上转换发光材料ppt课件
- 格式:ppt
- 大小:2.44 MB
- 文档页数:58
第8讲_上转换发光材料上转换发光材料(Upconversion Luminescent Materials)上转换发光材料是一种在低能量激发下可以产生高能量发光的材料。
其发光机制与传统的下转换发光材料,如荧光粉和半导体量子点等有所不同。
下转换发光材料在受到外界激发后,会先吸收光子并将其转换为较低能量的光子发出。
而上转换发光材料则能够在较低能量的激发光下,将吸收的能量进行级联转换,最终发射出高能量光。
上转换发光材料主要有两种类型:硅基和非硅基的上转换材料。
硅基上转换材料已经取得了长足的进展,并在光伏领域中受到广泛关注。
硅基上转换材料主要的特点是其上转换效率高,可以将低能量的光激发转换为高能量的发射。
这种材料对于提高太阳能电池的转换效率有很大的潜力。
非硅基的上转换材料则具有更多的选择性,并且在通过适配光源和非线性光学过程实现上转换发光方面具有更大的优势。
上转换发光材料的发光机制可以通过光功率图谱和物质能级示意图进行解释。
光功率图谱可以揭示材料在不同波长下的发光强度,从而分析材料的上转换效率。
物质能级示意图则可以通过表示材料的能量级别来解释能量的转换过程。
上转换发光材料的能级示意图中通常会包含两个部分:上转换激发态和上转换发射态。
在受到激发光的作用下,材料的电子会从基态跃迁到激发态,并且会经过一个或多个中间态的跃迁,最终发射出高能量的光子。
另外,上转换发光材料还有一些其他的应用领域。
其中最显著的是生物医学领域。
由于上转换发光材料具有可调控的发光特性,可以在多种情况下应用于生物成像和药物传递等领域。
例如,上转换发光材料可以通过发光技术提供可见光对于红外光的扩展,从而实现更深度的生物组织成像。
此外,上转换发光材料还可以用于生产发出可见光的LED灯和激光等。
总之,上转换发光材料是一种具有广泛应用前景的新型材料。
其通过将低能量的光激发转换为高能量的发射,具有很高的上转换效率和可调控的发光特性。
上转换发光材料在太阳能电池、生物医学和光电器件等领域的应用前景广阔,将在未来的科研和产业中发挥重要作用。
第8讲上转换发光材料上转换发光材料是一种新型的发光材料,相比传统的下转换发光材料具有更高的照明效率和更广泛的应用范围。
本文将对上转换发光材料的原理、性能以及应用进行详细介绍。
上转换发光材料是通过将两个或多个低能量的光子转换成一个高能量的光子来实现发光的。
这种发光机制与传统的下转换发光材料不同,传统的下转换发光材料通过吸收高能量的光子后发出低能量的光子,而上转换发光材料则相反。
上转换发光材料可以将低能量的光直接转化为高能量的光,因此具有更高的发光效率。
上转换发光材料的原理主要包括以下几个方面:首先,需要有一个能够吸收低能量光子的发光体;其次,需要有一个能将吸收得到的能量转换为高能量光子的上转换剂。
当发光体吸收到低能量的光子后,会将能量传递给上转换剂,上转换剂再通过各种能量传递过程将能量聚集到一个特定的能级上,最后发出高能量的光子。
上转换发光材料的发光效率主要取决于上转换剂的吸收能力和能量传递效率。
上转换发光材料具有许多优点。
首先,上转换发光材料可以实现更高的发光效率。
由于上转换发光材料能够将低能量的光直接转换为高能量的光,因此可以提高发光效率,减少能源的消耗。
其次,上转换发光材料具有更广泛的应用范围。
传统的下转换发光材料主要用于照明和显示领域,而上转换发光材料还可以在光通信、生物医学和太阳能等领域得到应用。
上转换发光材料的应用前景十分广阔。
其中,光通信是上转换发光材料的一个重要应用领域。
由于上转换发光材料具有更高的发光效率和更低的损耗,因此可以有效提高光通信系统的传输速率和传输距离。
另外,上转换发光材料还可以应用于生物医学领域。
由于上转换发光材料具有更高的发射频率和更低的自发辐射强度,因此可以用于生物标记、光动力疗法和生物成像等应用。
