型2.3 划分网格在结构的应力分析中,采用ANSYS13.0中的solid187单元进行六面体划分,如图2所示。
图3~图5分别为上封头、筒体、下封头的有限元模型。
图2 压力容器有限元模型图3 上封头有限元模型图4 筒体有限元模型图5 下封头有限元模型2.4 边界条件模型只取开孔段作为分析对象,约束条件为: 筒体底部为固结,筒内施加内压,整体温度设定为55℃,整体受向下的重力,如图6所示。
图6 边界条件3 应力分析及评定3.1 应力分析在7.2MPa的设计压力下,压力容器的应力强度分布如图7所示。
内部应力强度如图8所示。
从图7、图8分析可知,应力主要集中于接头、开孔以及封头弯曲处。
以下将主要针对应力集中区域进行强度分析。
图7 应力强度图8 内部应力强度3.2 应力强度校核在设计载荷作用下的有限元模型进行应力强度分析,现对分析结果进行应力强度评定。
评定的依据为JB4732-1995《钢制压力容器-分析设计标准》。
应力线性化路径的原则为:(1)通过应力强度最大节点,并沿壁厚方向的最短距离设定线性化路径;(2)对于相对应力强度高的区域,沿壁厚方向设定路径。
设计工况(7.2MPa)下的评定线性化路径见图9~图11,线性化结果见附录1~7,具体评定如下表4.`图9 上封头评定路径图10 筒评定路径图11 下封头评定路径表4 应力强度证实表路径应力强度类型应力强度值/MPa应力强度许用极限/MPa评定结果线性结果A 一次局部薄膜应力强度SII 153.8 1.5Sm=282 通过附录1 一次+二次应力强度SIV 240.5 3Sm=564 通过附录1B 一次局部薄膜应力强度SII 141.8 1.5Sm=282 通过附录2 一次+二次应力强度SIV 174.1 3Sm=564 通过附录2C 一次局部薄膜应力强度SII 167.9 1.5Sm=282 通过附录3 一次+二次应力强度SIV 288.7 3Sm=564 通过附录3D 一次局部薄膜应力强度SII 73.88 1.5Sm=282 通过附录4 一次+二次应力强度SIV 177.2 3Sm=564 通过附录4E 一次局部薄膜应力强度SII 117.9 1.5Sm=282 通过附录5 一次+二次应力强度SIV 226 3Sm=564 通过附录5F 一次局部薄膜应力强度SII 281.9 1.5Sm=225 不通过附录6 一次+二次应力强度SIV 409.8 3Sm=450 通过附录6G 一次局部薄膜应力强度SII 136 1.5Sm=282 通过附录7 一次+二次应力强度SIV 247.5 3Sm=564 通过附录74 分析结论进油弯管需增加壁厚或者选用强度更高的材料。
附录4.1 上封头接头外侧PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SHANG1 DSYS= 0***** POST1 LINEARIZED STRESS LISTING *****INSIDE NODE = 65832 OUTSIDE NODE = 65108LOAD STEP 0 SUBSTEP= 1TIME= 1.0000 LOAD CASE= 0THE FOLLOWING X,Y,Z STRESSES ARE IN THE GLOBAL COORDINATE SYSTEM.** MEMBRANE **SX SY SZ SXY SYZ SXZ0.3095E+08 0.1217E+09 0.1575E+09 -0.4562E+07 -0.5633E+07 0.4286E+08S1 S2 S3 SINT SEQV0.1716E+09 0.1209E+09 0.1773E+08 0.1538E+09 0.1358E+09** BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.2878E+08 0.3962E+08 0.6961E+08 -0.5587E+07 -0.2948E+07 0.4234E+08C 0.000 0.000 0.000 0.000 0.000 0.000O -0.2878E+08 -0.3962E+08 -0.6961E+08 0.5587E+07 0.2948E+07 -0.4234E+08 S1 S2 S3 SINT SEQVI 0.9673E+08 0.3937E+08 0.1924E+07 0.9480E+08 0.8270E+08C 0.000 0.000 0.000 0.000 0.000O -0.1924E+07 -0.3937E+08 -0.9673E+08 0.9480E+08 0.8270E+08** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.5974E+08 0.1613E+09 0.2271E+09 -0.1015E+08 -0.8581E+07 0.8521E+08 C 0.3095E+08 0.1217E+09 0.1575E+09 -0.4562E+07 -0.5633E+07 0.4286E+08 O 0.2172E+07 0.8207E+08 0.8790E+08 0.1025E+07 -0.2685E+07 0.5227E+06 S1 S2 S3 SINT SEQVI 0.2642E+09 0.1602E+09 0.2373E+08 0.2405E+09 0.2089E+09C 0.1716E+09 0.1209E+09 0.1773E+08 0.1538E+09 0.1358E+09O 0.8895E+08 