2020年北京市崇文区八年级第二学期期末学业质量监测数学试题含解析
- 格式:doc
- 大小:835.00 KB
- 文档页数:21
北京市 八年级下学期期末考试数学试卷试卷满分:100分,考试时间:100分钟一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.下列各组数中,以它们为边长的线段能构成直角三角形的是( ).A .31,41,51 B .3,4,5 C .2,3,4 D .1,1,32.下列图案中,是中心对称图形的是( ).3.将一元二次方程x 2-6x -5=0化成(x -3)2=b 的形式,则b 等于( ).A .4B .-4C .14D .-14 4.一次函数12+=x y 的图象不.经过( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.已知四边形ABCD 是平行四边形,下列结论中不正确...的是( ). A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC =90º时,它是矩形D .当AC =BD 时,它是正方形6.如图,矩形ABCD 的对角线AC ,BD 交于点O ,AC =4cm , ∠AOD =120º,则BC 的长为( ).A . 34 B. 4 C . 32 D. 27.中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:这些运动员跳高成绩的中位数和众数分别是( ). A .1.65,1.70 B .1.70,1.65 C .1.70,1.70 D .3,58.如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A为(0,1),点C 在第一象限,对角线BD 与x 轴平行. 直线y =x +3与x 轴、y 轴分别交于点E ,F . 将菱形ABCD 沿x 轴向左平移m 个单位,当点D 落在△EOF 的内部时(不包括三角形的边),m 的值可能是( ). A .3 B. 4 C. 5 D. 6二、填空题(本题共25分,第9~15题每小题3分,第16题4分) 9.一元二次方程022=-x x 的根是 .10.如果直线x y -=向上平移3个单位后得到直线AB ,那么直线AB 的解析式是_________. 11.如果菱形的两条对角线长分别为6和8,那么该菱形的面积为_________. 12.如图,Rt △ABC 中,∠BAC =90°,D ,E ,F 分别为AB ,BC ,AC 的中点,已知DF =3,则AE = .13.若点1(1,)A y 和点2(2,)B y 都在一次函数2+-=x y 的图象上,则y 1 y 2(选择“>”、“<”、“=”填空).14.在平面直角坐标系xOy 中,点A 的坐标为(3,2),若将线段OA 绕点O 顺时针旋转90°得到线段A O ',则点A '的坐标是 .15.如图,直线1l :1y x =+与直线2l :y mx n =+相交于点P (a ,2) 则关于x 的不等式1x +≥mx n +的解集为 .16.如图1,五边形ABCDE 中,∠A =90°,AB ∥DE ,AE ∥BC ,点F ,G 分别是BC ,AE 的中点. 动点P 以每秒2cm 的速度在五边形ABCDE 的边上运动,运动路径为F →C →D →E →G ,相应的△ABP 的面积y (cm 2)关于运动时间t (s)的函数图象如图2所示.若AB =10cm ,则(1)图1中BC 的长为_______cm ;(2) 图2中a 的值为_________.三、解答题(本题共30分,第17题5分,第18~20题每小题6分,第21题7分)17.解一元二次方程:2420x x +-=. 解:18.已知:在平面直角坐标系xOy 中,一次函数4y kx =+的图象与y 轴交于点A ,与x 轴的正半轴交于点B ,2OA OB =. (1)求点A 、点B 的坐标;(2)求一次函数的解析式.解:19.已知:如图,点A 是直线l 外一点,B ,C 两点在直线l 上,90BAC ∠=︒,2BC BA =. (1)按要求作图:(保留作图痕迹) ①以A 为圆心,BC 为半径作弧,再以C 为圆心,AB 为半径作弧,两弧交于点D ; ②作出所有以A ,B ,C ,D 为顶点的四边形;(2)比较在(1)中所作出的线段BD 与AC 的大小关系. 解:(1)(2)BD AC .20.已知:如图, ABCD 中,E ,F 两点在对角线BD 上,BE=DF . (1)求证:AE=CF ;(2)当四边形AECF 为矩形时,直接写出BD ACBE-的值.(1)证明:(2) 答:当四边形AECF 为矩形时,BD ACBE-= .21.已知关于x 的方程2(2)210x k x k -++-=.(1)求证:方程总有两个不相等的实数根;(2)如果方程的一个根为3x =,求k 的值及方程的另一根. (1)证明:(2)解:四、解答题(本题7分)22.北京是水资源缺乏的城市,为落实水资源管理制度,促进市民节约水资源,北京市发改委在对居民年用水量进行统计分析的基础上召开水价听证会后发布通知,从2014年5月1日起北京市居民用水实行阶梯水价,将居民家庭全年用水量划分为三档,水 价分档递增,对于人口为5人(含)以下的家庭,水价标准如图1所示,图2是小明 家在未实行新水价方案时的一张水费单(注:水价由三部分组成).若执行新水价方 案后,一户3口之家应交水费为y (单位:元),年用水量为x (单位:3m ),y 与x 之间的函数图象如图3所示.五、解答题(本题共14分,每小题7分)23.已知:正方形ABCD 的边长为6,点E 为BC 的中点,点F 在AB 边上,2BF AF .图1 图2画出EDF ∠,猜想EDF ∠的度数并写出计算过程. 解: EDF ∠的度数为 . 计算过程如下:24.已知:如图,在平面直角坐标系xOy 中,(0,4)A ,(0,2)B ,点C 在x 轴的正半轴上, 点D 为OC 的中点. (1) 求证:BD ∥AC ;xO (2) 当BD 与AC 的距离等于1时,求点C 的坐标;(3)如果OE ⊥AC 于点E ,当四边形ABDE 为平行四边形时,求直线AC 的解析式. 解:(1)(2)(3)第二学期期末试卷八年级数学参考答案及评分标准一、选择题(本题共24分,每小题3分)二、填空题(本题共25分,第9~15题每小题3分,第16题4分)9.120,2x x ==. 10.3y x =-+. 11.24. 12.3. 13.>. 14.(2,3)-. 15.x ≥1(阅卷说明:若填x ≥a 只得1分) 16.(1)16;(2)17.(每空2分)三、解答题(本题共30分,第17题5分,第18~20题每小题6分,第21题7分) 17.解:2420x x +-=.1a =,4b =,2c =-. …………………………………………………………1分 224441(2)24b ac ∆=-=-⨯⨯-=.…………………………………………… 2分方程有两个不相等的实数根x ………………………… 3分==.所以原方程的根为12x =-+22x =- (各1分)……………… 5分 18.解:(1)∵ 一次函数4y kx =+的图象与y 轴的交点为A ,∴ 点A 的坐标为(0,4)A .………………………………………………… 1分 ∴ 4OA =.………………………………………………………………… 2分 ∵ 2OA OB =,∴ 2OB =.………………………………………………………………… 3分 ∵ 一次函数4y kx =+的图象与x 轴正半轴的交点为B ,∴ 点B 的坐标为(2,0)B(2)将(2,0)B 的坐标代入4y kx =+,得02= 解得 2k =-.………………………… 5 ∴ 一次函数的解析式为 24y x =-+.………………………………… 619.解:(1)按要求作图如图1所示,四边形1ABCD 和四边形2ABD C 分别是所求作的四边形;………………………………… 4分 (2)BD ≥ AC . …………………………………………………………… 6分 阅卷说明:第(1)问正确作出一个四边形得3分;第(2)问只填BD >AC 或BD =AC 只得1分.20.(1)证明:如图2.∵ 四边形ABCD 是平行四边形,∴ AB ∥CD ,AB =CD .…………… 1分 ∴ ∠1=∠2.……………………… 2分在△ABE 和△CDF 中,, 12, , AB CD BE DF =⎧⎪∠=∠⎨⎪=⎩………………………3分 图1图2D∴ △ABE ≌△CDF .(SAS ) ………………………………………… 4分 ∴ AE=CF .…………………………………………………………… 5分(2) 当四边形AECF 为矩形时,BD ACBE-= 2 . ………………………………6分 21.(1)证明:∵ 2(2)210x k x k -++-=是一元二次方程,[]2224(2)41(21)48b ac k k k k ∆=-=-+-⨯⨯-=-+ ………… 1分2(2)4k =-+,…………………………………………………… 2分 无论k 取何实数,总有2(2)k -≥0,2(2)4k -+>0.……………… 3分 ∴ 方程总有两个不相等的实数根.…………………………………… 4分 (2)解:把3x =代入方程2(2)210x k x k -++-=,有233(2)210k k -++-=.………………………………………………… 5分 整理,得 20k -=.解得 2k =.………………………………………………………………… 6分 此时方程可化为 2430x x -+=. 解此方程,得 11x =,23x =.∴ 方程的另一根为1x =.………………………………………………… 7分四、解答题(本题7分)分解法二:当180<x ≤260时,设y 与x 之间的函数关系式为y kx b =+(k ≠0). 由(2)可知:(180,900)A ,(260,1460)B .得180900,2601460.k b k b +=⎧⎨+=⎩ 解得7,360.k b =⎧⎨=-⎩∴ 7360y x =- .……………………………………………… 7分 五、解答题(本题共14分,每小题7分)23.解:所画EDF ∠如图3所示.……………………………………………………… 1分 EDF ∠的度数为45. …………………………… 2分解法一:如图4,连接EF ,作FG ⊥DE 于点G . …… 3分 ∵ 正方形ABCD 的边长为6,∴ AB=BC=CD= AD =6,90A B C ∠=∠=∠=︒.EB∵ 点E 为BC 的中点, ∴ BE=EC=3.∵ 点F 在AB 边上,2BF AF =, ∴ AF =2,BF =4.在Rt △ADF 中,90A ∠=︒, 222226240DF AD AF =+=+=. 在Rt △BEF ,Rt △CDE 中,同理有222223425EF BE BF =+=+=,222226345DE CD CE =+=+=.在Rt △DFG 和Rt △EFG 中,有 22222FG DF DG EF EG =-=-.设DG x =,则224025)x x -=-. ……………………………… 4分 整理,得60=.解得x =即DG =. ………………………………………… 5分 ∴FG =∴ DG FG =.……………………………………………………………… 6分 ∵ 90DGF ∠=︒,∴ 180452DGFEDF ︒-∠∠==︒. ………………………………………7分 解法二:如图5,延长BC 到点H ,使CH=AF ,连接DH ,EF .………………… 3分 ∵ 正方形ABCD 的边长为6,∴ AB=BC=CD=AD =6,=90A B ADC DCE ∠=∠=∠=∠︒. ∴ 180=90DCH DCE ∠=︒-∠︒,A DCH ∠=∠. 在△ADF 和△CDH 中,, , , AD CD A DCH AF CH =⎧⎪∠=∠⎨⎪=⎩∴ △ADF ≌△CDH .(SAS ) ……………4分 ∴ DF=DH , ① 12∠=∠.∴ 2190FDH FDC FDC ADC ∠=∠+∠=∠+∠=∠=︒.……………… 5分∵ 点E 为BC 的中点, ∴ BE=EC=3.图4E B 图5∵ 点F 在AB 边上,2BF AF =, ∴ CH= AF=2,BF=4. ∴ 5EH CE CH =+=. 在Rt △BEF 中,90B ∠=︒,5EF =. ∴ EF EH =.② 又∵ DE= DE ,③由①②③得△DEF ≌△DEH .(SSS ) …………………………………… 6分∴ 452FDHEDF EDH ∠∠=∠==︒. ………………………………… 7分 24.解:(1)∵ (0,4)A ,(0,2)B ,∴ OA =4,OB =2,点B 为线段OA 的中点.…………………………… 1分 ∵ 点D 为OC 的中点,∴ BD ∥AC .……………………………………………………………… 2分 (2)如图6,作BF ⊥AC 于点F ,取AB 的中点G ,则(0,3)G .∵ BD ∥AC ,BD 与AC 的距离等于1, ∴ 1BF =.∵ 在Rt △ABF 中,90AFB ∠=︒,AB =2,点G 为AB 的中点,∴ 12ABFG BG ===. ∴ △BFG 是等边三角形,60ABF ∠=︒. ∴ 30BAC ∠=︒.设OC x =,则2AC x =,OA =.∵ OA =4,∴x =.……………………………………… 3分∵ 点C 在x 轴的正半轴上,∴ 点C 的坐标为(3.……………………………………………… 4分(3)如图7,当四边形ABDE 为平行四边形时,AB ∥DE . ∴ DE ⊥OC .∵ 点D 为OC 的中点,∴ OE=EC . ∵ OE ⊥AC ,∴ 45OCA ∠=︒.∴ OC=OA =4.………………………………… 5分∵ 点C 在x 轴的正半轴上,∴ 点C 的坐标为(4,0).………………………………………………… 6分设直线AC 的解析式为y kx b =+(k ≠0).则40,4.k b b +=⎧⎨=⎩ 解得1,4.k b =-⎧⎨=⎩∴ 直线AC 的解析式为4y x =-+ .………………………………………7分。
北京市2020年〖人教版〗八年级数学下册期末复习试卷期末调研检测试卷(含答案)一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30 、x+2 、240x、22y x +中,最简二次根式有( )个。
