第十四届希望杯数学邀请赛五年级1试 试题
- 格式:docx
- 大小:147.18 KB
- 文档页数:2
“希望杯”全国数学大赛决赛模拟试卷附答案(小五) (时间:90分钟 满分:120分)一、填空题。
(每题6分,共72分。
) 1.计算:1+12 +22 +12 +13 +23 +33 +23 +13 +…+12006 +22006 +…+20062006 +…+22006 +12006=____________。
2.8+88+888+…+88…8的和的个位上的数字是____________。
3.有四个连续奇数的和是2008,则其中最小的一个奇数是____________。
4.张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得1个苹果和3个橘子。
最后橘子分完了,苹果还剩下12个。
那么一共分给了____________名小朋友。
5.有这样一种算式:三个不同的自然数相乘,积是100。
这样的算式有____________种。
(交换因数位置的算同一种。
)6.在右边的数阵中,如果按照从上往下,从左往右的顺序数数,可以知道第1个数是1,第3个数是2,第6个数是3,……那么第99个数是____________。
7.一天,小慧和刘老师一起谈心。
小慧问:“老师,您今年有多少岁?”刘老师回答说:“你猜猜,当我像你这么大时,你才1岁;当你到我这么大时,我就34岁了。
”刘老师今年的年龄是____________岁。
8.小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。
他第一份训练题得了90分,第二份训练题得了100分,那么第三份训练题至少要得____________分才能使四份训练题的平均成绩达到105分。
9.某小学五年级有9名同学进入了“希望杯”数学大赛的决赛。
已知他们在初赛中前3名同学的平均分比前6名同学的平均分多3分,后6名同学的平均分比后3名同学的平均分多3分。
那么前3名同学的总分比后3名同学的总分多____________分。
10.在右图中,已知正方形ABCD 的面积是正方形EFGH 面积的4倍,正方形AMEN 的周长是4厘米,那么正方形ABCD 的周长是____________厘米。
1.对于非零自然数,,规定运算“”的含义是:,已知,的值 .2.计算:的结果个位数字是 .个3.把分解质因数是 。
4.将至六个数填入下图所示球体的圆内,使球体的各个大圆上每四个数的和都相等。
这个和是 。
5..6.有若干名小朋友,第一名小朋友的糖果比第二名小朋友的糖果多块,第二名小朋友的糖果比第三名小朋友的糖果多块……即前一名小朋友总比后一名小朋友多块糖果.他们按次序围成圆圈做游戏,从第一名小朋友开始给第二名小朋友块糖果,第二名小朋友给第三名小朋友块糖果……即每一名小朋友总是将前面传来的糖果再加上自己的块传给下面的小朋友.当游戏进行到最后一名小朋友无法按规定给出糖果时,有两名相邻的小朋友的糖果数之比是,最多有 名小朋友.7.新希望杯五年级竞赛模拟数学试卷①猴子和狮子的总数要比熊猫的数量多,②熊猫和狮子的总数要比猴子的两倍还多,③猴子和熊猫的总数要比狮子的三倍还多,④熊猫的数量没有狮子数量的两倍那么多,可知猴子有 只,熊猫有 只,狮子有 只.8.某天早上,一只怪物攻击了奥拉星球.为了拯救星球,从怪物出现时亚比英雄们就对怪物进行反击.怪物出现时有点生命值,每位亚比英雄每个白天可以消耗怪物点生命值,但在晚上亚比英雄们都休息时,怪物会恢复点生命值.如果在天内怪物被消灭,至少需要 位亚比英雄.9.在这个数中,十位数字是奇数的数共有 个.,,,,10.欢欢和乐乐同时出发去集市,他们以不同的速度沿同一条直路匀速前行,开始时两人相距米,小时后两人仍相距米.再过小时他们都没有到达集市,这时候他们相距 米.11.艾迪、 薇儿和大宽是好朋友, 住在同一个镇上, 靠着同一条镇中小道. 大宽在中间些,艾迪和薇儿在小道的两端. 三个好朋友每天都要聚一次. 第一天, 艾迪和薇儿从同一时刻出发, 从各自的家沿着小道走, 结果同时到达大宽家. 第二天, 艾迪比第一天提早小时出发,薇儿比第一天又推迟半个小时出发, 艾迪和薇儿比第一天提前了分钟相遇. 