0.8104E+08 0.2155E+07 0.8679E+08 0.8312E+08** PEAK ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.2811E+07 0.3018E+08 0.1030E+09 -0.4383E+07 -0.1327E+08 0.3888E+08 C -0.1887E+07 -0.5117E+07 -0.1999E+08 0.1399E+06 0.2935E+07 -0.6501E+07 O -0.8673E+07 0.1310E+08 0.5577E+08 -0.1213E+07 -0.9238E+07 0.1515E+08 S1 S2 S3 SINT SEQVI 0.1185E+09 0.2797E+08 -0.1050E+08 0.1290E+09 0.1147E+09C 0.3219E+06 -0.4770E+07 -0.2254E+08 0.2287E+08 0.2079E+08O 0.6095E+08 0.1133E+08 -0.1208E+08 0.7303E+08 0.6459E+08** TOTAL ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.6255E+08 0.1915E+09 0.3301E+09 -0.1453E+08 -0.2185E+08 0.1241E+09 C 0.2907E+08 0.1166E+09 0.1375E+09 -0.4423E+07 -0.2698E+07 0.3636E+08 O -0.6501E+07 0.9517E+08 0.1437E+09 -0.1884E+06 -0.1192E+08 0.1567E+08 S1 S2 S3 SINT SEQV TEMPI 0.3823E+09 0.1882E+09 0.1369E+08 0.3686E+09 0.3193E+09 55.00 C 0.1490E+09 0.1162E+09 0.1788E+08 0.1312E+09 0.1182E+09O 0.1480E+09 0.9250E+08 -0.8129E+07 0.1561E+09 0.1370E+09 55.00 4.2 上封头接头内侧PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SHANG2 DSYS= 0***** POST1 LINEARIZED STRESS LISTING *****INSIDE NODE = 65118 OUTSIDE NODE = 65792LOAD STEP 0 SUBSTEP= 1TIME= 1.0000 LOAD CASE= 0THE FOLLOWING X,Y,Z STRESSES ARE IN THE GLOBAL COORDINATE SYSTEM.** MEMBRANE **SX SY SZ SXY SYZ SXZ0.2875E+08 0.1579E+09 0.1366E+09 0.3146E+07 -0.1770E+08 0.1555E+08S1 S2 S3 SINT SEQV0.1681E+09 0.1289E+09 0.2631E+08 0.1418E+09 0.1268E+09** BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI -0.2288E+07 0.1513E+08 -0.9214E+06 -0.2957E+08 -0.8940E+06 0.1769E+08C 0.000 0.000 0.000 0.000 0.000 0.000O 0.2288E+07 -0.1513E+08 0.9214E+06 0.2957E+08 0.8940E+06 -0.1769E+08 S1 S2 S3 SINT SEQVI 0.4056E+08 0.2355E+07 -0.3099E+08 0.7155E+08 0.6201E+08C 0.000 0.000 0.000 0.000 0.000O 0.3099E+08 -0.2355E+07 -0.4056E+08 0.7155E+08 0.6201E+08** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.2646E+08 0.1731E+09 0.1357E+09 -0.2642E+08 -0.1859E+08 0.3324E+08 C 0.2875E+08 0.1579E+09 0.1366E+09 0.3146E+07 -0.1770E+08 0.1555E+08 O 0.3104E+08 0.1428E+09 0.1376E+09 0.3271E+08 -0.1680E+08 -0.2141E+07 S1 S2 S3 SINT SEQVI 0.1896E+09 0.1313E+09 0.1443E+08 0.1751E+09 0.1545E+09C 0.1681E+09 0.1289E+09 0.2631E+08 0.1418E+09 0.1268E+09O 0.1628E+09 0.1265E+09 0.2212E+08 0.1407E+09 0.1265E+09** PEAK ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI -0.2802E+08 0.7015E+08 0.3489E+08 0.1126E+08 -0.3272E+08 0.2888E+07 C 0.4063E+07 -0.2083E+08 -0.9641E+07 0.4300E+06 0.9030E+07 -0.2299E+07 O -0.2077E+08 0.6375E+08 0.3106E+08 0.3320E+07 -0.2951E+08 0.4282E+07 S1 S2 S3 SINT SEQVI 0.9026E+08 0.1683E+08 -0.3008E+08 0.1203E+09 0.1051E+09C 0.4493E+07 -0.4967E+07 -0.2593E+08 0.3043E+08 0.2697E+08O 0.8115E+08 0.1448E+08 -0.2159E+08 0.1027E+09 0.9028E+08** TOTAL ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI -0.1555E+07 0.2432E+09 0.1706E+09 -0.1516E+08 -0.5131E+08 0.3613E+08 C 0.3281E+08 0.1371E+09 0.1270E+09 0.3576E+07 -0.8666E+07 0.1325E+08 O 0.1027E+08 0.2066E+09 0.1686E+09 0.3603E+08 -0.4632E+08 0.2141E+07 S1 S2 S3 SINT SEQV TEMPI 0.2731E+09 0.1481E+09 -0.8923E+07 0.2820E+09 0.2448E+09 55.00C 0.1422E+09 0.1239E+09 0.3077E+08 0.1114E+09 0.1035E+09O 0.2413E+09 0.1410E+09 0.3194E+07 0.2381E+09 0.2070E+09 55.00 4.3 上封头壁厚PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SHANG3 DSYS= 0***** POST1 LINEARIZED STRESS LISTING *****INSIDE NODE = 49272 OUTSIDE NODE = 48686LOAD STEP 0 SUBSTEP= 1TIME= 1.0000 LOAD CASE= 0THE FOLLOWING X,Y,Z STRESSES ARE IN THE GLOBAL COORDINATE SYSTEM.** MEMBRANE **SX SY SZ SXY SYZ SXZ0.5762E+08 -0.3263E+08 0.5386E+07 -0.2845E+08 0.5323E+08 -0.3732E+08S1 S2 S3 SINT SEQV0.9774E+08 0.2812E+07 -0.7018E+08 0.1679E+09 0.1458E+09** BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.8246E+08 0.5349E+08 0.6135E+08 -0.4608E+08 0.1814E+08 -0.6625E+08C 0.000 0.000 0.000 0.000 0.000 0.000O -0.8246E+08 -0.5349E+08 -0.6135E+08 0.4608E+08 -0.1814E+08 0.6625E+08 S1 S2 S3 SINT SEQVI 0.1599E+09 0.3910E+08 -0.1731E+07 0.1617E+09 0.1456E+09C 0.000 0.000 0.000 0.000 0.000O 0.1731E+07 -0.3910E+08 -0.1599E+09 0.1617E+09 0.1456E+09** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.1401E+09 0.2085E+08 0.6673E+08 -0.7453E+08 0.7138E+08 -0.1036E+09 C 0.5762E+08 -0.3263E+08 0.5386E+07 -0.2845E+08 0.5323E+08 -0.3732E+08 O -0.2484E+08 -0.8612E+08 -0.5596E+08 0.1763E+08 0.3509E+08 0.2893E+08 S1 S2 S3 SINT SEQVI 0.2575E+09 0.1390E+07 -0.3119E+08 0.2887E+09 0.2738E+09C 0.9774E+08 0.2812E+07 -0.7018E+08 0.1679E+09 0.1458E+09O 0.5260E+07 -0.6292E+08 -0.1093E+09 0.1145E+09 0.9977E+08** PEAK ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.1793E+05 0.4542E+07 0.1210E+08 -0.9771E+07 0.8742E+07 -0.8485E+07 C -0.8383E+06 -0.3266E+07 -0.6772E+07 0.5765E+07 -0.4293E+07 0.4571E+07 O 0.2142E+07 0.6671E+07 0.1298E+08 -0.1070E+08 