A 、1 个B 、2 个C 、3 个D 、4个2.x 的取值范围为( ).A 、x ≥2B 、x ≠3C 、x ≥2或x ≠3D 、x ≥2且x ≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222C .3,4, 5D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )A .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( ) 7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >2 8、 在方差公式()()()[]2222121x x x x x x nS n -++-+-=中,下列说法不正确的是( )A. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47 (B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65二、填空题(本题共10小题,满分共30分)11.48-13-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30-23-= 12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13.平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD =cm 。
北京市崇文区2019-2020学年八年级第二学期期末教学质量检测数学试题一、选择题(每题只有一个答案正确)1.如图,过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B ;点2A 与点O 关于直线11A B 对称;过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B ;点3A 与点O 关于直线22A B 对称;过点3A 作x 轴的垂线,交直线2y x =于点3B ;按3B 此规律作下去,则点n B 的坐标为( )A .(2n ,2n-1)B .(12n -,2n )C .(2n+1,2n )D .(2n ,12n +)2.如图的图形中只能用其中一部分平移可以得到的是( )A .B .C .D .3.已知一组数据2、x 、7、3、5、3、2的众数是2,则这组数据的中位数是( )A .2B .2.5C .3D .54.小颖同学准备用26元买笔和笔记本,已知一支笔2元,一本笔记本3元,他买了5本笔记本,最多还能买多少支笔?设他还能买x 支笔,则列出的不等式为( )A .23526x +⨯≤B .23526x +⨯≥C .32526x +⨯≤D .32526x +⨯≥5.如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为( )A .2B 6C .236223+--D .23225+-6.下列等式中,从左到右的变形是因式分解的是( )A .()21x x x x +=+B .()233x xy x x y +-=-+ C .()226435x x x ++=+- D .()22211x x x ++=+ 7.下列汽车标志中,是中心对称图形的是( )A .B .C .D .8.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是2 1.6S =甲,2 2.3S =乙,2 3.1S =丙,2 3.6S =丁,你认为派谁去参赛更合适( )A .甲B .乙C .丙D .丁9.下列从左到右的变形,是因式分解的是( )A .2(a ﹣b)=2a ﹣2bB .221(a b)(a b)1-=-+++a bC .2224(2)x x x -+=-D .22282(2)(2)x y x y x y -=-+10.将直线y =﹣4x 向下平移2个单位长度,得到的直线的函数表达式为( )A .y =﹣4x ﹣2B .y =﹣4x+2C .y =﹣4x ﹣8D .y =﹣4x+8二、填空题11.如图,在ABC △中,10AB AC ==,AD 平分BAC ∠,点E 为AC 中点,则DE =_____.12.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设秒后两车间的距离为千米,关于的函数关系如图所示,则甲车的速度是______米/秒.13.如图,在数轴上点A 表示的实数是___.14.张师傅驾车从甲地到乙地匀速行驶,已知行驶中油箱剩余油量y (升)与行驶时间t (小时)之间的关系用如图的线段AB 表示,根据这个图象求出y 与t 之间的函数关系式为y=﹣7.5t+25,那么函数y=﹣7.5t+25中的常数﹣7.5表示的实际意义是_____.15.若0,k >0x >,则关于函数y kx =的结论:①y 随x 的增大而增大;②y 随x 的增大而减小;③y 恒为正值;④y 恒为负值.正确的是________.(直接写出正确结论的序号)16.如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =2,ON =6,点P 、Q 分别在边OB 、OA 上,则MP+PQ+QN 的最小值是_____.17.将直线21y x =-向上平移4个单位,得到直线_______。
北京市2020年〖人教版〗八年级数学下册期末复习试卷解析版创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校一.选择题1.分式无意义,则x的取值范围是()A.x>2B.x=2C.x≠2D.x<22.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.不等式组的解集在数轴上应表示为()A. B. C. D.4.内角和与外角和相等的多边形一定是()A. 八边形B. 六边形C. 五边形D. 四边形5.已知实数a、b,若a>b,则下列结论正确的是()A. a﹣5<b﹣5B. 2+a<2+bC.D. 3a>3b6.多项式x2﹣kx+9能用公式法分解因式,则k的值为()A. ±3B. 3C. ±6D. 67.若将(a、b均为正数)中的字母a、b的值分别扩大为原来的3倍,则分式的值()A. 扩大为原来的3倍B. 缩小为原来的C. 不变D. 缩小为原来的8.已知△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是30cm和19cm,则△ABC的腰和底边长分别为()A. 11cm和8cmB. 8cm和11cmC. 10cm和8cmD. 12cm和6cm9.施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A. ﹣=2B. ﹣=2C. ﹣=2D. ﹣=210.如图,在▱ABCD中,∠ABC=60°,AB=BC=6cm,点M、N分别在BC和CD上,且∠MAN=60°,则四边形AMCN的面积是多少()A. 6cm2B. 18cm2C. 9 cm2D. 8 cm2二.填空题11.因式分解:2x2﹣8=________.12.“a的3倍与12的差是一个非负数”用不等式表示为________.13.一个多边形的内角和为540°,则这个多边形的边数是________.14.分式方程= 的解是________.15.如图,在▱ABCD中,AB=5cm,AD=8cm,∠ABC的平分线交AD于E,交CD的延长线于点F,则DF=________.16.如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为智慧数:如3=22﹣1,5=32﹣22,7=42﹣32, 8=32﹣12, 9=52﹣42, 11=62﹣52…探索从1开始第20个智慧数是________.三.解答题17.解不等式:﹣1.18.先化简(1+ )÷ ,再代入一个你喜欢的整数求值.19.如图,方格纸中的每个小方格是边长为1个单位长度的正方形.(1)画出将Rt△ABC向右平移5个单位长度后的Rt△A1B1C1;(2)再将Rt△A1B1C1绕点C1顺时针旋转90°,画出旋转后的Rt△A2B2C1.四.解答题20.为了锻炼意志提高班级凝聚力,某校八年级学生决定全班参加“美丽佛山一路向前﹣﹣﹣50公里徒步”活动,从起点步行出发20分钟后,负责宣传的王老师骑自行车以2倍的速度原路追赶,结果在距起点10千米处追上,求学生步行的速度和王老师骑自行车的速度分别是多少?21.如图,同学们用直尺和三角板画平行线,将一块三角板ABC的一边AC贴着直尺推移到A1B1C1的位置.(1)这种画平行线的方法利用了怎样的移动?(2)连接BB1,证明得到的四边形ABB1A1是平行四边形.22.小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:一次函数与方程的关系:①一次函数的解析式就是一个二元一次方程;②点B的横坐标是方程①的解;③点C的坐标(x,y)中的x,y的值是方程组②的解一次函数与不等式的关系:①函数y=kx+b的函数值y小于0时,自变量x的取值范围就是不等式③的解集;②函数y=kx+b的函数值y大于0时,自变量x的取值范围就是不等式④的解集.(1)请根据以上方框中的内容在下面数学序号后写出相应的式子:①________;②________;③________;④________;(2)如果点C的坐标为(2,5),那么不等式kx+b≥k1x+b1的解集是________.五.解答题23.计算下列各式:(1)1﹣(2)(1﹣)(1﹣)(3)(1﹣)(1﹣)(1﹣)(4)请你根据上面算式所得的简便方法计算下式:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣)…(1﹣)24.为了保护环境,某企业决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如表.A 型B 型价格(万元/台)12 10处理污水量(吨/月)240 200年消耗费(万元/台)1 1预算要求,该企业购买污水处理设备的资金不高于105万元.(1)请问该企业有几种购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;(3)实际上,该企事业污水的处理方式有两种:A.交污水厂处理厂处理;B.企业购买设备自行处理.如果污水厂处理厂处理污水每吨收费10元,在第(2)问的条件下,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?25.我们把能平分四边形面积的直线称为“好线”.利用下面的作图,可以得到四边形的“好线”:如图1四边形ABCD中,取对角线BD的中点O,连接OA,OC,显然,折线AOC能平分四边形ABCD的面积,再过点O作OE∥AC交CD于E,则直线AE即为一条“好线”.(1)如图1,试说明直线AE是“好线”的理由;(2)如图2,AE为一条“好线”,F为AD边上的一点,请作出经过F点的“好线”,并说明理由;(3)如图3,五边形ABCDE是一块土地的示意图,经过多年开垦荒地,现已变成如图3所示的形状,但原块土地与开垦荒地的分界小路(折线CDE)还保留着,现在请你过E点修一条直路.要求直路左边的土地面积与原来一样多(只需对作图适当说明无需说明理由)答案解析部分一.<b >选择题</b>1.【答案】B 【考点】分式有意义的条件【解析】【解答】由题意得:x﹣2=0,解得x=2,故答案为:B.【分析】分式无意义则分式的分母为零,故此可得到关于x的方程,然后求得方程的解即可.2.【答案】C 【考点】中心对称及中心对称图形【解析】【解答】A、是轴对称图形,不是中心对称图形,A不符合题意;B、不是轴对称图形,也不是中心对称图形,B不符合题意;C、是轴对称图形,也是中心对称图形,C符合题意;D、是轴对称图形,不是中心对称图形,D不符合题意.故答案为:C.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.3.【答案】B 【考点】在数轴上表示不等式的解集【解析】【解答】不等式组的解集是≤x<2,在数轴上可表示为:故答案为:B.【分析】用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.4.【答案】D 【考点】多边形内角与外角【解析】【解答】多边形外角和=360°,根据题意,得(n﹣2)•180°=360°,解得n=4.故答案为:D.【分析】任意多边形的外角和为360°,设多边形的边数为n,然后依据多边形的内角和公式列方程求解即可.5.【答案】D 【考点】不等式的性质【解析】【解答】A、a>b,则a﹣5>b﹣5,A不符合题意;B、a>b,则2+a>2+b,B不符合题意;C、a>b,则>,C不符合题意;D、a>b,则3a>3b,D符合题意.故答案为:D.【分析】依据不等式的性质1可对A、B作出判断;依据不等式的性质2可对C、D作出判断.6.【答案】C 【考点】因式分解-运用公式法【解析】【解答】∵多项式x2﹣kx+9能用公式法分解因式,并且它有三项,∴它是一个完全平方式,∴这两个数是3、x,∴k=±2×3=±6.故答案为:C.【分析】依据中间项等于“±2ab”进行判断即可.7.【答案】D 【考点】分式的基本性质【解析】【解答】= = = •.故答案为:D.【分析】首先分别用3a和3b去代换原分式中的a和b,然后利用分式的基本性质化简即可.8.【答案】A 【考点】线段垂直平分线的性质,等腰三角形的性质【解析】【解答】∵AB的垂直平分线交AC于D,∴AD=BD,∴△DBC的周长=BD+CD+BC=AD+CD+BC=AC+BC,∵△ABC和△DBC的周长分别是30cm和19cm,∴AB=30﹣19=11cm,∴BC=19﹣11=8cm,即△ABC的腰和底边长分别为11cm和8cm.故答案为:A.【分析】首先根据线段垂直平分线的性质得到AD=BD,然后通过等量代换得到△DBC的周长=AC+BC,再根据两个三角形的周长求出AB,然后BC的值即可.9.【答案】A 【考点】由实际问题抽象出分式方程【解析】【解答】x米,则实际每天施工(x+50)米,根据题意,可列方程:﹣=2,故答案为:A.【分析】设原计划每天铺设x米,则实际施工时每天铺设(x+50)米,接下来,用含x的式子表示实际需要的天数和计划需要的天数,最后依据原计划所用时间-实际所用时间=2列出方程即可.10.【答案】C 【考点】平行四边形的性质【解析】【解答】解:连接AC,∵∠B=60°,∴∠BAD=120°,∵∠MAN=60°,∴∠BAM=∠CAN,∴△ABC为等边三角形,∴AB=AC,∴△ABM≌△ACN,∴四边形AMCN的面积等于平行四边形面积的一半.∵AB=6cm,∴BC边上的高为3 ,S菱形ABCD=6× =18 ,∴四边形AMCN的面积等于×18 =9 .故答案为:C.【分析】连接AC,可证明△ABC为等边三角形,从而得到AB=AC,然后再证明△ABM和△ANC 全等,故此可得到四边形AMCN的面积正好等于平行四边形面积的一半.二.<b >填空题</b>11.【答案】2(x+2)(x﹣2)【考点】提公因式法与公式法的综合运用【解析】【解答】解:2x2﹣8=2(x+2)(x﹣2).【分析】先提取公因式,然后再利用平方差公式进行分解即可.12.【答案】3a﹣12≥0 【考点】一元一次不等式的应用【解析】【解答】解:根据题意,得3a ﹣12≥0.故答案为:3a﹣12≥0.【分析】非负数包括正数和零,然后依据3a与12的差大于等于零列出不等式即可.13.【答案】5 【考点】多边形内角与外角【解析】【解答】解:设这个多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,故答案为:5.