第三天薇儿比第一天提早小时出发, 艾迪比第一天推迟半个小时出发, 艾迪和薇儿在离大宽家千米处相遇. 问艾迪的速度是 .12.的分数单位是 ,再增加 个这样的单位就是最小的质数.13.边长是厘米的正方形纸片,正中间挖了一个正方形的洞,成为一个宽厘米的方框.把五个这样的方框放在桌面上,成为一个这样的图案(如图所示).桌面上被这些方框盖住的部分面积是 平方厘米.14.从这个自然数中删掉若干个连续的自然数,使得余下数的和能被整除,最少要删掉 个数.15.自然数、、、、都大于,其乘积,则其和的最大值是 ,最小值是 .16.三位数是一个质数,巧的是,,,,也都是质数, .17.个连续自然数的和恰好是三个不同质数的积,那么这三个质数的和最小是 .18.在这个数中,最多可取出 个数,使所取出的数中,任意两个数的和能被整除.19.若六位数能被和整除,则两位数 .20.的个位是 .21.平面内有个点,其中任意个点均不在同一条直线上,以这些点为端点连接线段,则除这个点外,这些线段至少还有 个交点.22.如图,若干边长为的小等边三角形组成一个边长为的大等边三角形.现在每个小三角形的顶点涂上黑色或白色,可以按照任意顺序涂色.如果某个小三角形有两个顶点的颜色相同,那么第三个顶点涂黑色;否则第三个顶点涂白色.完成涂色后的大三角形有 种不同的样式.(不可旋转、翻转)23.用,,,这个数字任意写出一个一万位数,从这个一万位数中任意截取相邻的个数字,可以组成许许多多的四位数,这些四位数中,至少有 个相同.24.甲、乙、丙、丁兄弟四人各收藏了一些宝石.每天早上他们都要聚在一起,重新分配宝石.分配的规则是:拥有宝石最多的人分给其他三人每人颗.如果第天早上分配完后,甲、乙、丙、丁四人分别有、、、颗宝石,那么第天早上分配完后,甲有 颗宝石.25.舞台中央有一个音效区,被分隔成个不同区域,每个区域安装个音箱(音箱无差别),音箱朝向只能向东、西、南或北,且相邻两个区域的音箱朝向不能面对面(有公共边的两个区域视为相邻).共有 种安装方案.东南西北(1)可以组成 个不同的三位数.26.有张卡,分别写有数字,,,,.如果允许可以作用,那么从中任意取出张卡片,并排放在一起.27.在平面上有个点,其中任意个点都不在同一条直线上.如果在这个点之间连结条线段,那么这些线段最多能构成 个三角形.28.计算 .29.计算: .30.定义新运算:,(个相乘),则.31.已知三个不同的非零自然数、、满足算式, 且.那么代表的自然数是 .32.下面表格所有数的和是 ?33.三位数(,,互不相同),是,,的最小公倍数,是,,的最大公因数,等于的因数个数,这样的三位数有 个.34.35.一个两位数,在它的前面写上,得到一个三位数.这个三位数比原两位数的倍多,那么原来的两位数为 .36.左图一个由小正方体组成的的大正方体.从这个大正方体中抽出若干个小正方体,把大正方体中相对的两面打通.右图中的阴影部分是抽空的状态.右图的正方体中还剩 个小正方体.37.有一个两位数,除以余,除以余,除以余,那么这个数最小是 .38.小明全家拍全家福,家里有爷爷、奶奶、爸爸、妈妈和小明人,爷爷必须站最中间,小明不站两边,请问:一共有 种不同的排队方式.39.图中有四个等边三角形,边长分别为,,,,那么阴影部分的总面积是最小的等边三角形面积的 倍.乐乐老师想把件相同的礼物全部分给个小朋友,要使每个小朋友都分到礼物,则分礼物的不同方法一共有 种.41.题图中共有 个正方形.42.龙猫家的大花园是一个平行四边形.如图,线段和将花园分成四块,其中的和的面积分别是和,则四边形的面积是 .43.如图所示,正六边形的面积为,则阴影部分的面积为 .44.一张卡片如左图所示,从中选个数字,分别写在个部分上,“”已经写好,然后将卡片折成右图的正方体纸盒.这个纸盒三组相对面上的数字和都相等,这个和是 .45.在一个的方阵中,任意填上自然数,从中任选出个的方格.如果选出的方格中必有个方格为原方阵中一个矩形的个角,上面所填的个数的和是偶数,那么的最小值是 .46.潘多拉星球遭到只飞龙和只地虎的袭击,机甲战士奋力抗击.潘多拉星球上的机甲战士共名,每个战士击退只飞龙需要分钟,击退只地虎需要分钟.那么,战士们击退全部敌人至少需要 分钟.47.自动扶梯以匀速由下往上行驶,两个急性子的孩子嫌扶梯走的太慢,于是在行驶的扶梯上,男孩每秒向上走梯级,女孩每秒钟走梯级.