3.4寻呼接收机工作原理
- 格式:doc
- 大小:311.50 KB
- 文档页数:4
接收机设计原理
接收机是用来接收和解调无线信号的设备,其设计原理涉及到信号接收、解调和信号处理几个关键步骤。
首先,接收机的信号接收部分主要由天线和射频放大器组成。
天线负责接收外部无线信号,并将其转换成微弱的电信号。
射频放大器接收并放大这个微弱信号,以便后续处理。
其次,接收机的解调部分将放大后的信号分解成基带信号,并且将其与本地振荡器的频率相减,产生中频信号。
这一过程通常由混频器实现,其内部结构采用非线性电路,使得信号可以按照一定的方式进行频率变换。
接着,中频信号经过中频放大器得到进一步放大,然后进入解调器。
解调器通过特定的解调算法将中频信号还原为原始的基带信号,例如音频或视频信号。
解调过程的具体算法取决于信号类型和调制方式。
最后,接收机的信号处理部分对解调后的信号进行进一步处理。
这包括滤波、放大、去噪等一系列操作,以确保信号的质量和准确性。
信号处理器通常包括数字信号处理芯片,通过对解调信号进行数字滤波和数字调整,实现对信号质量的控制。
总之,接收机的设计原理主要包括信号接收、解调和信号处理三个关键步骤。
通过这些步骤,接收机能够将无线信号转换为可用的基带信号,以供后续的处理和使用。
寻呼原理及寻呼策略优化概述:寻呼成功率是衡量网络性能的一个重要指标,同时对于所有手机用户是否能够成功作被叫来说十分重要。
寻呼成功率主要取决于以下因素:位置区、寻呼方式、寻呼组设置和无线环境,本文主要讨论寻呼策略对寻呼成功率的影响,并结合实际的试验对珠海目前的寻呼策略优化提出建议。
关键词:位置区寻呼原理寻呼策略优化建议一、寻呼原理当一个位置区下的移动台被寻呼时,MSC就会通过基站控制器(BSC)向这一位置区内的所有BSC发出寻呼消息,BSC收到寻呼消息后,向该BSC下属于此位置区的所有小区发出寻呼命令消息。当基站收到寻呼命令后,将在该寻呼组所属的寻呼子信道上发出寻呼请求消息,该消息中携带有被寻呼用户的IMSI或者TMSI号码。
移动台在收到寻呼请求消息后,通过随机接入信道(RACH)请求分配SDCCH。
BSC则在确认基站激活了所需的SDCCH信道后,在接入允许信道(AGCH)通过立即指配命令消息,将该SDCCH指配给移动台。
移动台则使用该SDCCH发送寻呼响应(Paging Resp)消息给BSC,BSC将Paging Resp 消息转发给MSC,完成一次成功的无线寻呼。如下图1:二、寻呼策略设置介绍1、寻呼策略目前GSM网存在TMSI寻呼和IMSI寻呼两种寻呼方式。
在GSM系统中,每个用户都分配了一个惟一的IMSI,IMSI写在移动台的SIM卡中,长8字节,用于用户身份识别;TMSI由VLR为来访的移动用户在鉴权成功后临时分配,仅在该VLR管辖范围内代替IMSI在空中接口中临时使用,且与IMSI相互对应,长4字节。
因此空中接口的寻呼信道在使用IMSI 方式寻呼时,寻呼请求消息中只能包含2个IMSI 号码,而使用TMSI 方式寻呼时,则可以包含4个TMSI号码。
因此,使用IMSI 方式寻呼带来的寻呼负荷会比使用TMSI 方式寻呼增加一倍,是否使用TMSI 由参数TMSIPAR 来决定。在用户的位置区信息已知的情况下,第一次寻呼会在该位置区进行,如果第一次寻呼失败,则第二次的寻呼方式则根据PAGREP1LA 参数的设置进行,如果其值为0,则不会进行第二次寻呼,直接产生EOS400;如果其值为1 或2,则其使用TMSI 或者IMSI 在原位置区进行重复寻呼;如果其值为3,则第二次寻呼使用IMSI 在所有的位置区进行。
接收机原理剖析接收机作为通信领域的重要设备,起着信号接收、解调、放大和解码的关键作用。
通过对接收机原理的深入剖析,我们可以更好地理解其工作机制以及应用领域。
一、接收机的基本原理接收机是通过天线接收到的电磁波信号,并将其转化为可用的电信号进行后续处理。