【分析】设这个多边形的边数是n,然后依据多边形的内角和定理可得到(n-2)•180°=540°,然后解关于n的方程即可.14.【答案】x=2 【考点】分式方程的解【解析】【解答】解:两边都乘以x(x﹣1)得:x=2(x ﹣1),去括号,得:x=2x﹣2,移项、合并同类项,得:x=2,检验:当x=2时,x(x﹣1)=2≠0,∴原分式方程的解为:x=2,故答案为:x=2.【分析】最简公分母为x(x-1),首先方程两边同时乘以x(x-1),然后再解关于x的整式方程,最后,再进行检验即可.15.【答案】3 【考点】平行四边形的性质【解析】【解答】解:∵四边形ABCD是平行四边形,∵AD∥BC,AB∥CD,∴∠AEB=∠CBE,∠FED=∠CBE,∠ABF=∠F,∵∠ABE=∠CBE,∴∠ABE=∠AEB,∠FED=∠F,∴AB=AE=5cm,DF=DE,∵AD=8cm,∴DE=AD﹣AE=3(cm),∴DF=3cm.故答案为:3.【分析】依据平行线的性质和角平分线的定义可得到∠ABE=∠AEB,∠FED=∠F,依据等角对等边的性质可得到AB=AE,DE=DF.16.【答案】29 【考点】平方差公式【解析】【解答】解:∵第1个智慧数3=22﹣12,第2个智慧数5=32﹣22,第3个智慧数7=42﹣32,第4个智慧数8=32﹣12,第5个智慧数9=52﹣42,第6个智慧数11=62﹣52,第7个智慧数12=42﹣22,第8个智慧数13=72﹣62,第9个智慧数15=42﹣12,第10个智慧数16=52﹣32,第11个智慧数17=92﹣82,第12个智慧数19=102﹣92,…∴可知全部智慧数从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数.即第n组的第一个数为4n(n≥2),∵20=3×6+2,∴第20个智慧数位于第7组第2个数,∵第7组的第1个智慧数为4×7=28,∴第7组第2个数为29,即第20个智慧数为29,故答案为:29.【分析】观察所给的算式可知全部智慧数从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数.归纳可得第n组的第一个数为4n (n≥2),又因为20=3×6+2,所以第20个智慧数是第7组中的第2个数,从而可得到问题的答案.三.<b >解答题</b>17.【答案】解:去分母得,3(3x﹣2)≥5(2x+1)﹣15,去括号得,9x﹣6≥10x+5﹣15,移项得,9x﹣10x≥5﹣15+6,合并同类项得,﹣x≥﹣4,把x的系数化为1得,x≤4.【考点】解一元一次不等式【解析】【分析】首先不等式两边同时乘以15,需要注意不要漏乘不含分母的项,然后再按照去括号、移项、合并同类项的步骤求解即可.18.【答案】解:原式= ÷ = × = ∵解得:p≠±2且p≠0且p≠1令p=3代入得,原式= 【考点】分式的化简求值【解析】【分析】首先计算括号内的减法,然后将除法转化为乘法,接下来,依据分式的乘法法则进行计算,最后再选择能够使得分式有意义的p的值代入计算即可.19.【答案】(1)解:如图,△A1B1C1为所作;(2)解:如图,Rt△A2B2C1为所作.【考点】坐标与图形变化-旋转【解析】【分析】(1)利用网格特点和平移的方向和距离确定出A、B、C的对应点A1、B1、C1的位置,从而得到Rt△A1B1C1;(2)利用网格特点和旋转中心、旋转角、旋转方向确定出A1、B1的对应点A2、B2的位置,从而得到Rt △A2B2C1.四.<b >解答题</b>20.【答案】解:设学生步行的速度为x千米/小时,则王老师骑自行车的速度为2x千米/小时,由题意得,﹣= ,解得:x=15,经检验:x=15是原方程的根,且符合题意.则2x=15×2=30(千米/小时),答:学生步行的速度是15千米/小时,王老师骑自行车的速度是30千米/小时.【考点】分式方程的应用【解析】【分析】设学生步行的速度为x千米/小时,则王老师骑自行车的速度为2x千米/小时,然后用含x的式子表示同学步行所用的时间和王老师骑自行车所用的时间,最后依据同学步行走10千米所用的时间-王老师骑自行车走10千米所用的时间=小时列方程求解即可.21.【答案】(1)解:有平行线的画法知道,三角形是平移变换,平移没有改变图形的形状和大小,得到同位角相等,即同位角相等两直线平行;(2)解:∵将一块三角板ABC的一边AC贴着直尺推移到A1B1C1的位置,∴AB=A1B1, AB∥A1B1,∴四边形ABB1A1是平行四边形.【考点】平行四边形的判定,作图—复杂作图【解析】【分析】(1)依据平移的定义进行解答即可;(2)利用平移的性质可得到AB=A1B1, AB∥A1B1,然后依据一组对边平行且相等的四边形是平行四边形进行证明即可.22.【答案】(1)kx+b=0;;kx+b>0;kx+b<0(2)x≤2 【考点】一次函数与一元一次不等式,一次函数与二元一次方程(组)【解析】【解答】解:(1)根据观察:①kx+b=0;②;③kx+b>0;④kx+b<0.(2)如果C点的坐标为(2,5),那么当x≤2时,不等式kx+b≥k1x+b1才成立.故答案为:①kx+b=0;②;③kx+b>0;④kx+b<0;(2)x≤2.【分析】(1)①依据x轴上各点的纵坐标为0可得到kx+b=0的解;②因为C点是两个函数图象的交点,因此C点坐标必为两函数解析式联立所得方程组的解;③函数y=kx+b中,当y>0时,kx+b>0,因此x的取值范围是不等式kx+b>0的解集;同理可求得④的结论.(2)由图可知:在C点左侧时,直线y=kx+b 的函数值要大于直线y=k1x+b1的函数值.五.<b >解答题</b>23.【答案】(1)解:1﹣= (2)解:(1﹣)(1﹣)= (3)解:原式= (4)解:原式= •••…•= 【考点】平方差公式【解析】【分析】对于(1)、(2)、(3),先依据平方差公式进行分解因式,然后再依据乘法法则进行计算即可;对于(4),据平方差公式进行分解因式,然后再依据乘法法则进行计算,注意确定好约分时,哪些项可约分.24.【答案】(1)解:设购买污水处理设备A型x台,则B型(10﹣x)台.12x+10(10﹣x)≤105,解得x≤2.5.∵x取非负整数,∴x可取0,1,2.有三种购买方案:方案一:购A型0台、B型10台;方案二:购A型1台,B型9台;方案三:购A型2台,B型8台.(2)解:240x+200(10﹣x)≥2040,解得x≥1,∴x为1或2.当x=1时,购买资金为:12×1+10×9=102(万元);当x=2时,购买资金为12×2+10×8=104(万元),∴为了节约资金,应选购A型1台,B型9台.(3)解:10年企业自己处理污水的总资金为:102+1×10+9×10=202(万元),若将污水排到污水厂处理:2040×12×10×10=2448000(元)=244.8(万元).节约资金:244.8﹣202=42.8(万元).【考点】一元一次不等式的应用【解析】【分析】(1)设购买污水处理设备A型x台,则B型(10-x)台,然后依据购买污水处理设备的资金不高于105万元列出不等式方程求解即可,x的值取整数.(2)依据企业每月处理的污水量大于等于2040吨列不等式求解,最后再根据x的值选出最佳方案.(3)首先计算出企业自己处理污水的总资金,再计算出污水排到污水厂处理的费用,相比较即可得解.25.【答案】(1)解:∵点O是BD的中点,∴S△AOB=S△AOD, S△BOC=S△DOC,∴S△AOB+S△BOC=S△AOD+S△DOC= S,∴S四边形ABCO= S四边形ABCD.∴折线AOC能平分四边形ABCD的面积,设AE交OC于四边形ABCDF.∵OE∥AC,∴S△AOE=S△COE,∴S△AOF=S△CEF,∵折线AOC能平分四边形ABCD的面积,∴直线AE平分四边形ABCD的面积,即AE是四边形ABCD的一条“好线”.(2)解:连接EF,过A作EF的平行线交CD于点G,连接FG,则GF为一条“好线”.∵AG∥EF,∴S△AGE=S△AFG.设AE与FG的交点是O.则S△AOF=S△GOE,又AE为一条“好线”,所以GF为一条“好线”.(3)解:如图3,连接CE,过点D作DF∥EC交CM于F,连接EF,即EF为所修的直路,理由:过点D作DG⊥CE于G,过点F作FH⊥EC于H,∵DF∥EC,∴DG=FH(夹在平行线间的距离处处相等),∵S△CDE= EC×DG,S△CEF= EC×FH,∴S△CDE=S△CEF,∴S四边形ABCDE=S四边形ABCE+S△CDE=S四边形ABCE+S△CEF=S五边形ABCFE.即:直路左边的土地面积与原来一样多.【考点】平行线之间的距离【解析】【分析】(1)首先作AH⊥BC,垂足为H.依据三角形的面积公式可得到S△ABD=BD•AH,S△ADC=DC•AH,然后结合条件BD=CD,可得到S△ABD=S△ADC,再判断出S四边形ABCO=S四边形ABCD,进而判断出S△AOE=S△COE,推出S△AOF=S△CEF,即可推出直线AE平分四边形ABCD的面积;(2)首先连接EF,FG,然后过点A作EF的平行线交CD于点G,由AG∥EF,推出S△AGE=S△AFG.设AE与FG的交点是O.则S△AOF=S△GOE,又AE为一条“好线”,所以GF为一条“好线”,(3)首先连接CE,EF,然后过点D作DF∥EC交CM于F,然后依据夹在平行线间的距离处处相等得出DG=FH,于是可得到S△CDE=S△CEF.。
北京市2020年〖人教版〗八年级数学下册期末复习试卷解析版创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校一、选择题(本大题共12小题,第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分)1.下面五组图形中,左边的图形与右边的图形成中心对称的有()A.1组B.2组C.3组D.4组2.下列函数中,是一次函数的有()A.y=x2+1 B.x2﹣2x+1=0 C.y=3(x+1)D.y=3.已知一元二次方程3x2﹣2x+1=0,则它的二次项系数为()A.1 B.﹣2 C.3 D.3x24.在演讲比赛中,5为评委给一位歌手打分如下:8.2分、8.3分、7.8分、7.7分、8.0分,则这位歌手平均得分()A.7.8 B.8.0 C.8.2 D.8.35.一次函数y=﹣3x﹣2的图象经过哪几个象限()A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限6.某射击队要从四名运动员中选拔一名运动员参加比赛,选拔赛中每名队员的平均成绩与方差S2如下表所示,如果要选择一个成绩高且发挥稳定的人参赛,则这个人应是()甲乙丙丁8 9 9 8S2 1 1 1.2 1.3A.甲B.乙C.丙D.丁7.如图,△PQR是△ABC经过某种变换后得到的图形,如果△ABC中任意一点M的坐标为(a,b),那么它的对应点N的坐标为()A.(﹣a,b) B.(a,﹣b) C.(﹣a,﹣b)D.(﹣b,﹣a)8.某市测得一周PM2.5的日均值(单位:微克/立方米)如下:31,30,34,35,36,34,31,对这组数据下列说法正确的是()A.众数是35 B.中位数是34 C.平均数是35 D.方差是69.若点A(﹣2,0)、B(﹣1,a)、C(0,4)在同一条直线上,则a的值是()A.2 B.1 C.﹣2 D.410.如果关于x的方程ax2+x﹣1=0有实数根,则a的取值范围是()A.a B.a且a≠0 C.a D.a且a≠011.某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,县政府已投资5亿元人民币,若每年投资的增长率相同,预计投资7.2亿元人民币,那么每年投资的增长率为()A.20% B.40% C.﹣220% D.30%12.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③B.①③④C.①③⑤D.②④⑤二、填空题(本大题共4小题,每小题4分,共16分)13.已知一次函数y=x+3,当函数值y>0时,自变量x的取值范围是______.14.将抛物线y=5x2向上平移3个单位,再向左平移2个单位,得到的抛物线的解析式为______.15.如图,将△ABC绕点C(0,﹣1)旋转180°得到△A′B′C′,设点A′的坐标为(a,b),则点A的坐标为______.16.如果m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+=______.三、解答题(本大题共6小题,共64分)17.(10分)(春•莒县期末)用适当的方法解下列方程:(1)(3x﹣2)2=(2x﹣3)2(2)已知x1和x2是方程x2﹣﹣=0的两个解,则的值为______.18.如图,在正方形网格上有一个△ABC.(1)作出△ABC关于点O的中心对称图形△A′B′C′(不写作法,但要标出字母);(2)若网格上的最小正方形边长为1,求出△ABC的面积.19.(10分)(•日照)如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地路程y(千米)与行驶时间x(小时)时间的函数关系图象.(1)填空:甲、丙两地距离______千米.(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.20.(12分)(春•莒县期末)某商场新进一种童装,进价为20元/件,试营销阶段发现:当销售单价是30元/件时,每天的销售量为200件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种童装,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该童装每天的销售利润最大?(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该童装的销售单价高于进价且不超过30元;方案B:每天销售量不少于20件,且每件童装的利润至少为25元.请比较哪种方案的最大利润更高,并说明理由.21.(10分)(春•莒县期末)已知关于x的方程x2﹣ax﹣a﹣3=0,(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.22.(14分)(春•莒县期末)如图,抛物线的顶点在原点O,且过(2,1)点;直线BC ∥x轴交y轴于点C,C(0,﹣1),A(0,1)(1)求抛物线的解析式;(2)点P是(1)中抛物线上一点,过点P作BC的垂线,垂足为点B,求证:AB平分∠OAP;(3)当△PAB是等边三角形时,求P点的坐标.参考答案与试题解析一、选择题(本大题共12小题,第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分)1.下面五组图形中,左边的图形与右边的图形成中心对称的有()A.1组B.2组C.3组D.4组【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:(2)、(3)都只是中心对称图形;(1)、(5)都只是轴对称图形;(4)、两种都不是.故选B.