结果男孩用秒到达楼上,女孩用秒到达楼上.该楼梯共有 级.48.小明读一本小说,已读页数比全书页数的多页,未读的页数比全书页数的少页.这本书共有 页.49.父亲节来临之际,商店进行优惠促销.领带原价元条,现在买条送条,妈妈和两位阿姨现在合买条领带,每条领带比原来便宜 元.50.年父亲的年龄是儿子年龄的倍,年父亲年龄是儿子年龄的倍.儿子是在 年出生的.51.一辆汽车的速度是每小时千米,现有一个每小时比标准表多走秒的计时器,若用该计时器计时,则测得这辆汽车的速度是每小时 千米.52.放暑假真棒啊下面算式中不同的汉字代表不同的数字,六位数“”的最小值是 .放放放暑暑暑假假假真真棒啊53.若,则整数的所有数位上数字的和是 .个个54.甲、乙、丙三位同学去买书,他们买的本数都是两位数,且甲买的最多,丙买的最少,又知这些书本数的总和是偶数,它们的积是,那么乙最多买 本.55.已知、两地相距千米,从到是下坡路.小高同学早上点骑车从地去地,点整到达;第天早上点,他从地原路返回,中午点整才到达地.他在两天往返的过程中曾在同一时刻到达同一地点,那么小高同学 时 分到达这一地点,此地距离地 千米.56.有这样一类四位数,它满足的形式,如.这样的四位数中偶数有 个.57.下图有五个圆,它们相交相互分成个区域,现在两个区域里已经填上与,要求在另外七个区域里分别填进、、、、、、七个数,使每个圆内的和都等于.则所表示的三位数是 .58.四个边长都是整数的正方形如下图摆放,正方形的三个顶点分别是正方形,,的中心.若红色部分的总面积和绿色部分的面积相等,则正方形的边长最小是 .59.名工人小时加工零件个,按这个效率,小时加工个零件,需要 名工人.60.一只蚂蚁从正方体某个面的中心出发,每次走到相邻面的中心,每个中心恰好经过一次最终回到出发点,所有经过的中心排出的序列共有 种.(两条序列不同指沿着行走方向经过的中心点顺序不一样)61.若一个能被整除的两位数,既不能被整除,又不能被整除,它的倍是偶数,十位数字不小于,则这个两位数是 .62.除以的余数是 .63.一个正方体被切成个大小形状一模一样的小长方体(如图所示),这些小长方体的表面积之和为平方厘米。
“希望杯”全国数学邀请赛模拟练习专题专题1 四则运算1.2.7+7.2+2.8+8.22.2280÷34-648÷34+476÷343.1÷﹙2÷3﹚÷﹙3÷4﹚÷﹙5÷6﹚4.0.2008+2.008+20.08+200.8+20085.7.5×23+3.1×256.19+199+1999+199997.﹙12.34+23.41+34.12+41.23﹚÷﹙1+2+3+4﹚8.﹙1+3+5+...+99﹚-﹙2+4+6+ (98)9.41.2×8.1+537×0.1910.1÷0.1÷0.1÷0.1÷0.111.﹙8.5×13.3×7.2﹚÷﹙1.7×1.8×1.9﹚12.99+99×99+99×99×9913.2009.2009+99.99×20.0914.1÷0.0625-1÷0.125-1÷0.25-1÷0.515.如果12345679×a=66666666, 12345679×b=555555555,那么a+b=____.专题2 自然数的性质1.用0,1,2,3这四个数字可以组成___个无重复的四位数。
2.有七张卡片:1,1,2,3,9,9,9,从中任取3张可排列成三位数。
若其中卡片9旋转后可看做6,则排列成偶数有___个。
3.有两组数,A组:1,3,5,7,9,B组:2,4,6,8,10.分别从A组和B组中任意选出一个数相加,能得到___个不同的和。
4.能同时被2,3,4,5,6,7,8,9整除的最小五位数是____。
5.p,q均为质数,且5p+7q=29,则p+q=___。
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
第一届小学“希望杯"全国数学邀请赛五年级第1试一、填空题1.计算=_______ 。
2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。
3.在纸上画5条直线,最多可有_______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ .5.,各表示一个两位数,若+=139,则=_______ 。