其基本原理涉及频率选择、信号放大和解调。
1. 频率选择接收机通过频率选择的电路将特定频率范围内的信号区分出来,这样可以避免其他频率的信号干扰。
常见的频率选择电路有滤波器、高频放大器和局放电。
2. 信号放大接收到的电磁波信号较弱,需要经过放大电路进行处理,以增强信号强度。
信号放大电路通常包括放大器和中频放大器,其目的是提高信号的幅度,使其能够被后续电路处理。
3. 解调解调是指将调幅、调频或其他调制方式的信号转化为原始信号的过程。
各种调制方式需要不同的解调电路,其中常见的有包络检波器、鉴频器和相干解调器等。
二、接收机的应用领域接收机作为一种广泛应用的通信设备,其应用领域涵盖广播、电视、无线通信和雷达等。
1. 广播和电视广播和电视接收机是最为人熟知的接收机类型。
通过电磁波传输的广播和电视信号,经过接收机的处理后,可以在我们的收音机和电视机上播放出来。
2. 无线通信无线通信中的接收机是用于接收移动通信、无线电对讲机、卫星通信等设备中的信号。
接收机将无线信号转化为电信号后,再由其他设备进行数据解码和处理。
3. 雷达系统雷达系统中的接收机主要用于接收和处理雷达发射并反射回来的信号。
通过分析接收到的信号,可以判断目标的距离、速度和形状等信息。
三、接收机发展趋势随着科技的不断发展,接收机的技术也在不断进步。
以下是一些接收机发展的趋势:1. 小型化随着微电子技术的进步,接收机的体积越来越小,更加方便携带和使用。
例如,现代手机中的接收机已经非常小巧,但功能强大。
2. 高频宽带化为了适应不断增长的通信需求,接收机的频率范围也在扩大,对高频宽带支持能力要求也越来越高。
3. 高灵敏度和低功耗接收机需要具备高灵敏度来接收弱信号,同时为了延长电池寿命,需要降低功耗。
1 寻呼系统简单工作原理无线寻呼系统工作时,由寻呼台发出单向呼叫信号,每一寻呼机则指定一数字编码(地址码),寻呼台只要发出某一编码就可以呼叫到某一用户。
同时,要传输的信息也按照一定的格式进行数字编码,经发射机发送给用户。
寻呼机接收到信息以后,根据相应的格式进行解码,然后将信息显示在显示屏上。
不同的寻呼台具有不同的发射频率(即占据不同的频点),无线寻呼系统的常用工作频段一般在138~174MHz(用于本地网)、265~295MHz(用于省网和全国网)和450MHz (专用网)之间。
基于上述寻呼系统的简单工作原理,若要判断寻呼机能否正常工作,就必须对寻呼机的各项技术指标进行测试。
寻呼机工作最起码需要两个条件:编码和载频信号,即需要编码器和信号发生器。
2 POCSAG码结构寻呼系统的基础是寻呼协议(或称寻呼编码)。
目前,世界上的寻呼协议标准有许多种,如POC-SAG、GSC、FLEX、ERMES和APOC,但国内外使用得最广泛的是POCSAG码。
POCSAG码的结构如图1所示。
它由一个前导码和一批或数批码组组成。
每批码组含有一个帧同步码字SC和8帧(一帧含两个码字),合计17个码字。
码字为最小编码单位,占32bits。
前导码为1010的交替码,以1开始,以0收尾,至少576bits,其作用是唤醒寻呼机至预接收状态。
码字分同步码、空闲码、地址码和信息码四种。
其中,同步码和空闲码为固定的32位二进制数。
地址码及信息码的格式如图2所示。
地址码第1位以0标识,2~19位为地址位,20~21位为功能位,22~31位为BCH校验位,第32位为偶校验位。
寻呼机地址码被分成8组(二进制地址低3位相同的为一组),与每批码组的8帧相对应,并且寻呼机只在对应的帧中识别地址码。
信息码第1位以1标识,2~21位为信息位,22~31位为BCH校验位,第32位为偶校验位。
对于数字机,一位数字信息用4bits表示,对于中文机,一位数字信息用7bits表示,汉字用14bits表示。
信号接收机工作原理