此外,上转换发光材料还可以应用于太阳能领域。
太阳能电池是目前比较常见的太阳能转换设备,而使用上转换发光材料可以提高太阳能电池的光吸收效率和转换效率,从而提高太阳能发电效率。
上转换发光材料
上转换发光材料通常由激发态离子和基态离子组成。
当激发态离子吸收高能光
子后,它会跃迁到一个更高的能级,然后再通过非辐射跃迁回到基态,释放出低能量的光子。
这个过程中,能量的损失会导致发射出的光子的波长变长,从而完成了上转换发光的过程。
上转换发光材料有着许多优点。
首先,它可以实现高效的发光,能够将电能转
化为光能,从而提高能源利用率。
其次,上转换发光材料可以实现多色光发射,通过控制材料的成分和结构,可以实现不同波长的发光,满足不同应用的需求。
此外,上转换发光材料还具有较长的寿命和稳定的性能,能够在恶劣的环境下工作。
在实际应用中,上转换发光材料被广泛应用于LED照明和显示屏领域。
LED
照明具有节能、环保、寿命长等优点,而上转换发光材料可以实现LED的多色发光,从而满足不同场合对光的需求。
在显示屏领域,上转换发光材料可以实现高亮度、高对比度的显示效果,提高了显示屏的质量和观赏性。
此外,上转换发光材料还在生物成像、激光器、光通信等领域有着重要的应用。
在生物成像领域,上转换发光材料可以实现多色荧光标记,用于细胞和组织的成像和检测。
在激光器领域,上转换发光材料可以实现激光器的多波长输出,满足不同应用对激光波长的需求。
在光通信领域,上转换发光材料可以实现高效的光源和探测器,提高了光通信系统的传输速率和稳定性。
总的来说,上转换发光材料在现代科技领域有着非常广泛的应用前景,它不仅
可以实现高效的发光,还可以实现多色发光,具有较长的寿命和稳定的性能。
随着科技的不断发展,相信上转换发光材料会有更多的应用场景和发展空间。
稀土上转换发光及其光电产品推荐目录一、什么是上转换发光?二、镧系掺杂稀土上转换发光的发光原理三、稀土上转换发光材料的应用四、相关光电产品推荐五、几个容易混淆的“上转换”概念一、什么是上转换发光?斯托克斯(Stokes)定律认为材料只能受到高能量的光激发,发射出低能量的光,即经波长短、频率高的光激发,材料发射出波长长、频率低的光。
而上转化发光则与之相反,上转换发光是指连续吸收两个或者多个光子,导致发射波长短于激发波长的发光类型,我们亦称之为反斯托克斯(Anti-Stokes)。
Figure 1.常规发光和上转换发光能级跃迁图Figure 2.样品被绿光激光激发之后产生荧光(左边样品为Stokes emission,右边样品为Anti-stokes emission)上转换发光在有机和无机材料中均有所体现,但其原理不同。
有机分子实现光子上转换的机理是能够通过三重态-三重态湮灭(Triplet-triplet annihilation,TTA),典型的有机分子是多环芳烃(PAHs)。
无机材料中,上转换发光主要发生在镧系掺杂稀土离子的化合物中,主要有NaYF4、NaGdF4、LiYF4、YF3、CaF2等氟化物或Gd2O3等氧化物的纳米晶体。
NaYF4是上转换发光材料中的典型基质材料,比如NaYF4:Er,Yb,即镱铒双掺时,Er做激活剂,Yb作为敏化剂。
本应用文章我们着重讲讲稀土掺杂上转换发光材料(Upconversion nanoparticles,UCNPs)。
二、镧系掺杂稀土上转换发光的发光原理无机材料有三个基本发光原理:激发态吸收(Excited-state absorption, ESA),能量传递上转换(Energy transfer upconversion, ETU)和光子雪崩(Photon avalanche, PA)。
Figure 3.稀土上转换发光材料的发光原理(a)激发态吸收激发态吸收过程(ESA)是在1959年由Bloembergen等人提出,其原理是同一个离子从基态通过连续多光子吸收到达能量较高的激发态的过程,这是上转换发光最基本的发光过程。