6.三位数和它的反序数的差被99除,商等于_______ 与_______ 的差。
7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。
8.一次智力测验,主持人亮出四块三角形的牌子:在第(4)块牌子中,?表示的数是_______ 。
9.正方形的一条对角线长13厘米,这个正方形的面积是平方厘米.10.六位自然数1082□□能被12整除,末两位数有种情况.11.右边的除法算式中,商数是。
12.比大,比小的分数有无穷多个,请写出三个:。
13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E 赛了场.14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是。
15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:“第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2"。
警察由此判断该车牌号可能是.16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9.小光,小亮二人随意往桌上扔放这个木块.规定:当小光扔时,如果朝上的一面写的是偶数,得1分。
当小亮扔时,如果朝上的一面写的是奇数,得1分。
每人扔100次,得分高的可能性最大。
17.从1,2,3,4,5,6,7,8,9.中随意取出两个数字,一个作分子,一个作分母,组成一个分数,所有分数中,最大的是,循环小数有个。
小学“希望杯” 全国数学邀请赛五年级一试 试卷解析1、计算:2015201.520.152.015--=2、9个13相乘,积的个位数字是 。
3、如果自然数a 、b 、c 除以14都余5,则a +b +c 除以14,得到的余数是 。
4、将1到25这25个数随意排成一行,然后将它们依次和1,2,3,…,25相减,并且都是大数减小数,则在这25个差中,偶数最多有 个。
5、如图l ,有3个长方形,长方形①的长为16厘米,宽为8厘米;长方形②的长、宽分别是长方形①长、宽的一半;长方形③的长、宽分别是长方形②长、宽的一半,则这个图形的周长是 厘米。
6.字母a ,b ,c ,d ,e ,f ,g 分别代表1至7中的一个数字,若a +b +c =c +d +e =e +f +g ,则c 可取的值有 个。
7、用64个体积为l 立方米的小正方体拼成一个大正方体,如果将大正方体8个顶点处的小正方体都去掉,则此时的几何体的表面积是____平方米。
8、有一个三位数,百位数字是最小的质数,十位数字是算式(0.3+π×13)的结果中的小数点后第1位数字,个位数字是三位数中能被17整除的最小数的个位数字,则这个三位数是 。
(π取3.14)9、循环小数0.0142857 的小数部分的前2015位数字之和是10、如图2,用若干个相同的小正方体摆成一个几何体,从上面、前面、左面看分别是图形①、②、③,则至少需要 个小正方体。
11、已知a 和b 的最大公约数是4,a 与c 及b 与c 的最小公倍数都是100,而且a 小于等于b,则满足条件的有序自然数对(a,b,c)共有组。
12、从写有1、2、3、4、5的五张卡片中,任取3张组成一个三位数,其中不能被3整除的有个。
因此,不能被3整除的共有:6×6=36(个)。
13、两位数ab和ba都是质数,则ab有个。
14、ab和cde分别表示两位数和三位数,如果ab+cde=1079,则a+b+c+d+e=。
五年级训练题(一)一、选择题1.甲、乙两个数的和是201.3,其中甲数的小数点向左移动一位,就等于乙数,甲数与乙数的差是( )。
A. 164.3B.164.7C.165.3D.165.72.如图,平面上有12个点,上下或左右相邻的两点之间的距离都是1,选其中4个点围成一个正方形,不同的选法共有( )。
A.8种B.9种C.10种D.11种3.五年级两个班共100人参加智力竞赛,平均分是78分,其中男生平均分是80分,女生平均分是75分,男生比女生多( )。