【点评】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.下列函数中,是一次函数的有()A.y=x2+1 B.x2﹣2x+1=0 C.y=3(x+1)D.y=【考点】一次函数的定义.【分析】根据一次函数的定义进行判断即可.【解答】解:A.y=x2+1是二次函数;B.x2﹣2x+1=0是一元二次方程;C.y=3(x+1)是一次函数;D.y=是反比例函数,故选:C.【点评】本题考查的是反比例函数的定义,一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.3.已知一元二次方程3x2﹣2x+1=0,则它的二次项系数为()A.1 B.﹣2 C.3 D.3x2【考点】一元二次方程的一般形式.【分析】根据一元二次方程的一般形式解答即可.【解答】解:一元二次方程3x2﹣2x+1=0的二次项系数是3,故选:C.【点评】本题考查的是一元二次方程的一般形式,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0),其中ax2叫做二次项,a叫做二次项系数,bx 叫做一次项,c叫做常数项.4.在演讲比赛中,5为评委给一位歌手打分如下:8.2分、8.3分、7.8分、7.7分、8.0分,则这位歌手平均得分()A.7.8 B.8.0 C.8.2 D.8.3【考点】算术平均数.【分析】根据算术平均数的计算公式,先求出这5个数的和,再除以5即可.【解答】解:根据题意得:(8.2+8.3+7.8+7.7+8.0)÷5=8(分)故选(B)【点评】此题主要考查了算术平均数,用到的知识点是算术平均数的计算公式,熟记公式是解决本题的关键.5.一次函数y=﹣3x﹣2的图象经过哪几个象限()A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限【考点】一次函数的性质.【分析】直接根据一次函数的图象与系数的关系即可得出结论.【解答】解:∵次函数y=﹣3x﹣2中,k=﹣3<0,b=﹣2<0,∴此函数的图象经过二三四象限.故选D.【点评】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.6.某射击队要从四名运动员中选拔一名运动员参加比赛,选拔赛中每名队员的平均成绩与方差S2如下表所示,如果要选择一个成绩高且发挥稳定的人参赛,则这个人应是()甲乙丙丁8 9 9 8S2 1 1 1.2 1.3A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【分析】看图识图,先计算平均数、方差,选择平均数大,方差小的人参赛即可.【解答】解:观察图形可知甲、乙方差相等,但都小于丙、丁,∴只要比较甲、乙就可得出正确结果,∵甲的平均数小于乙的平均数,∴乙的成绩高且发挥稳定.故选:B.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.如图,△PQR是△ABC经过某种变换后得到的图形,如果△ABC中任意一点M的坐标为(a,b),那么它的对应点N的坐标为()A.(﹣a,b) B.(a,﹣b) C.(﹣a,﹣b)D.(﹣b,﹣a)【考点】几何变换的类型;坐标与图形性质.【分析】观察图形可知,△PQR是△ABC绕点O旋转180°后得到的图形,即它们关于原点成中心对称,所以N点坐标与M点坐标互为相反数.【解答】解:观察图形可知,△PQR是△ABC绕点O旋转180°后得到的图形.即它们关于原点成中心对称.∵M(a,b),∴N(﹣a,﹣b).故选C【点评】关于原点对称的两个点的横坐标和纵坐标都互为相反数.8.某市测得一周PM2.5的日均值(单位:微克/立方米)如下:31,30,34,35,36,34,31,对这组数据下列说法正确的是()A.众数是35 B.中位数是34 C.平均数是35 D.方差是6【考点】方差;加权平均数;中位数;众数.【分析】根据众数、平均数、中位数和方差的计算公式分别进行计算即可得出答案.【解答】解:A、31和34出现了2次,出现的次数最多,则众数是31和34,故本选项错误;B、把这组数据从小到大排列,最中间的数是34,则中位数是34,故本选项错正确;C、这组数据的平均数是:(31+30+34+35+36+34+31)÷7=33,故本选项错误;D、这组数据的方差是:[2(31﹣33)2+(30﹣33)2+2(34﹣33)2+(35﹣33)2+(36﹣33)2]=,故本选项错误;故选B.【点评】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].9.若点A(﹣2,0)、B(﹣1,a)、C(0,4)在同一条直线上,则a的值是()A.2 B.1 C.﹣2 D.4【考点】一次函数图象上点的坐标特征.【分析】先利用待定系数法求出直线AC的解析式,再把B(﹣1,a)代入求出a的值即可.【解答】解:设直线AC的解析式为y=kx+b(k≠0),∵点A(﹣2,0)、C(0,4),∴,解得,∴直线AC的解析式为y=2x+4.∵B(﹣1,a),∴﹣2+4=a,即a=2.故选A.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10.如果关于x的方程ax2+x﹣1=0有实数根,则a的取值范围是()A.a B.a且a≠0 C.a D.a且a≠0【考点】根的判别式.【分析】分方程为一元一次方程和一元二次方程考虑:当a=0时,一元一次方程x﹣1=0有实数根;当a≠0时,根据根的判别式△≥0,即可得出关于a的一元一次不等式,解不等式即可求出a的取值范围.综上即可得出结论.【解答】解:当a=0时,原方程为x﹣1=0,解得:x=1;当a≠0时,有△=12﹣4a×(﹣1)=1+4a≥0,解得:a≥﹣且a≠0.综上可知:若关于x的方程ax2+x﹣1=0有实数根,则a的取值范围为a≥﹣.故选A.【点评】本题考查了根的判别式,解题的关键是分a=0与a≠0两种情况考虑.本题属于基础题,难度不大,解决该题型题目时,分方程为一元一次方程与一元二次方程两种情况考虑根的情况是关键.11.某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,县政府已投资5亿元人民币,若每年投资的增长率相同,预计投资7.2亿元人民币,那么每年投资的增长率为()A.20% B.40% C.﹣220% D.30%【考点】一元二次方程的应用.【分析】首先设每年投资的增长率为x.根据县政府已投资5亿元人民币,若每年投资的增长率相同,预计投资7.2亿元人民币,列方程求解.【解答】解:设每年投资的增长率为x,根据题意,得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=﹣2.2(舍去),故每年投资的增长率为为20%.故选:A.【点评】此题主要考查了一元二次方程的实际应用,解题的关键是掌握增长率问题中的一般公式为a(1+x)n,其中n为共增长了几年,a为第一年的原始数据,x是增长率.12.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③B.①③④C.①③⑤D.②④⑤【考点】二次函数图象与系数的关系;抛物线与x轴的交点.【分析】根据抛物线对称轴方程对①进行判断;由抛物线开口方向得到a<0,由对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,于是可对②进行判断;根据顶点坐标对③进行判断;根据抛物线的对称性对④进行判断;根据函数图象得当1<x<4时,一次函数图象在抛物线下方,则可对⑤进行判断.【解答】解:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.【点评】本题考查了二次项系数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本大题共4小题,每小题4分,共16分)13.已知一次函数y=x+3,当函数值y>0时,自变量x的取值范围是x>﹣3.【考点】一次函数的性质.【分析】根据题意列出关于x的不等式,求出x的取值范围即可.【解答】解:∵一次函数y=x+3中y>0,∴x+3>0,解得x>﹣3.故答案为:x>﹣3.【点评】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.14.将抛物线y=5x2向上平移3个单位,再向左平移2个单位,得到的抛物线的解析式为y=5(x+2)2+3.【考点】二次函数图象与几何变换.【分析】按照“左加右减,上加下减”的规律进行解题.【解答】解:将抛物线y=5x2向上平移3个单位,再向左平移2个单位得到函数解析式是:y=5(x+2)2+3.故答案是:y=5(x+2)2+3.【点评】此题考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.15.如图,将△ABC绕点C(0,﹣1)旋转180°得到△A′B′C′,设点A′的坐标为(a,b),则点A的坐标为(﹣a,﹣b﹣2).【考点】坐标与图形变化-旋转.【分析】设A的坐标为(m,n),由于A、B关于C点对称,则=0,=﹣1.【解答】解:设A的坐标为(m,n),∵A和A′关于点C(0,﹣1)对称.∴=0,=﹣1,解得m=﹣a,n=﹣b﹣2.点A的坐标(﹣a,﹣b﹣2).故答案为:(﹣a,﹣b﹣2).【点评】本题实际就是一个关于原点成中心对称的问题,要根据中心对称的定义,且弄清中心对称的点的坐标特征.16.如果m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+=2026.【考点】根与系数的关系.【分析】由于m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,可知m,n是x2﹣x﹣3=0的两个不相等的实数根.则根据根与系数的关系可知:m+n=1,mn=﹣3,又n2=n+3,利用它们可以化简2n2﹣mn+2m+=2(n+3)﹣mn+2m+=2n+6﹣mn+2m+=2(m+n)﹣mn+,然后就可以求出所求的代数式的值.【解答】解:由题意可知:m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,所以m,n是x2﹣x﹣3=0的两个不相等的实数根,则根据根与系数的关系可知:m+n=1,mn=﹣3,又n2=n+3,则2n2﹣mn+2m+=2(n+3)﹣mn+2m+=2n+6﹣mn+2m+=2(m+n)﹣mn+=2×1﹣(﹣3)+=2+3+=2026.故答案为:2026.【点评】本题考查一元二次方程根与系数的关系,解题关键是把所求代数式化成两根之和、两根之积的系数,然后利用根与系数的关系式求值.三、解答题(本大题共6小题,共64分)17.(10分)(春•莒县期末)用适当的方法解下列方程:(1)(3x﹣2)2=(2x﹣3)2(2)已知x1和x2是方程x2﹣﹣=0的两个解,则的值为﹣.【考点】根与系数的关系.【分析】(1)利用直接开平方法解方程即可;(2)先由根与系数的关系得出x1+x2=,x1x2=﹣,再将变形为两根之积或两根之和的形式,代入数值计算即可.【解答】解:(1)(3x﹣2)2=(2x﹣3)2,3x﹣2=2x﹣3或3x﹣2=﹣2x+3,解得:x1=﹣1,x2=1;(2)由根与系数的关系得:x1+x2=,x1x2=﹣,所以,===﹣.故答案为﹣【点评】此题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.也考查了利用直接开平方法解方程.18.如图,在正方形网格上有一个△ABC.(1)作出△ABC关于点O的中心对称图形△A′B′C′(不写作法,但要标出字母);(2)若网格上的最小正方形边长为1,求出△ABC的面积.【考点】作图-旋转变换.【分析】(1)将△ABC的三点与点O连线并延长相同长度找对应点,然后顺次连接得中心对称图形△A′B′C′;(2)观察此图三角形的底和高都不太明显,那么就由图中的面积关系来求,比如,△ABC在一个矩形内,那么“矩形的面积”﹣“三个三角形的面积”就是△ABC的面积.【解答】解:(1)如图:﹣(S△DBA+S△BEC+S△ACF),(2)∵S△ABC=S矩形∴S△ABC=2×3﹣×2×1﹣×2×1﹣×3×1=6﹣2﹣=.【点评】(1)题考查旋转变换作图,是基础题,不难.(2)题就要求学生仔细观察图形,找出图中的面积关系,而不是直接利用三角形的面积公式求.19.(10分)(•日照)如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地路程y(千米)与行驶时间x(小时)时间的函数关系图象.(1)填空:甲、丙两地距离1050千米.(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.【考点】一次函数的应用.【分析】(1)根据函数图形可得,甲、丙两地距离为:900+150=1050(千米);(2)分两种情况:当0≤x≤3时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=kx+b,把(0,900),(3,0)代入得到方程组,即可解答;根据确定高速列出的速度为300(千米/小时),从而确定点A的坐标为(3.5,150),当3<x≤3.5时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=k1x+b1,把(3,0),(3.5,150)代入得到方程组,即可解答.【解答】解:(1)根据函数图形可得,甲、丙两地距离为:900+150=1050(千米),故答案为:1050.(2)当0≤x≤3时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=kx+b,把(0,900),(3,0)代入得:,解得:,∴y=﹣300x+900,高速列出的速度为:900÷3=300(千米/小时),150÷300=0.5(小时),3+0.5=3.5(小时)如图2,点A的坐标为(3.5,150)当3<x≤3.5时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=k1x+b1,把(3,0),(3.5,150)代入得:,解得:,∴y=300x﹣900,∴y=.【点评】本题考查了一次函数的应用,解决本题的关键是读懂图象,获取相关信息,用待定系数法求函数解析式.20.(12分)(春•莒县期末)某商场新进一种童装,进价为20元/件,试营销阶段发现:当销售单价是30元/件时,每天的销售量为200件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种童装,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该童装每天的销售利润最大?(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该童装的销售单价高于进价且不超过30元;方案B:每天销售量不少于20件,且每件童装的利润至少为25元.请比较哪种方案的最大利润更高,并说明理由.