0.7170E+07 -0.8071E+07 S1 S2 S3 SINT SEQVI 0.2435E+08 0.1700E+06 -0.7864E+07 0.3221E+08 0.2904E+08C 0.3935E+07 -0.1194E+07 -0.1362E+08 0.1755E+08 0.1563E+08O 0.2492E+08 0.3610E+07 -0.6740E+07 0.3166E+08 0.2796E+08** TOTAL ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.1401E+09 0.2539E+08 0.7883E+08 -0.8431E+08 0.8012E+08 -0.1121E+09 C 0.5678E+08 -0.3590E+08 -0.1386E+07 -0.2269E+08 0.4894E+08 -0.3275E+08 O -0.2269E+08 -0.7945E+08 -0.4298E+08 0.6930E+07 0.4226E+08 0.2086E+08S1 S2 S3 SINT SEQV TEMPI 0.2786E+09 -0.1741E+07 -0.3249E+08 0.3110E+09 0.2969E+09 55.00C 0.8656E+08 0.3481E+07 -0.7054E+08 0.1571E+09 0.1361E+09O 0.2746E+07 -0.4023E+08 -0.1076E+09 0.1104E+09 0.9638E+08 55.004.4 筒体上PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= TONGS DSYS= 0***** POST1 LINEARIZED STRESS LISTING *****INSIDE NODE = 62861 OUTSIDE NODE = 59472LOAD STEP 0 SUBSTEP= 1TIME= 1.0000 LOAD CASE= 0THE FOLLOWING X,Y,Z STRESSES ARE IN THE GLOBAL COORDINATE SYSTEM.** MEMBRANE **SX SY SZ SXY SYZ SXZ0.9535E+08 0.4923E+08 0.1197E+09 -0.9268E+07 0.3511E+06 -0.6336E+07S1 S2 S3 SINT SEQV0.1213E+09 0.9551E+08 0.4742E+08 0.7388E+08 0.6494E+08** BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.6888E+08 0.2537E+08 0.3977E+08 -0.6378E+08 0.1063E+08 -0.7203E+07C 0.000 0.000 0.000 0.000 0.000 0.000O -0.6888E+08 -0.2537E+08 -0.3977E+08 0.6378E+08 -0.1063E+08 0.7203E+07 S1 S2 S3 SINT SEQVI 0.1164E+09 0.3821E+08 -0.2060E+08 0.1370E+09 0.1191E+09C 0.000 0.000 0.000 0.000 0.000O 0.2060E+08 -0.3821E+08 -0.1164E+09 0.1370E+09 0.1191E+09** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.1642E+09 0.7460E+08 0.1594E+09 -0.7305E+08 0.1099E+08 -0.1354E+08 C 0.9535E+08 0.4923E+08 0.1197E+09 -0.9268E+07 0.3511E+06 -0.6336E+07 O 0.2647E+08 0.2386E+08 0.7988E+08 0.5452E+08 -0.1028E+08 0.8677E+06 S1 S2 S3 SINT SEQVI 0.2109E+09 0.1538E+09 0.3364E+08 0.1772E+09 0.1567E+09C 0.1213E+09 0.9551E+08 0.4742E+08 0.7388E+08 0.6494E+08O 0.8664E+08 0.7352E+08 -0.2995E+08 0.1166E+09 0.1106E+09** PEAK ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.9953E+06 0.6633E+08 0.1526E+08 -0.8254E+08 0.1203E+08 -0.4368E+07 C -0.1499E+08 -0.1079E+08 -0.6145E+07 0.1518E+08 -0.1492E+07 0.1905E+07 O 0.2096E+08 0.3066E+08 0.1161E+08 -0.7721E+07 -0.1279E+06 -0.9362E+06 S1 S2 S3 SINT SEQVI 0.1238E+09 0.1399E+08 -0.5525E+08 0.1791E+09 0.1564E+09C 0.2438E+07 -0.5886E+07 -0.2848E+08 0.3092E+08 0.2771E+08O 