A. 20人B.22人C.24人D.25人4.王伯去水果店买水果。
如果买4千克梨和6千克苹果,要付款84元;如果买5千克梨和6千克苹果,要付款91.5元。
那么买1千克梨和1千克苹果要付款 ( )。
A. 15元B.15.5元C.16元D.16.5元5.如下左图,某物体由14个小正方体堆积而成,从左边看该物体,看到的图形是( )。
999除以13所得的余数是( )。
6.1232012个9A.4 B.6 C.8 D.10二、填空题7.计算:(9.6×8.6×8.4)÷(4.3×3.2×2.1)=。
8.在400米长的环形跑道上,甲、乙两人同时同向从起跑线并排起跑,甲每秒跑5米,乙每秒跑4.2米。
两人起跑后第一次相遇时,乙共跑了米。
9.某校五年级举行篮球比赛,规定:胜一场积3分,平一场积1分,负一场积0分。
赛后统计,A班共积9分,其中平比胜多1局,负的局数是胜的2倍,A班负了局。
10.如图,连接大正方形各边的中点得到第二个正方形,再连接第二个正方形各边的中点得到第三个正方形,最后连接第三个正方形各边的中点得到第四个正方形。
大正方形的面积是图中阴影部分面积的倍。
11.如果+++=2.1, +++=2.5,+++=3, 则+++++=。
12.建设某项工程,原计划40名工人用90天完成。
现在这批工人工作30天后又增加了10人,完成剩下的部分需再做天。
第十四届小学“希望杯”全国数学邀请赛五年级 第1试试题一、 以下每题6分,共120分.1. 计算: 20.16322.016680⨯+⨯=______.【答案】2016【考点】乘法巧算【解析】2.016320 2.0166802.016(320680)2.01610002016⨯+⨯=⨯+=⨯= 2. 小猫咪A 、B 、C 、D 、E 、F 排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后再到队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是______.【答案】B【考点】周期问题【解析】观察发现,A 、B 、C 、D 、E 、F 为一组不断重复出现,因此是以6为周期的周期现象,2786=46÷……2,因此最后一个领到鱼干的小猫咪是B .3. 某房间内的一堵墙上挂有一面镜子,且这堵墙的对面有一块电子表,李明从镜子中看到电子表显示的时间如图2所示,则此时的实际时间是______.【答案】2:55【考点】电子钟表【解析】从镜子看到的是22:50,通过反射原理,结果是2:55.4. 如果自然数a 、b 、c 、d 、e 除以6都余4,则a b c d +++除以3,所得的余数是______.【答案】1【考点】带余除法【解析】a 、b 、c 、d 的余数都是4,则444416,+++=163=51÷……5. 三位偶数A 、B 、C 、D 、E 满足A <B <C <D <E,若4306A B C D E ++++=,则A 最小是______.【答案】326【考点】偶数,最值问题【解析】A 最小,则B 、C 、D 、E 要尽可能的最大,最大的三位偶数分别为998,996,994,992,所以4306998996994992326A =----=.6. 将100按“加15,减12,加3,加15,减12,加3,……”的顺序不断重复运算,运算26步后,得到的结果是______.(1步指每“加”或“减”一个数).【答案】151【考点】周期问题【解析】100一直按照“加15,减12,加3”的顺序进行运算,151236-+=,把每3步看为一组,每组都能使结果加3,263=82÷……,最后的结果为100861512151+⨯+-=.7. 如图3,若每个小正方形的边长是2,则图中的阴影面积是______.【答案】72【考点】复杂几何,巧求面积【解析】运用平移法,最后阴影部分有18个小正方形,每个小正方形的边长为2,所以阴影部分的面积是2218=72⨯⨯.8. 某商店的同种点心有大小两种包装礼盒,大盒85.6元1盒,内有点心32块,小盒46.8元一盒,内有点心15块.若王雷用654元买了9盒点心,则他可得点心____块.