【考点】二次函数的应用.【分析】(1)先计算涨了(x﹣30)元,则销量减少10(x﹣30)件,所以销售利润w=(x﹣20)×销售量;(2)求顶点坐标的纵坐标就是最大利润;(3)先计算方案A:根据当x<35时,y随x的增大而增大,把x=30代入就是最大利润;方案B:两个条件①每天销售量不少于20件,列式:200﹣10(x﹣30)≥20,②每件童装的利润至少为25元,售价不少于25+20=45,则45≤x≤48,根据x>35时,y随x的增大而减小,把x=35代入即可,对比并回答问题.【解答】解:(1)w=(x﹣20)[200﹣10(x﹣30)],=﹣10(x﹣20)(x﹣50),=﹣10x2+700x﹣10000(20≤x≤50);(2)∵w=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250,∴当x=35时,w取到最大值,即销售单价为35元时,每天销售利润最大;(3)∵30<35,且x<35时,y随x的增大而增大,方案A的最大利润w=﹣10(30﹣35)2+2250=2000元,∵每天销售量不少于20件,∴200﹣10(x﹣30)≥20,解得:x≤48,∵每件童装的利润至少为25元,∴售价不少于25+20=45,∴45≤x≤48,∵x>35时,y随x的增大而减小,∴方案B的最大利润w=﹣10(45﹣35)2+2250=1250,2000>1250,所以方案A的最大利润更高.【点评】本题考查了二次函数的应用,属于销售利润问题;要明确销售利润=每件的利润×销售的数量,解这类题的一般步骤是:①根据题意列出函数表达式,求出取值范围;②在自变量的取值范围内,运用公式法或配方法求出二次函数的最大值或最小值.21.(10分)(春•莒县期末)已知关于x的方程x2﹣ax﹣a﹣3=0,(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.【考点】根与系数的关系;根的判别式.【分析】(1)将x=1代入方程x2﹣ax﹣a﹣3=0得到a的值,再根据根与系数的关系求出另一根;(2)写出根的判别式,配方后得到完全平方式,进行解答.【解答】(1)解:将x=1代入方程x2﹣ax﹣a﹣3=0,得1﹣a﹣a﹣3=0,解得a=﹣1;方程为x2+x﹣2=0,设另一根为x1,则1•x1=﹣2,解答x1=﹣2,即另一个根为﹣2;(2)证明:∵△=(﹣a)2﹣4(﹣a﹣3)=a2+4a+12=a2+4a+4+8=(a+2)2+8>0,∴不论a取何实数,该方程都有两个不相等的实数根.【点评】本题考查了一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.也考查了根与系数的关系.22.(14分)(春•莒县期末)如图,抛物线的顶点在原点O,且过(2,1)点;直线BC ∥x轴交y轴于点C,C(0,﹣1),A(0,1)(1)求抛物线的解析式;(2)点P是(1)中抛物线上一点,过点P作BC的垂线,垂足为点B,求证:AB平分∠OAP;(3)当△PAB是等边三角形时,求P点的坐标.【考点】二次函数综合题.【分析】(1)由抛物线过顶点在原点可设出抛物线解析式,再由点(2,1)可利用待定系数法可求得抛物线解析式;(2)可设出P点坐标,过P作PH⊥y轴于点H,则可表示出PA的长,再利用条件表示出PB,可证得PA=PB,再结合平行线的性质证明∠PAB=∠OAB,可证得结论;(3)由等边三角形的性质可求得∠ABC=30°,则可求得AB的长,结合(2)中PA=PB=AB,则可求得P点的坐标,【解答】解:(1)∵抛物线的顶点在原点O,且过(2,1)点,∴可设抛物线解析式为为y=ax2,∴a=,∴二次函数的解析式为y=x2;(2)证明:∵点P在抛物线y=x2上,∴可设点P的坐标为(x,x2),如图,过点P作PH⊥y轴于点H,则HA=x2﹣1,PH=x,∴Rt△PHA中,PA==x2+1,∵PB⊥BC于B,∴PB=x2+1,∴PA=PB,∴∠PAB=∠PBA,又∵PB∥x轴,∴∠OAB=∠PBA,∴∠OAB=∠PAB,∴AB平分∠OAP;(3)解:当△PAB是等边三角形时,∠PBA=60°,∴∠ABC=30°,在Rt△ABC中,AB=2AC=2×2=4,∵PA=PB=AB,∴x2+1=4,解得:x=±2,∴x2=×12=3,∴满足条件的点P的坐标为(2,3)或(﹣2,3).【点评】本题主要考查二次函数的综合应用,涉及知识点有待定系数法、勾股定理、平行线的性质、角平分线的判定及等边三角形的性质等.在(1)中需要注意待定系数法的应用步骤,在(2)中用P点表示出PA和PB的长是解题的关键,在(3)中利用等边三角形的性质列出方程是解题的关键.本题考查知识点较多,综合性较强,难度适中.创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校。
北京市2020年〖人教版〗八年级数学下册期末复习试卷第二学期期末教学统一检测一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 下列函数中,正比例函数是 A .y =x 2B. y =x 2 C. y =2x D. y =21x2. 下列四组线段中,不能作为直角三角形三条边的是A. 3cm ,4cm ,5cmB. 2cm ,2cm , cmC. 2cm ,5cm ,6cmD. 5cm ,12cm ,13cm3. 下图中,不是函数图象的是A B C D4. 平行四边形所具有的性质是A. 对角线相等B.邻边互相垂直C. 每条对角线平分一组对角D. 两组对边分别相等5.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:xS612O方差3.63.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择 A .甲 B .乙 C .丙 D .丁 6. 若x=﹣2是关于x 的一元二次方程22302x ax a +-=的一个根,则a 的值为 A .1或﹣4 B .﹣1或﹣4 C .﹣1或4 D .1或47. 将正比例函数2y x =的图象向下平移2个单位长度,所得图象对应的函数解析式是A .21y x =-B .22y x =+C .22y x =-D .21y x =+8. 在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了爱心.小东对他们的捐款金额进行统计,并绘制了如下统计图. 师生捐款金额的平均数和众数分别是 A . 20, 20 B . 32.4,30 C . 32.4,20 D . 20, 309. 若关于x 的一元二次方程()21410k x x -++=有实数根,则k 的取值范围是A .k ≤5B .k ≤5,且k ≠1C .k <5,且k ≠1D .k <510.点P (x ,y )在第一象限内,且x+y=6,点A 的坐标为(4,0).设△OPA 的面积为S ,则下列图象中,能正确反映S 与x 之间的函数关系式的是A B C D 二、填空题(本题共24分,每小题3分)11. 请写出一个过点(0,1),且y 随着x 的增大而减小的一次函数解析式 .12. 在湖的两侧有A ,B 两个消防栓,为测定它们之间的距离,小明在岸上任选一点C ,并量取了AC 中点D 和BC 中点E 之间的距离为16米,则A ,B 之间的距离应为 米.13. 如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于x 的不等式kx +6>x +b 的解集是_____________.14. 在菱形ABCD 中,∠A =60°,其所对的对角线长为4,则菱形ABCD 的面积是 . 15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短. 横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x 尺,则可列方程为.16. 方程28150x x -+=的两个根分别是一个直角三角形的两条边长,则直角三角形的第三条边长是.17. 已知直线22y x =+与x 轴、y 轴分别交于点A ,B . 若将直线12y x =向上平移n 个单位长度与线段AB 有公共点,则n 的取值范围是. 18. 在一节数学课上,老师布置了一个任务:已知,如图1,在Rt ABC △中,∠B =90°,用尺规作图作矩形ABCD .图1 图2同学们开动脑筋,想出了很多办法,其中小亮作了图2,他向同学们分享了作法: ① 分别以点A ,C 为圆心,大于12AC 长为半径画弧,两弧分别交于点E ,F ,连接EF 交AC 于点O ;第12题图 第13题图② 作射线BO ,在BO 上取点D ,使OD OB =; ③ 连接AD ,CD .则四边形ABCD 就是所求作的矩形. 老师说:“小亮的作法正确.” 小亮的作图依据是 .三、解答题(本题共46分,第19—21, 24题, 每小题4分,第22 ,23, 25-28题,每小题5分)19.用配方法解方程:261x x -=20. 如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若:2:1BE EC =,求线段EC ,CH 的长. 21. 已知关于x 的一元二次方程()()21120m x m x --++=,其中1m ≠ .(1)求证:此方程总有实根;(2)若此方程的两根均为正整数,求整数m 的值22. 5月5日,国产大飞机C919首飞圆满成功. C919大型客机是我国首次按照国际适航标准研制的150座级干线客机,首飞成功标志着我国大型客机项目取得重大突破,是我国民用航空工业发展的重要里程碑. 目前, C919大型客机已有国内外多家客户预订六百架表1是其中20家客户的订单情况. 表1四川航空15中银航空租赁私人有限公司 20河北航空 20 农银金融租赁有限公司 45 幸福航空20建信金融租赁股份有限公司50国银金融租赁有限公司 15 招银金融租赁公司 30 美国通用租赁公司GECAS20兴业金融租赁公司20泰国都市航空10 德国普仁航空公司 7根据表1所提供的数据补全表2,并求出这组数据的中位数和众数.表223.如图1,在△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线交CE 的延长线于F ,且AF =BD ,连接BF . (1)求证:点D 是线段BC 的中点;(2)如图2,若AB =AC =13, AF =BD =5,求四边形AFBD 的面积.24.有这样一个问题:探究函数11y x=+的图象与性质. 小明根据学习一次函数的经验,对函数11y x=+的图象与性质进行了探究. 下面是小明的探究过程,请补充完整: (1)函数11y x=+的自变量x 的取值范围是; (2)下表是y 与x 的几组对应值.订单(架) 7 10 15 20 30 50客户(家)1 12 2 2图1 图2x … -4-3-2-1 -m m 1 234… y…34 23 12 0-13232 43 54…求出m 的值;(3)如图,在平面直角坐标系xOy 中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象; (4)写出该函数的一条性质.25.已知:如图,平行四边形ABCD 的对角线相交于点O ,点E 在边BC 的延长线上,且OE =OB ,联结DE .(1)求证:DE ⊥BE ;(2)设CD 与OE 交于点F ,若222OF FD OE +=,3CE = , 4DE =,求线段CF 长. 26. 如图,在平面直角坐标系中,已知点A (﹣,0),B (0,3),C (0,-1)三点.(1)求线段BC 的长度;(2)若点D 在直线AC 上,且DB=DC ,求点D 的坐标;(3)在(2)的条件下,直线BD 上应该存在点P ,使以A ,B ,P 三点为顶点的三角形是等腰三角形. 请利用尺规作图作出所有的点P ,并直接写出其中任意一个点P 的坐标.(保留作图痕迹)27. 如图,在△ABD 中,AB =AD , 将△ABD 沿BD 翻折,使点A 翻折到点C . E 是BD 上一点,且BE >DE ,连结CE 并延长交AD 于F ,连结AE . (1)依题意补全图形;(2)判断∠DFC 与∠BAE 的大小关系并加以证明;(3)若∠BAD =120°,AB =2,取AD 的中点G ,连结EG ,求EA+EG 的最小值.备用图28.在平面直角坐标系xOy 中,已知点(),M a b 及两个图形1W 和2W ,若对于图形1W 上任意一点(),P x y ,在图形2W 上总存在点(),P x y ''',使得点P '是线段PM 的中点,则称点P '是点P 关于点M 的关联点,图形2W 是图形1W 关于点M 的关联图形,此时三个点的坐标满足2x a x +'=,2y by +'=. (1)点()2,2P '-是点P 关于原点O 的关联点,则点P 的坐标是;(2)已知,点()4,1A -,()2,1B -,()2,1C --,()4,1D --以及点()3,0M①画出正方形ABCD 关于点M 的关联图形;②在y 轴上是否存在点N ,使得正方形ABCD 关于点N 的关联图形恰好被直线y x =-分成面积相等的两部分?若存在,求出点N 的坐标;若不存在,说明理由.参考答案及评分标准一、选择题(本题共30分,每小题3分)二、填空题(本题共24分,每小题3分)11.y = -x +1等,答案不唯一. 12. 32 13. X <3 14.15. ()()22242x x x =-+- 16. 4122n ≤≤18. 到线段两端距离相等的点在线段的垂直平分线上,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.三、解答题(本题共46分,第19—21, 24题, 每小题4分,第22 ,23, 25-28题,每小题5分)19. 解:()2310x -=,………………2分解得13x =23x =………………4分 20.解:∵9BC =,:2:1BE EC =, ∴3EC =.………………1分 设CH x =,则9DH x =- .………………2分 由折叠可知9EH DH x ==-. 在Rt △ECH △中,=90C ∠︒, ∴222EC CH EH +=. 即()22239x x +=-.………………3分 解得4x =.∴4CH =.………………4分 21. (1)证明:由题意1m ≠ .()()21421m m ∆=-+-⨯-⎡⎤⎣⎦………………1分∵()23m -≥0恒成立,∴方程()()21120m x m x --++=总有实根;………………2分(2)解:解方程()()21120m x m x --++=,得11x =,221x m =-. ∵方程()()21120m x m x --++=的两根均为正整数,且m 是整数,∴11m -=,或12m -=.∴2m =,或3m =.………………4分 22. 解:………………3分中位数是20,众数是20.………………5分23.(1)证明:∵点E 是AD 的中点,∴AE =DE . ∵AF ∥BC ,∴∠AFE =∠DCE ,∠FAE =∠CDE . ∴△EAF ≌△EDC .