0.3493E+08 0.1684E+08 0.1146E+08 0.2348E+08 0.2130E+08** TOTAL ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.1652E+09 0.1409E+09 0.1747E+09 -0.1556E+09 0.2301E+08 -0.1791E+08 C 0.8036E+08 0.3843E+08 0.1135E+09 0.5914E+07 -0.1141E+07 -0.4431E+07O 0.4743E+08 0.5452E+08 0.9149E+08 0.4679E+08 -0.1041E+08 -0.6848E+05 S1 S2 S3 SINT SEQV TEMPI 0.3150E+09 0.1689E+09 -0.3117E+07 0.3182E+09 0.2758E+09 55.00C 0.1141E+09 0.8055E+08 0.3761E+08 0.7653E+08 0.6644E+08O 0.1032E+09 0.8678E+08 0.3481E+07 0.9970E+08 0.9259E+08 55.004.5 筒体左PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= TONGZ DSYS= 0***** POST1 LINEARIZED STRESS LISTING *****INSIDE NODE = 59023 OUTSIDE NODE = 63007LOAD STEP 0 SUBSTEP= 1TIME= 1.0000 LOAD CASE= 0THE FOLLOWING X,Y,Z STRESSES ARE IN THE GLOBAL COORDINATE SYSTEM.** MEMBRANE **SX SY SZ SXY SYZ SXZ0.1084E+09 0.4348E+08 0.8898E+08 -0.6526E+06 -0.5380E+08 -0.5203E+07S1 S2 S3 SINT SEQV0.1256E+09 0.1076E+09 0.7694E+07 0.1179E+09 0.1100E+09** BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.5152E+08 0.6348E+08 0.7522E+08 0.1480E+07 -0.5553E+08 0.4146E+07C 0.000 0.000 0.000 0.000 0.000 0.000O -0.5152E+08 -0.6348E+08 -0.7522E+08 -0.1480E+07 0.5553E+08 -0.4146E+07S1 S2 S3 SINT SEQVI 0.1252E+09 0.5185E+08 0.1312E+08 0.1121E+09 0.9864E+08C 0.000 0.000 0.000 0.000 0.000O -0.1312E+08 -0.5185E+08 -0.1252E+09 0.1121E+09 0.9864E+08** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.1599E+09 0.1070E+09 0.1642E+09 0.8279E+06 -0.1093E+09 -0.1057E+07 C 0.1084E+09 0.4348E+08 0.8898E+08 -0.6526E+06 -0.5380E+08 -0.5203E+07 O 0.5685E+08 -0.2001E+08 0.1375E+08 -0.2133E+07 0.1722E+07 -0.9350E+07 S1 S2 S3 SINT SEQVI 0.2486E+09 0.1599E+09 0.2256E+08 0.2260E+09 0.1973E+09C 0.1256E+09 0.1076E+09 0.7694E+07 0.1179E+09 0.1100E+09O 0.5887E+08 0.1186E+08 -0.2013E+08 0.7900E+08 0.6882E+08** PEAK ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.2352E+08 0.1675E+08 0.5711E+08 -0.1631E+07 -0.6331E+08 0.2876E+06 C -0.2928E+07 -0.1661E+07 -0.5356E+07 0.4859E+06 0.6743E+07 0.3608E+06 O -0.3862E+07 -0.4398E+07 -0.1870E+08 -0.3110E+07 -0.5399E+07 -0.2107E+07 S1 S2 S3 SINT SEQVI 0.1034E+09 0.2352E+08 -0.2955E+08 0.1329E+09 0.1159E+09C 0.3540E+07 -0.2984E+07 -0.1050E+08 0.1404E+08 0.1217E+08O -0.6846E+06 -0.5239E+07 -0.2104E+08 0.2035E+08 0.1850E+08** TOTAL ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.1834E+09 0.1237E+09 0.2213E+09 -0.8033E+06 -0.1726E+09 -0.7694E+06C 0.1054E+09 0.4182E+08 0.8362E+08 -0.1667E+06 -0.4706E+08 -0.4843E+07O 0.5299E+08 -0.2440E+08 -0.4946E+07 -0.5243E+07 -0.3677E+07 -0.1146E+08 S1 S2 S3 SINT SEQV TEMPI 0.3519E+09 0.1834E+09 -0.6907E+07 0.3588E+09 0.3109E+09 55.00C 0.1158E+09 0.1040E+09 0.1114E+08 0.1046E+09 0.9925E+08O 0.5542E+08 -0.6003E+07 -0.2578E+08 0.8120E+08 0.7334E+08 55.004.6 下封头接着外侧PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= XIAJ DSYS= 0***** POST1 LINEARIZED STRESS LISTING *****INSIDE NODE = 64836 OUTSIDE NODE = 64238LOAD STEP 0 SUBSTEP= 1TIME= 1.0000 LOAD CASE= 0THE FOLLOWING X,Y,Z STRESSES ARE IN THE GLOBAL COORDINATE SYSTEM.** MEMBRANE **SX SY SZ SXY SYZ SXZ0.9479E+07 0.2612E+09 0.8040E+07 0.2201E+07 -0.1005E+08 0.2806E+08S1 S2 S3 SINT SEQV0.2616E+09 0.3670E+08 -0.1958E+08 0.2812E+09 0.2577E+09** BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI -0.1723E+09 -0.1823E+08 -0.3320E+07 -0.3935E+07 -0.3810E+07 -0.5005E+07C 0.000 0.000 0.000 0.000 0.000 0.000O 0.1723E+09 0.1823E+08 0.3320E+07 0.3935E+07 0.3810E+07 0.5005E+07 S1 S2 S3 SINT SEQVI -0.2311E+07 -0.1899E+08 -0.1726E+09 0.1703E+09 0.1626E+09C 0.000 0.000 0.000 0.000 0.000O 0.1726E+09 0.1899E+08 0.2311E+07 0.1703E+09 0.1626E+09** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI -0.1629E+09 0.2430E+09 0.4720E+07 -0.1734E+07 -0.1386E+08 0.2306E+08 C 0.9479E+07 0.2612E+09 0.8040E+07 0.2201E+07 -0.1005E+08 0.2806E+08 O 0.1818E+09 0.2794E+09 0.1136E+08 0.6136E+07 -0.6241E+07 0.3307E+08 S1 S2 S3 SINT SEQVI 0.2438E+09 0.7007E+07 -0.1660E+09 0.4098E+09 0.3563E+09C 0.2616E+09 0.3670E+08 -0.1958E+08 0.2812E+09 0.2577E+09O 0.2799E+09 0.1878E+09 0.4979E+07 0.2749E+09 0.2424E+09** PEAK ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI -0.7484E+05 -7918. -1442. -1709. -1654. -2173.C 0.1144 0.2503E-01 0.4452E-02 0.2782E-02 -0.1260E-03 0.5651E-02 O 0.7484E+05 7918. 1442. 1709. 1654. 2173. S1 S2 S3 SINT SEQVI -1004. -8245. -0.7495E+05 0.7394E+05 0.7060E+05C 0.1148 0.2495E-01 0.4159E-02 0.1106 0.1018O 0.7495E+05 8245. 1004. 