【答案】237【考点】经济问题,方程法解应用题【解析】王雷用654元买了9盒蛋糕,设大盒买了x 盒,则小盒买了(9)x -盒.85.646.8(9)65438.8232.86x x x x ⨯+⨯-===所以大盒礼盒买了6盒,小盒礼盒买了3盒.总共有点心326153237(.⨯+⨯=块)9. 如图4,在梯形ABCD 中,若AB =8,DC =10,15BCM S ∆=,则梯形ABCD 的面积是______.【答案】45【考点】梯形面积【解析】101525AMD BCM S S ∆+=+=,所以梯形的高252105h =⨯÷=,梯形的面积是(810)5245.+⨯÷=10. 两个数的最大公约数和最小公倍数分别是3和135,则这两个数的差最小是______.【答案】12【考点】数论,最大公约数,最小公倍数.【解析】最大公约数和最小公倍数分别是3和135,1353=45÷,45=335⨯⨯,差最小是3(95)12,⨯-=则这两个数的差最小是12.11. 14袋糖果每袋的平均重量经四舍五入到小数小数点后第一位等于90.2克.若每袋糖果的重量都是整数,则这14袋糖果的总重量是_______克.【答案】1263【考点】数论,最大公约数,最小公倍数.【解析】90.2141262.8⨯=,所以总总量1263克.12. 从数字1,2,3,4,5中任意取4个组成四位数,则这些四位数的平均数是_______.【答案】3333【考点】位值原理,平均数问题【解析】从5个数中任意选取4个数,总共有5432=120(⨯⨯⨯种)可能,根据位值原理,千位上的数的和为(12345)241000360000,++++⨯⨯=百位上的数的和为(12345)2410036000,++++⨯⨯=十位上的数的和为(12345)24103600,++++⨯⨯=个位上的数的和为(12345)24360,++++⨯=所以平均数为(360+3600+36000+360000)1203333÷=.13. 某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A 、B 两人各自答题,得分之和是58,A 比B 多得14分,则A 答对_______道题.【答案】8【考点】和差倍问题,鸡兔同笼,方程法解应用题【解析】A 得分:(5814)236+÷=(分),设A 答对x 道题.52(10)368x x x --==,,所以A 答对8道题.14. 如图5,若60ABCD S =长方形平方米,4XYZR S =长方形平方米,则EFGH S =______平方米.【答案】32【考点】复杂几何【解析】观察发现,11112222EFR AFRE EDH EDHZ HGY HCGY GFX GBFX S S S S S S S S ∆∆∆∆====,,,, 所以11()=(604)43222EFGH ABCD XYZR XYZR S S S S =-+-+=(平方米). 15. 有一个三位数A ,在它的某位数字的前面添上小数点后得到数B ,若478.8A B -=,则A =_______.【答案】532【考点】差倍问题【解析】A 在添了小数点之后与原来的差为一位小数,所以小数点向添在了个位与十位之间,数字缩小了10倍,设原来的数A 为x ,0.1478.8,532x x x -==.16. 商店里有若干个柚子和西瓜,其中西瓜个数是柚子个数的3倍,如果每天卖出30个西瓜和20个柚子,3天后,西瓜个数比柚子个数的4倍少26,则商店里原有______个柚子.【答案】176【考点】和差倍问题【解析】每天卖出西瓜30个,柚子20个,3天后共卖出西瓜90个,柚子60个.s 原来西瓜个数是柚子个数的3倍,设柚子个数为x ,则西瓜为3x390(60)426,390424026,176x x x x x -=-⨯--=--=所以原来有柚子176个.17. 已知a 、b 、c 是3个彼此不同的质数,若37a b c +⨯=,则a b c +-最大是______.【答案】32【考点】质数,最值问题【解析】a 、b 、c 是3个彼此不同的质数,符合题意的有:27537;317237;1113237;237237;313237+⨯=+⨯=+⨯=+⨯=+⨯=a b c +-最大,则a =31,b =3,c =2, 32a b c +-=.18. 李双骑车以320米/分钟的速度从A 地驶向B 地,途中因自行车故障推车继续向前步行,5分钟到距B 地1800米的某地修车,15分钟后以原来骑车速度的1.5倍继续向前驶向B 地,到达B 地时,比预计时间多用17分钟,则李双推车步行的速度是_____.【答案】72【考点】行程问题,方程解应用题【解析】设步行推车的路程为x ,比预计时间多用17分钟,而其中有15分钟是修车时间,实际上行车时间只比预计多2分钟,可列以下方程:320 1.5480/(1800)320251800480(1800)320 6.75360x x x ⨯=+÷+=+÷+÷==(米分钟)推车步行的速度是360572÷=(米/分钟)。