………………1分 ∴AF =DC . ∵AF =BD ,∴BD =DC ,即D 是BC 的中点.………………2分 (2)解:∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形.………………3分 ∵AB =AC ,又由(1)可知D 是BC 的中点, ∴AD ⊥BC .………………4分在Rt △ABD 中,由勾股定理可求得AD =12,∴矩形AFBD 的面积为60BD AD ⋅=. ………………5分 24. 解:(1)x ≠0;………………1分(2)令113m+=, ∴12m =;………………2分 订单(架)7 10 15 20 30 45 50 客户(家) 11210222(3)如图………………3分(4)答案不唯一,可参考以下的角度:………………4分①该函数没有最大值或该函数没有最小值;②该函数在值不等于1;③增减性25.(1)证明:∵平行四边形ABCD,∴OB=OD.∵OB=OE,∴OE=OD.∴∠OED=∠ODE. ………………1分∵OB=OE,∴∠1=∠2.∵∠1+∠2+∠ODE+∠OED=180°,∴∠2+∠OED=90°.∴DE⊥BE;………………2分(2)解:∵OE =OD ,222OF FD OE +=,∴222OF FD OD +=.∴△OFD 为直角三角形,且∠OFD=90°. ………………3分在Rt △CED 中,∠CED=90°,CE=3,4DE =,∴222CD CE DE =+ .∴5CD =. ………………4分 又∵1122CD EF CE DE ⋅=⋅, ∴125EF =. 在Rt △CEF 中,∠CFE=90°,CE=3,125EF =, 根据勾股定理可求得95CF =. ………………5分 26. 解:(1)∵B (0,3),C (0,﹣1).∴BC =4. ………………1分(2)设直线AC 的解析式为y=kx+b ,把A (﹣,0)和C (0,﹣1)代入y=kx+b ,∴.解得:,∴直线AC 的解析式为:y=﹣x ﹣1. ………………2分∵DB=DC ,F DBAE ∴点D 在线段BC 的垂直平分线上.∴D 的纵坐标为1.把y=1代入y=﹣x ﹣1,解得x=﹣2,∴D 的坐标为(﹣2,1). ………………3分 (3)………………4分当A 、B 、P 三点为顶点的三角形是等腰三角形时,点P 的坐标为(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+),写出其中任意一个即可. ………………5分 27.解:(1) ………………1分(2)判断:∠DFC =∠BAE . ………………2分C . ∴BC=BA=DA=CD .∴四边形ABCD 为菱形.∴∠ABD =∠CBD ,AD ∥BC.又∵BE=BE ,∴△ABE ≌△CBE (SAS ).∴∠BAE =∠BCE .∵AD ∥BC ,∴∠DFC =∠BCE .∴∠DFC =∠BAE . ………………3分(3)连CG , AC .由()4,4P -轴对称可知,EA +EG =EC +EG ,CG 长就是EA +EG 的最小值. ………………4分∵∠BAD =120°,四边形ABCD 为菱形,∴∠CAD =60°.∴△ACD 为边长为2的等边三角形.可求得CG=3.∴EA +EG 的最小值为3.………………5分28. 解:(1)∵P (-4,4).………………1分(2)①连接AM ,并取中点A ′;同理,画出B ′、C ′、D ′;∴正方形A ′B ′C ′D ′为所求作.-----------------------------3分②不妨设N (0,n).∵关联正方形被直线y=-x 分成面积相等的两部分,∴中心Q 落在直线y=-x 上.-------------------------------------4分 ∵正方形ABC D 的中心为E (-3,0),创作人:百里严守 创作日期:202B.03.31。
北京市2020年〖人教版〗八年级数学下册期末复习试卷第二学期第二次月考质量检测 创作人:百里严守 创作日期:202B.03.31 审核人: 北堂本一 创作单位: 雅礼明智德学校一、选择题(每题3分,共计24分,把正确答案填在答题卷相应的位置上。
)1.下列二次根式中,最简二次根式是( ▲ )A .2-B .12C .51D .21 2.当x >0时,函数xy 5-=的图象在( ▲ ) A .第四象限 B .第三象限 C .第二象限 D .第一象限 3.已知点A (1,1y )、B (2,2y )、C (-2,3y )都在反比例函数x y 6=的图象上, 则1y 、2y 、3y 的大小关系是( ▲ )A. 213y y y <<B. 321y y y <<C. 312y y y <<D. 123y y y <<4. 一元二次方程0342=+-x x 的根的情况是( ▲ )A.有两个不等的实根B.有两个相等的实根C.只有一个实根D.无实根5. 实数a 、b 在数轴上对应点的位置如图所示,化简()2b a a -+的结果是( ▲)A .b a +-2B .b a -2C .b -D .b6. 一次函数b x k y +=11和反比例函数()02122≠⋅=k k xy 的图象如图所示,若21y y 〉,则x 的取值范围是( ▲)A. 02<<-x 或 x >1 B .12<<-xC .2-<x 或 x >1D .2-<x 或 10<<x7. 三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( ▲)A.14B.12C.12或14D.以上都不对 8.如图,双曲线xy 2=(x >0)经过四边形OABC 的顶点A 、C ,∠ABC=90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得到△AB ′C ,B ′点落在OA 上,则四边形OABC 的面积是( ▲)A.3B.37C.2D.25 (第5题) (第6题) (第8题) 二、填空题(每空3分,共30分,将答案填在答题卷相应的位置上。
北京市八年级下学期期末考试数学试题一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.在平面直角坐标系中,点P(2,﹣1)关于y轴对称的点Q的坐标为()A.(﹣2,﹣1)B.(﹣2,1)C.(2,1)D.(1,﹣2)2.多边形的每个内角均为120°,则这个多边形的边数是()A.4 B.5 C.6 D.83.下列图形中既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.菱形D.五角星4.在△ABC中,D、E分别为AB、AC边上中点,且DE=6,则BC的长度是()A.3 B.6 C.9 D.125.若x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k≤﹣1且k≠0 B.k<﹣1且k≠0 C.k≥﹣1且k≠0 D.k>﹣1且k≠06.在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD是菱形,则这个条件可以是()A.∠ABC=90°B.AC⊥BD C.AB=CD D.AB∥CD7.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲乙丙丁平均数80 85 85 80方差42 42 54 59A.甲B.乙C.丙D.丁8.如图,平行四边形ABCD的两条对角线相交于点O,点E是AB边的中点,图中已有三角形与△ADE 面积相等的三角形(不包括△ADE)共有()个.A.3 B.4 C.5 D.69.如图,在菱形ABCD中,AB=4,∠ABC=60°,E为AD中点,P为对角线BD上一动点,连结PA和PE,则PA+PE的值最小是()A.2 B.4 C.D.10.均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的()A.B.C.D.二、填空题(本题共18分,每小题3分)11.函数y=中,自变量x的取值范围是.12.关于x的一元二次方程x2﹣3mx﹣4=0的一个解为1,则m的值为.13.若一次函数y=﹣2x+3的图象经过点P1(﹣5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空)14.在▱ABCD中,∠ABC的平分线交直线AD于点E,且AE=5,ED=2,则▱ABCD的周长是.15.根据图中的程序,当输入一元二次方程x2﹣2x=0的解x时,输出结果y=.16.在平面直角坐标系中,点A(2,0)到动点P(x,x+2)的最短距离是.三、解答题:(本题共32分,其中17-20题每小题5分,21题和22题每小题5分)17.解一元二次方程:3x2+2x﹣5=0.18.用配方法解方程:2x2+4x﹣6=0.19.已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:四边形BFDE是平行四边形.20.一次函数y=kx+b(k≠0)的图象经过点(1,﹣3),且与y=2x平行,求这个一次函数表达式.21.关于x的一元二次方程kx2﹣(2k﹣2)x+(k﹣2)=0(k≠0).(1)求证:无论k取何值时,方程总有两个不相等的实数根.(2)当k取何整数时方程有整数根.22.如图,在正方形ABCD中,E、F分别为AB、BC上的点,且AE=BF,连结DE、AF,猜想DE、AF的关系并证明.四、解答题(本题共22分,其中23-24题每小题5分,25-26题每小题5分)23.如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.24.某中学组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t(小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)本次随机抽取的学生人数为人;(2)求出x值,并将不完整的条形统计图补充完整;(3)若该校共有学生2500人,试估计每周课外阅读量满足2≤t<4的人数.25.如图,是某工程队在“村村通”工程中修筑的公路长度y(米)与时间x(天)(其中0≤x≤8)之间的关系图象.根据图象提供的信息,求该公路的长.26.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.五、解答题(本题共18分,每小题6分)27.已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P在BC边上运动.当△ODP是腰长为5的等腰三角形时,求点P的坐标.28.在平面直角坐标系xOy中,点A(0,4),B(3,0),以AB为边在第一象限内作正方形ABCD,直线l:y=kx+3.(1)当直线l经过D点时,求点D的坐标及k的值;(2)当直线l与正方形有两个交点时,直接写出k的取值范围.29.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,D为BC中点,E、F分别为AB、AC上一点,且ED ⊥DF,求证:BE+CF>EF.小明发现,延长FD到点H,使DH=FD,连结BH、EH,构造△BDH和△EFH,通过证明△BDH与△CDF全等、△EFH为等腰三角形,利用△BEH使问题得以解决(如图2).参考小明思考问题的方法,解决问题:如图3,在矩形ABCD中,O为对角线AC中点,将矩形ABCD翻折,使点B恰好与点O重合,EF 为折痕,猜想EF、BE、FC之间的数量关系?并证明你的猜想.八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.在平面直角坐标系中,点P(2,﹣1)关于y轴对称的点Q的坐标为()A.(﹣2,﹣1)B.(﹣2,1)C.(2,1)D.(1,﹣2)考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称的点,纵坐标相同,横坐标互为相反数可得答案.解答:解:点P(2,﹣1)关于y轴对称的点Q的坐标为(﹣2,﹣1),故选:A.点评:此题主要关于y轴对称的点的坐标特点,关键是掌握(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2.多边形的每个内角均为120°,则这个多边形的边数是()A.4 B.5 C.6 D.8考点:多边形内角与外角.分析:首先可求得每个外角为60°,然后根据外角和为360°即可求得多边形的边数.解答:解:180°﹣120°=60°,360°÷60°=6.故选:C.点评:本题主要考查的是正多边形的内角和与外角和,掌握正多边形的一个内角与它相邻的一个外角互补,边数×一个外角=360°是解题的关键.3.下列图形中既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.菱形D.五角星考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、等边三角形,∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、平行四边形,∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、菱形,此图形旋转180°后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确;D、五角星,∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:C.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.4.在△ABC中,D、E分别为AB、AC边上中点,且DE=6,则BC的长度是()A.3 B.6 C.9 D.12考点:三角形中位线定理.分析:根据三角形的中位线等于第三边的一半,那么第三边应等于中位线长的2倍,计算即可.解答:解:∵△ABC中,D、E分别是边AB、AC的中点且DE=6,∴BC=2DE=2×6=12,故选D.点评:此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.5.若x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k≤﹣1且k≠0 B.k<﹣1且k≠0 C.k≥﹣1且k≠0 D.k>﹣1且k≠0考点:根的判别式;一元二次方程的定义.分析:根据一元二次方程的定义和△的意义得到k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,然后解不等式即可得到k的取值范围.解答:解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,解得k>﹣1且k≠0.∴k的取值范围为k>﹣1且k≠0.故选D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.6.在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD是菱形,则这个条件可以是()A.