0.7394E+05 0.7060E+05** TOTAL ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI -0.1629E+09 0.2430E+09 0.4718E+07 -0.1736E+07 -0.1386E+08 0.2305E+08C 0.9479E+07 0.2612E+09 0.8040E+07 0.2201E+07 -0.1005E+08 0.2806E+08O 0.1819E+09 0.2794E+09 0.1136E+08 0.6137E+07 -0.6239E+07 0.3307E+08 S1 S2 S3 SINT SEQV TEMPI 0.2438E+09 0.7004E+07 -0.1661E+09 0.4098E+09 0.3564E+09 55.00C 0.2616E+09 0.3670E+08 -0.1958E+08 0.2812E+09 0.2577E+09O 0.2799E+09 0.1878E+09 0.4982E+07 0.2749E+09 0.2424E+09 55.004.7 下封头壁厚PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= XIAB DSYS= 0***** POST1 LINEARIZED STRESS LISTING *****INSIDE NODE = 51092 OUTSIDE NODE = 262583LOAD STEP 0 SUBSTEP= 1TIME= 1.0000 LOAD CASE= 0THE FOLLOWING X,Y,Z STRESSES ARE IN THE GLOBAL COORDINATE SYSTEM.** MEMBRANE **SX SY SZ SXY SYZ SXZ0.9285E+07 0.9944E+08 0.1115E+09 -0.2204E+08 0.1019E+08 -0.3489E+08S1 S2 S3 SINT SEQV0.1313E+09 0.9366E+08 -0.4677E+07 0.1360E+09 0.1216E+09** BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.2032E+08 0.9838E+08 0.1083E+09 -0.1691E+08 0.3118E+07 -0.2957E+08C 0.000 0.000 0.000 0.000 0.000 0.000 O -0.2032E+08 -0.9838E+08 -0.1083E+09 0.1691E+08 -0.3118E+07 0.2957E+08 S1 S2 S3 SINT SEQVI 0.1204E+09 0.9785E+08 0.8691E+07 0.1118E+09 0.1023E+09C 0.000 0.000 0.000 0.000 0.000O -0.8691E+07 -0.9785E+08 -0.1204E+09 0.1118E+09 0.1023E+09** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.2961E+08 0.1978E+09 0.2198E+09 -0.3894E+08 0.1331E+08 -0.6446E+08 C 0.9285E+07 0.9944E+08 0.1115E+09 -0.2204E+08 0.1019E+08 -0.3489E+08 O -0.1104E+08 0.1060E+07 0.3245E+07 -0.5129E+07 0.7070E+07 -0.5317E+07 S1 S2 S3 SINT SEQVI 0.2515E+09 0.1917E+09 0.4017E+07 0.2475E+09 0.2237E+09C 0.1313E+09 0.9366E+08 -0.4677E+07 0.1360E+09 0.1216E+09O 0.1170E+08 -0.4982E+07 -0.1345E+08 0.2515E+08 0.2216E+08** PEAK ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.8972E+07 0.6805E+07 0.3698E+07 -0.6619E+06 -0.2460E+07 0.4222E+07 C -0.8141E+06 -0.1526E+07 -0.1713E+06 -0.1567E+05 0.2539E+06 -0.4170E+06 O 0.1397E+07 0.2492E+07 0.2571E+06 0.2811E+05 -0.4377E+06 0.7337E+06 S1 S2 S3 SINT SEQVI 0.1196E+08 0.6741E+07 0.7727E+06 0.1119E+08 0.9697E+07C 0.6854E+05 -0.1003E+07 -0.1577E+07 0.1646E+07 0.1447E+07O 0.2587E+07 0.1724E+07 -0.1641E+06 0.2751E+07 0.2437E+07** TOTAL ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.3858E+08 0.2046E+09 0.2235E+09 -0.3960E+08 0.1085E+08 -0.6024E+08 C 0.8471E+07 0.9792E+08 0.1114E+09 -0.2205E+08 0.1044E+08 -0.3530E+08 O -0.9639E+07 0.3553E+07 0.3502E+07 -0.5101E+07 0.6632E+07 -0.4583E+07 S1 S2 S3 SINT SEQV TEMPI 0.2524E+09 0.2001E+09 0.1423E+08 0.2382E+09 0.2168E+09 55.00 C 0.1312E+09 0.9226E+08 -0.5661E+07 0.1368E+09 0.1221E+09O 0.1230E+08 -0.3093E+07 -0.1179E+08 0.2409E+08 0.2113E+08 55.00。