第十四届“希望杯”数学邀请赛五年级1试试题
1.计算:20.16×32÷
2.016×680=________。
2.小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,
领完后再到队尾继续排队领,直到鱼干发完。
若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是________。
3.某房间内的一堵墙上有一面镜子,且这堵墙的对面有一块电子表,李明从名字中看到电
子表显示的时间如图2所示,则此时的实际时间是________。
4.如果自然数a,b,c,d除以6都余4,则a+b+c+d除以3,所得的余数是________。
5.三位偶数A,B,C,D,E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小是________。
6.将100按“加15,减12,加3,加15,减12,加3,……”的顺序不断重复运算,运
算26步,得到的结果是________。
(1步指“加”或“减”一个数)
7.如图3,若每个小正方的边长是2,则图中阴影部分的面积是________。
8.某商店的同种点心有大小两种包装礼盒,大盒85.6元1盒,内有点心
32块。
小盒46.8元1盒,内有点心15块。
若王雷用654元买了9盒
点心,则他可得点心________块。
9.如图4,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△ABCM=15,
则梯形ABCD的面积是________。
10.两个数的最大公约数和最小公倍数分别是3和135,则这两个数的差最
小是________。
11.14袋糖果每袋的平均重量经四舍五入到小数点后第一位等于90.2克,若每袋糖果的重
量都是整数,则这14袋糖果的总重量是________克。
12.从数字1,2,3,4,5中任意取4个组成四位数,则这些四位数的平均数是________。
13.某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分。
A、B两人各自答
题,得分之和是58,A比B多得14分,则A答对________道题。
14.如图5,若S□ABCD=60平方米,S□XYZR=4平方米,则
S□EFGH=________平方米。
15.有一个三位数A,在它的某位数字的前面添上小数点后得到数B,
若A-B=478.8,则A=________。
16.商店里有若干个柚子和西瓜,其中西瓜个数是柚子个数的3倍,如果每天卖出30个西
瓜和20个柚子,3天后,西瓜个数比柚子个数的4倍少26,则商店里原有________个柚子。
17.已知a,b,c是3个彼此不同的质数,若a+b×c=37,则a+b-c最大是________。
18.李双骑车以320米/分钟的速度从A地驶向B地,途中因自行车故障推车继续向前步行
5分钟到距B地1800米的某地修车,15分钟后以原来骑车速度的1.5倍继续向前驶向B地,到达B地时,比预计时间多用了17分钟,则李双推车步行的速度是________米/分钟。
19.如图6,将一个等腰三角形ABC沿EF对折,其中顶点A与底边的中点D
重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则
BC=________厘米。
20.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需要45分
钟,20人需要20分钟,则14人修好大坝需________分钟。