∠ABC=90°B.AC⊥BD C.AB=CD D.AB∥CD考点:菱形的判定.分析:由在四边形ABCD中,对角线AC,BD互相平分,可得四边形ABCD是平行四边形,又由对角线互相垂直的平行四边形是菱形,即可求得答案.解答:解:∵在四边形ABCD中,对角线AC,BD互相平分,∴四边形ABCD是平行四边形,∴当AC⊥BD时,四边形ABCD是菱形.故选:B.点评:此题考查了平行四边形的判定以及菱形的判定.此题比较简单,注意掌握对角线互相垂直的平行四边形是菱形定理的应用.7.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲乙丙丁平均数80 85 85 80方差42 42 54 59A.甲B.乙C.丙D.丁考点:方差;算术平均数.专题:常规题型.分析:此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的运动员参赛.解答:解:由于乙的方差较小、平均数较大,故选乙.故选:B.点评:本题考查平均数和方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.如图,平行四边形ABCD的两条对角线相交于点O,点E是AB边的中点,图中已有三角形与△ADE 面积相等的三角形(不包括△ADE)共有()个.A.3 B.4 C.5 D.6考点:平行四边形的性质.分析:首先利用平行四边形的性质证明△ADB≌△CBD,从而得到△CDB,与△ADB面积相等,再根据DO=BO,AO=CO,利用三角形的中线把三角形的面积分成相等的两部分可得△DOC、△COB、△AOB、△ADO面积相等,都是△ABD的一半,根据E是AB边的中点可得△ADE、△DEB面积相等,也都是△ABD的一半,从而得到答案.解答:解:∵四边形ABCD是平行四边形,∴AD=CB,DC=AB,在△ADB和△CBD中:,∴△ADB≌△CBD(SSS),∴S△ADB=S△CBD,∵四边形ABCD是平行四边形,∴DO=BO,CO=AO,即:O是DB、AC中点,∴S△DOC=S△COB=S△DOA=S△AOB=S△ADB,∵E是AB边的中点,∴S△ADE=S△DEB=S△ABD,∴S△DOC=S△COB=S△DOA=S△AOB=S△ADE=S△DEB=S△ADB,∴不包括△ADE共有5个三角形与△ADE面积相等,故选:C.点评:此题主要考查了平行四边形的性质,以及三角形的中线平分三角形面积,解决问题的关键是熟练把握三角形的中线平分三角形面积这一性质.9.如图,在菱形ABCD中,AB=4,∠ABC=60°,E为AD中点,P为对角线BD上一动点,连结PA和PE,则PA+PE的值最小是()A.2 B.4 C.D.考点:轴对称-最短路线问题;菱形的性质.分析:由于A、C两点关于BD对称,P在BD上,则连接AC,EC,与BD的交点即为点P,此时PA+PE的值最小,再根据线段垂直平分线的性质,即可求解.解答:解:如图,连接EC,与BD交于点P,连接AC,此时PA+PE=CP+EP=CE,值最小.∵∠ABC=60°,∴△ACD为等边三角形,∵E是AD中点,∴AE=2,CE⊥AD,∴CE=2,∴AP+EP=CE=2.故选D.点评:本题考查了菱形的性质,轴对称的性质,等边三角形的判定,难度适中,确定点P的位置是解题的关键.10.均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的()A.B.C.D.考点:函数的图象.专题:压轴题.分析:根据图象可得水面高度开始增加的慢,后来增加的快,从而可判断容器下面粗,上面细,结合选项即可得出答案.解答:解:因为水面高度开始增加的慢,后来增加的快,所以容器下面粗,上面细.故选B.点评:本题考查了函数的图象,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二、填空题(本题共18分,每小题3分)11.函数y=中,自变量x的取值范围是x≥﹣2.考点:函数自变量的取值范围.分析:函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数即可求解.解答:解:根据题意得:x+2≥0,解得x≥﹣2.故答案为:x≥﹣2.点评:本题主要考查自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.关于x的一元二次方程x2﹣3mx﹣4=0的一个解为1,则m的值为﹣1.考点:一元二次方程的解.专题:计算题.分析:根据一元二次方程的解的意义把x=1代入原方程得到关于m的一次方程,然后解此一次方程即可.解答:解:把x=1代入方程得1﹣3m﹣4=0,解得m=﹣1.故答案为﹣1.点评:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.13.若一次函数y=﹣2x+3的图象经过点P1(﹣5,m)和点P2(1,n),则m>n.(用“>”、“<”或“=”填空)考点:一次函数图象上点的坐标特征.分析:由函数解析式可判断出一次函数的增减性,可得出答案.解答:解:在y=﹣2x+3中,k=﹣2<0,∴在一次函数y=﹣2x+3中,y随x的增大而减小,∵﹣5<1,∴m>n,故答案为:>.点评:本题主要考查函数的增减性,掌握一次函数y=kx+b的增减性是解题的关键,即当k>0时,y 随x的增大而增大,当k<0时,y随x的增大而减小.14.在▱ABCD中,∠ABC的平分线交直线AD于点E,且AE=5,ED=2,则▱ABCD的周长是24或16.考点:平行四边形的性质.专题:分类讨论.分析:由平行四边形ABCD得到AB=CD,AD=BC,AD∥BC,再和已知BE平分∠ABC,进一步推出∠ABE=∠AEB,即AB=AE,即可求出AB、AD的长,就能求出答案.解答:解:如图1:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∵AE=5,∴AB=AE=5,∴AD=AE+DE=5+2=7,∴AB=CD=5,AD=BC=7,∴平行四边形的周长是2(AB+BC)=24;如图2:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∵AE=5,∴AB=AE=5,∴AD=AE﹣DE=5﹣2=3,∴AB=CD=5,AD=BC=3,∴平行四边形的周长是2(AB+BC)=16.故答案为:24或16.点评:本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.15.根据图中的程序,当输入一元二次方程x2﹣2x=0的解x时,输出结果y=﹣4或2.考点:解一元二次方程-因式分解法;函数值.专题:图表型.分析:先求出x的值,再根据程序代入求出即可.解答:解:x2﹣2x=0,解得:x1=0,x2=2,当x=0≤1时,y=x﹣4=﹣4;当x=2>1时,y=﹣x+4=2;故答案为:﹣4或2.点评:本题考查了解一元二次方程和函数值的应用,能求出方程的解和读懂题意是解此题的关键,难度适中.16.在平面直角坐标系中,点A(2,0)到动点P(x,x+2)的最短距离是.考点:一次函数图象上点的坐标特征;垂线段最短.分析:先判断P点在函数y=x+2上,过A作直线y=x+2的垂线交直线于点P,再根据勾股定理可求得AP的长.解答:解:∵点P坐标为(x,x+2),∴点P在直线y=x+2上,如图,设直线交x轴于点B,过A作直线的垂线交直线于点P,则AP的长即为最短距离,在y=x+2中,令y=0可知x=﹣2,∴B点坐标为(﹣2,0),又点B在直线y=x+2上,∴∠PBA=45°,∵OA=2,∴AB=4,在Rt△ABP中,则AP=AB•sin45°=4×=2,故答案为:2.点评:本题主要考查一次函数图象上点的特征,确定出点P所在的直线是解题的关键,注意数形结合.三、解答题:(本题共32分,其中17-20题每小题5分,21题和22题每小题5分)17.解一元二次方程:3x2+2x﹣5=0.考点:解一元二次方程-因式分解法.分析:先分解因式,即可得出两个一元一次方程,求出方程的解即可.解答:解:3x2+2x﹣5=0,(3x+5)(x﹣1)=0,3x+5=0,x﹣1=0,x1=﹣,x2=1.点评:本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键,难度适中.18.用配方法解方程:2x2+4x﹣6=0.考点:解一元二次方程-配方法.分析:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.解答:解:2x2+4x﹣6=0方程两边同时除以2,得x2+2x﹣3=0.移常数项,得x2+2x=3.配方,得x2+2x+1=3+1(x+1)2=4.开平方,得x+1=±2.所以,原方程的解为x1=1,x2=﹣3.点评:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.19.已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:四边形BFDE是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:先连接BD,交AC于O,由于四边形ABCD是平行四边形,易知OB=OD,OA=OC,而AE=CF,根据等式性质易得OE=OF,再根据两组对角线互相平分的四边形是平行四边形可证之.解答:证明:连接BD,交AC于O,∵四边形ABCD是平行四边形,∴OB=OD,OA=OC,∵AE=CF,∴OA﹣AE=OC﹣CF,∴OE=OF,∴四边形BFDE是平行四边形.点评:本题考查了平行四边形的判定和性质,解题的关键是作辅助线,使其中出现对角线相交的情况.20.一次函数y=kx+b(k≠0)的图象经过点(1,﹣3),且与y=2x平行,求这个一次函数表达式.考点:待定系数法求一次函数解析式.专题:计算题.分析:先利用两直线平行问题得到k=2,然后把(1,﹣3)代入y=2x+b求出b的值即可.解答:解:∵一次函数y=kx+b(k≠0)的图象与y=2x平行,∴k=2,∵一次函数y=2x+b的图象经过点(1,﹣3),∴2+b=﹣3,解得b=﹣5,∴一次函数表达式为y=2x﹣5.点评:本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.21.关于x的一元二次方程kx2﹣(2k﹣2)x+(k﹣2)=0(k≠0).(1)求证:无论k取何值时,方程总有两个不相等的实数根.(2)当k取何整数时方程有整数根.考点:根的判别式;解一元二次方程-公式法.分析:(1)根据一元二次方程的定义得k≠0,再计算判别式得到△=(2k﹣2)2﹣4k×(k﹣2)>0,然后根据非负数的性质即k的取值得到△>0,则可根据判别式的意义得到结论,;(2)利用公式法表示出方程的两个根,再进一步理由方程有整数根探讨得出k的数值即可.解答:(1)证明:这∵=k,b=﹣(2k﹣2),c=k﹣2,∴△=b2﹣4ac=[﹣(2k﹣2)]2﹣4k×(k﹣2)=4k2﹣8k+4﹣4k2+8k=4>0,∴无论k取何值时,方程总有两个不相等的实数根.(2)解:方程kx2﹣(2k﹣2)x+(k﹣2)=0(k≠0)的解为:整理,得在方程的两个根中,x1=1是整数,∴为整数,,∵k为整数,∴当k为±1和±2时方程有整数根.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.22.如图,在正方形ABCD中,E、F分别为AB、BC上的点,且AE=BF,连结DE、AF,猜想DE、AF的关系并证明.考点:全等三角形的判定与性质;正方形的性质.专题:探究型.分析:先根据正方形的性质得AB=AD=BC,∠DAB=∠B=90°,则可利用“SAS”判定△DAE≌△ABF,得到DE=AF,∠1=∠2,由于∠1+∠AED=90°,所以∠2+∠AED=90°,根据三角形内角和得到∠AOE=90°,于是得到DE⊥AF.解答:猜想:DE=AF且DE⊥AF.证明:∵四边形ABCD是正方形,∴AB=AD=BC,∠DAB=∠B=90°,在△DAE和△ABF中,,∴△DAE≌△ABF(SAS),∴DE=AF,∠1=∠2.又∵∠1+∠AED=90°,∴∠2+∠AED=90°,∵∠AOE+∠2+∠AED=180°,∴∠AOE=90°,∴DE⊥AF,即DE=AF且DE⊥AF.点评:本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.也考查了正方形的性质.四、解答题(本题共22分,其中23-24题每小题5分,25-26题每小题5分)23.如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.考点:一元二次方程的应用.专题:几何图形问题.分析:等量关系为:矩形面积﹣四个全等的小正方形面积=矩形面积×80%,列方程即可求解.解答:解:设小正方形的边长为xcm,由题意得10×8﹣4x2=80%×10×8,80﹣4x2=64,4x2=16,x2=4.解得:x1=2,x2=﹣2,经检验x1=2符合题意,x2=﹣2不符合题意,舍去;所以x=2.答:截去的小正方形的边长为2cm.点评:读懂题意,找到合适的等量关系是解决本题的关键,实际问题中需注意负值应舍去.24.某中学组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t(小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)本次随机抽取的学生人数为200人;(2)求出x值,并将不完整的条形统计图补充完整;(3)若该校共有学生2500人,试估计每周课外阅读量满足2≤t<4的人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)由条形图可知A等级有90人,由扇形图可知对应的百分比为45%,那么抽查的学生总数=A等级的人数÷对应的百分比,计算即可求解;(2)根据所有等级的百分比的和为1,则可计算出x的值,再求出B级与C级的人数,即可作图;(3)利用每周课外阅读时间量满足2≤t<4的人数=该校总人数×B级的与C级百分比的和计算即可.解答:解:(1)抽查的学生总数=90÷45%=200人,(2)∵x%+15%+10%+45%=1,∴x=30;B等级的人数=200×30%=60人,C等级的人数=200×10%=20人,条形统计图补充如下:(3)2500×(10%+30%)=1000人,所以估计每周课外阅读时间量满足2≤t<4的人数为1000人.故答案为200.点评:本题主要考查了条形统计图,扇形统计图及用样本估计总体.解题的关键是读懂统计图,能从条形统计图,扇形统计图中得到准确的信息.25.如图,是某工程队在“村村通”工程中修筑的公路长度y(米)与时间x(天)(其中0≤x≤8)之间的关系图象.根据图象提供的信息,求该公路的长.考点:一次函数的应用.分析:本题可设x≥2时,函数解析式为y=kx+b,根据待定系数法即可求出函数解析式,进而即可求出答案.解答:解:设x≥2时,函数解析式为y=kx+b,∴2k+b=180,4k+b=288,解得k=54,b=72,∴y=54x+72,∴当x=8时,y=504.答:该公路长504米.点评:本题考查一次函数的应用,关键是根据两点,可确定直线的函数解析式.当已知函数的某一点的横坐标时,也可求出相应的y值.26.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.考点:菱形的判定与性质;勾股定理.分析:(1)欲证明四边形ADCE是菱形,需先证明四边形ADCE为平行四边形,然后再证明其对角线相互垂直;(2)根据勾股定理得到AC的长度,由含30度角的直角三角形的性质求得DE的长度,然后由菱形的面积公式:S=AC•DE进行解答.解答:(1)证明:∵DE∥BC,EC∥AB,∴四边形DBCE是平行四边形.∴EC∥DB,且EC=DB.在Rt△ABC中,CD为AB边上的中线,∴AD=DB=CD.∴EC=AD.∴四边形ADCE是平行四边形.∴ED∥BC.∴∠AOD=∠ACB.∵∠ACB=90°,∴∠AOD=∠ACB=90°.∴平行四边形ADCE是菱形;(2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6,∴AD=DB=CD=6.∴AB=12,由勾股定理得.∵四边形DBCE是平行四边形,∴DE=BC=6.∴.点评:此题主要考查菱形的性质和判定以及面积的计算,使学生能够灵活运用菱形知识解决有关问题.五、解答题(本题共18分,每小题6分)27.已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P在BC边上运动.当△ODP是腰长为5的等腰三角形时,求点P的坐标.考点:矩形的性质;坐标与图形性质;等腰三角形的性质;勾股定理.分析:根据当OP=OD时,以及当OD=PD时和当OP=PD时,分别进行讨论得出P点的坐标.解答:解:过P作PM⊥OA于M.(1)当OP=OD时,OP=5,CO=4,∴易得CP=3,∴P(3,4);(2)当OD=PD时,PD=DO=5,PM=4,∴易得MD=3,从而CP=2或CP'=8,∴P(2,4)或(8,4);综上,满足题意的点P的坐标为(3,4)、(2,4)、(8,4),点评:此题主要考查了矩形的性质以及坐标与图形的性质和等腰三角形的性质,根据△ODP是腰长为5的等腰三角形进行分类讨论是解决问题的关键.28.在平面直角坐标系xOy中,点A(0,4),B(3,0),以AB为边在第一象限内作正方形ABCD,直线l:y=kx+3.(1)当直线l经过D点时,求点D的坐标及k的值;(2)当直线l与正方形有两个交点时,直接写出k的取值范围.考点:一次函数综合题.分析:(1)过D点作DE⊥y轴,证△AED≌△BOA,根据全等求出DE=AO=4,AE=OB=3,即可得出D的坐标,把D的坐标代入解析式即可求出k的值;(2)把B的坐标代入求出K的值,即可得出答案.解答:解:(1)如图,过D点作DE⊥y轴,则∠AED=∠1+∠2=90°.在正方形ABCD中,∠DAB=90°,AD=AB.∴∠1+∠3=90°,∴∠2=∠3.又∵∠AOB=∠AED=90°,在△AED和△BOA中,,∴△AED≌△BOA,∴DE=AO=4,AE=OB=3,∴OE=7,∴D点坐标为(4,7),把D(4,7)代入y=kx+3,得k=1;(2)当直线y=kx+3过B点时,把(3,0)代入得:0=3k+3,解得:k=﹣1.所以当直线l与正方形有两个交点时,k的取值范围是k>﹣1.点评:本题考查了用待定系数法求一次函数的解析式,正方形的性质,全等三角形的性质和判定,三角形的内角和定理的应用,能求出D的坐标是解此题的关键,难度偏大.29.阅读下面材料:。
北京市2020年〖人教版〗八年级数学下册期末复习试卷第二学期期末调研试卷创作人:百里严守 创作日期:202B.03.31审核人: 北堂本一创作单位: 雅礼明智德学校一、选择题:(本大题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案写在相应的位置上)1.下列不等式中,一定成立的是 【 】 A. 54a a > B.23x x +<+ C.2a a ->- D.42a a> 2.若分式122--x x 的值为0,则x 的值为 【 】 A. 1B. -1C. ±1D.23.一项工程,甲单独做需a 天完成,乙单独做需b 天完成,则甲乙两人合做此项工程所需时间为 【 】A. 11()a b -天B.1ab 天C.ab a b +天D.1a b-天 4. 若反比例函数ky x=的图象经过点(12)-,,则这个函数的图象一定 经过点 【 】 A .(1,2) B .(2,1) C .(-1,-2) D .(-1,2)5.如图,DE ∥FG ∥BC ,AE=EG=BG ,则S 1:S 2:S 3= 【 】 A.1:1:1 B.1:2:3 C. 1:3:5 D.1:4:96.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC 相似的是 【 】7.一只猫在如图所示的方砖上走来走去,最终停留在黑色方砖上的概率为 【 】 A.29 B.18 C.716 D.798.对于句子:①延长线段AB 到点C;②两点之间线段最短;③轴对称图形是等腰三角形; ④直角都相等;⑤同角的余角相等;⑥如果│a │=│b │,那么a=b.其中是命题的有【 】A .B .C .D . A B 第5题第7题A.6个B.5个C.4个D.3个二、填空题:(本大题共10小题.每小题2分,共20分.把答案直接填在相对应的位置上) 9.在比例尺为1:20的图纸上画出的某个零件的长是32cm ,这个零件的实际长是cm . 10.一次函数y=(2m-6)x+5中,y 随x 的增大而减小,则m 的取值范围是________. 11.已知3x+4≤6+2(x-2),则| x+1|的最小值等于________. 12.请选择一组,a b 的值,写出一个关于x 的形如2ab x =-的分式方程,使它的解是0x =,这样的分式方程可以是.13.小刚身高 1.7m ,测得他站立在阳光下的影子长为0.85m.紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起手臂超出头顶______________m.14.从1至9这9个自然数中任取一个,是2的倍数或是3的倍数的概率是 . 15.把命题“全等三角形的对应边相等”改写成“如果……那么……”的形式..16.如图,D,E 两点分别在△ABC 的边AB,AC 上,DE 与BC 不平行,当满足_______________条件(写出一个即可)时,△ADE ∽△ACB.17.如图点A 的坐标为(3,4), 点B 的坐标为(4,0),以O 为位似中心,按比例尺1:2将△AOB 放大后得△A 1O 1B 1,则A 1坐标为______________. 18.两个反比例函数k y x =(k>1)和1y x =在第一象限内的图象如图所示,点P 在ky x=的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x =的图象于点B ,当点P 在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 (把你认为正确结论的序号都填上).三、解答题 (本大题共9小题,共64分.把解答过程写在相对应的位置上.解答时应写出必要的计算过程、推演步骤或文字说明.作图时用铅笔并描黑.)19. (本小题5分)解分式方程:231x x =+.20. (本小题5分)解不等式组255432x x x x -<⎧⎨-+⎩≥,.第18题第17题21. (本小题6分)某文具厂加工一种文具2 500套,加工完1 000套后,由于采用了新设备,每天的工作效率变为原来的1.5倍,结果提前5天完成了加工任务.求该文具厂原来每天加工多少套这种文具.22. (本小题7分)将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌面上,随机地抽取一张作为十位上的数字,放回后再抽取一张作为个位上的数字,试利用树状图探究能组成哪些两位数?恰好是“偶数”的可能性为多少?23. (本小题7分)如图, 在正方形ABCD中, 点M、N分别在AB、BC上, 且AB=4AM,BC=163BN.(1)△ADM和△BMN相似吗? 并说明理由.(2) 求∠DMN的度数.24. (本小题7分)某长途汽车客运公司规定旅客可随身携带一定质量的行李.如果超过规定质量,那么需要购买行李票,行李票费用y(元)是行李质量x(kg)的一次函数.根据图象回答下列问题:(1)求旅客最多可免费携带行李的质量;(2)求y与x之间的函数关系式;(3)某旅客所买的行李票的费用为4~15元,求他所带行李的质量的范围.25. (本小题9分)已知一次函数与反比例函数的图象交于点P(-3,m),Q(2,-3).(1)求这两个函数的函数关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?当x为何值时,一次函数的值小于反比例函数的值?26. (本小题9分)某工厂计划支援西部某学校生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m3,一套B型桌椅(一桌三椅)需木料0.7m3,工厂现有库存木料302m3.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往该校,已知每套A型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出....用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.27. (本小题9分)如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC,CD于点P,Q.(1)请直接写出....图中各对相似三角形(相似比为1除外);(2)求BP:PQ:QR的值.参考答案一、选择题:BDCD CBAB二、填空题9.640 10.m<3 11.1 12.212x=--13.0.5 14.2315. 如果两个三角形是全等三角形, 那么这两个三角形的对应边相等 16. ∠AED=∠ABC或∠ADE=∠ACB或AE AD AB AC=17.(6,8) 18.①②④三、解答题19.解:化简得2(x+1)=3x ……………………2分解得2x=, ……………………4分检验知,2x=是原方程的解. ……………………5分20.解:25,543 2.x xx x-<⎧⎨-+⎩≥12()()由不等式(1)得:x<5 ……………………2分由不等式(2)得:x≥3 ……………………4分所以: 3≤x<5 ……………………5分21.解:设该文具厂原来每天加工这种文具x套.根据题意,列方程得250010002500100051.5x x x--=+,…………………………………2分解得100x=…………………………………4分经检验,100x=是原方程的根. …………………………………5分答:该文具厂原来每天加工这种文具100套. …………………………………6分22.解:树状图略,………………………………………………………………3分能组成11,12,13,21,22,23,31,32,33九个两位数,……………5分恰好是偶数的概率为13.………………………………………………………7分AB CDEPQ R23.(1)∵在正方形ABCD 中, 且AB=4AM,BC=163BN ∴AB=AD=BC,∠DAM=∠MBN=90o∴4AD AM =,AB=43BM, ∴BM BN =4,4AD BMAM BN==…………………………………2分 又∵∠DAM=∠MBN=90o∴△ADM ∽△BMN …………………………………4分 (2) 由(1) 得∠ADM=∠BMN …………………………………5分 又∵在Rt △ADM 中, ∠ADM+∠AMD=90o∴∠BMN+∠AMD=90o……………………………6分∴∠DMN=90o. ……………………………7分 24.(1)10; …………………………………2分 (2)y=15x-2; …………………………………4分 (3)124512155x x ⎧-≥⎪⎪⎨⎪-≤⎪⎩…………………………………5分解得30≤x ≤85. …………………………………6分答: 旅客所带行李的质量的范围为30 kg 到85kg. …………………………………7分 25. 解:(1)设一次函数的关系式为y=kx+b ,反比例函数的关系式为ny x=,反比例函数的图象经过点(23)Q -,,362nn ∴-==-,.∴所求反比例函数的关系式为6y x=-.…………2分将点(3)P m -,的坐标代入上式得2m =,∴点P 的坐标为(32)-,.由于一次函数y kx b =+的图象过(32)P -,和(23)Q -,,322 3.k b k b -+=⎧∴⎨+=-⎩,解得11.k b =-⎧⎨=-⎩,O 1 2 3 4 5 6 6 5 4 3 2 1-1-2 -3 -4 -5 -6 -1 -2 -3 -4 -5 -6x yQ (2,-3) P (-3,2)∴所求一次函数的关系式为y= -x-1. …………………………………4分(2)两个函数的大致图象如图. …………………………………6分 (3)由两个函数的图象可以看出.当3x <-和02x <<时,一次函数的值大于反比例函数的值.……………………8分 当30x -<<和2x >时,一次函数的值小于反比例函数的值.……………………9分 26. 解:(1)设生产A 型桌椅x 套,则生产B 型桌椅(500-x)套,由题意得0.50.7(500)30223(500)1250x x x x +⨯-⎧⎨+⨯-⎩≤≥…………………………………2分 解得240≤x ≤250 …………………………………3分 因为x 是整数,所以有11种生产方案. …………………………………4分 (2)y=(100+2)x+(120+4)×(500-x)=-22X+62000 …………………………5分 ∵-22<0,y 随x 的增大而减少.∴当x=250时,y 有最小值.∴当生产A 型桌椅250套、B 型桌椅250套时,总费用最少.此时y min =-22×250+62000=56500(元) …………………………………7分 (3)有剩余木料 …………………………8分 最多还可以解决8名同学的桌椅问题. …………………………9分 27. [解](1)△BCP ∽△BER, △PCQ ∽△PAB, △PCQ ∽△RDQ, △PAB ∽△RDQ ……4分 (2)四边形ABCD 和四边形ACED 都是平行四边形,BC AD CE ∴==,AC DE ∥,PB PR ∴=,12PC RE =.………………………5分 又PC DR ∥,PCQ RDQ ∴△∽△.∵点R 是DE 中点,DR RE ∴=.12PQ PC PC QR DR RE ∴===. 2QR PQ ∴=. ………………………7分又3BP PR PQ QR PQ ==+=,::3:1:2BP PQ QR ∴=. ………………………9分A BCD EPQ R。