信号接收机是一种电子设备,它的主要作用是接收并处理外部发射的信号,从而实现相应的功能或传输数据。
其工作原理可概括如下:
1. 接收天线:信号接收机通过接收天线接收到外部发射的信号。
天线根据信号类型的不同可以是不同的形式,例如,对于无线电信号可以使用天线棒或天线分布系统。
2. 信号放大:接收到的信号往往非常微弱,因此需要通过信号放大器来增加信号的强度。
信号放大器通常由一个或多个放大器级联组成,每个级别会将信号的幅度增加到一个更高的水平。
3. 混频器:接收到的信号往往通过混频器将其频率转换为更容易处理的中频(IF)信号。
混频器结合了接收到的信号和本地振荡器生成的信号,从而实现频率的转换。
4. 中频放大:中频信号经过混频器后,通过中频放大器进一步增强信号的强度。
5. 解调器:信号接收机中的解调器用于提取信号中所携带的信息。
解调器根据信号的调制方式,采用相应的解调技术,例如幅度调制(AM)、频率调制(FM)或相位调制(PM)。
解
调器会将解调后的信号转化为原始数据或信号。
6. 信号处理:接收到的信号通常需要进行进一步的处理,例如滤波、解码或编码等。
这些处理将根据具体应用的需要来进行。
7. 输出设备:最后,信号接收机将处理后的信号传输到适当的输出设备上,例如扬声器、显示屏或数据接口等,以便用户可以获取或使用所需的信息。
总体上,信号接收机的工作原理是通过接收天线接收信号,通过放大器和混频器处理信号,然后通过解调器提取信号中的信息,并经过进一步的处理后,将结果输出到适当的设备上供用户使用。
接收机的工作原理
接收机是一种电子设备,用于接收无线电信号,并将其转换为可供解调和处理的电信号。
它的工作原理涉及以下几个步骤:
1. 接收天线:接收机首先通过天线接收无线电信号。
天线将电磁波转换为电信号并将其传输到接收机的输入端。
2. RF放大器:接收机中的射频(RF)放大器会增强接收到的
信号,以便后续处理。
它可以过滤掉不需要的信号和噪声,并将强度较弱的信号放大到更容易处理的水平。
3. 超外差器(Mixer):超外差器通常由一个本地振荡器和一
个输入信号混合生成一个中频信号。
它将射频信号与本地振荡器产生的信号混合,生成中频信号(Intermediate Frequency,IF)。
4. 中频放大器:中频放大器对中频信号进行放大,以便后续的解调和处理。
它通常是一个窄带滤波器,用于滤除不需要的频率。
5. 解调器:解调器用于解调中频信号,并还原成原始的音频、视频或数据信号。
具体的解调方式取决于接收信号的类型。
6. 音频放大器:音频放大器对解调器输出的音频信号进行放大,以增加音量和改善音质。
7. 输出装置:接收机的输出装置可以是扬声器、显示屏或数据
接口等等,将处理后的信号进行转换和输出。
接收机的工作原理是基于物理和电子学的原理,通过一系列的电路和处理步骤将接收到的无线电信号转化为可用的信号形式。
不同类型的接收机可能会有不同的工作原理和电路设计,但基本原理大致相似。
无线寻呼工作原理图
抱歉,我无法提供图片功能。
我可以为您提供无线寻呼的工作原理如下:
1. 用户A向基站发起呼叫请求。
2. 基站将呼叫请求转发至寻呼中心。
3. 寻呼中心根据用户A的信息,确定寻呼范围。
4. 寻呼中心向用户B所在基站发送寻呼请求。
5. 用户B所在基站将寻呼请求广播至覆盖范围内的所有用户终端。
6. 用户B的终端接收到寻呼请求,发出响应信号。
7. 用户B的终端将响应信号发送至基站,并通过基站转发至寻呼中心。
8. 寻呼中心将用户B的响应信号反馈给用户A所在基站。
9. 用户A所在基站收到响应信号后,将其转发至用户A的终端。
10. 用户A的终端接收到响应信号,呼叫建立成功。
这是无线寻呼的基本工作原理,其中涉及到呼叫请求、寻呼范围判定、广播、响应信号的传输等环节。
具体实现可能会根据不同的无线寻呼系统略有差异。
接收机原理接收机是无线通信系统中的重要组成部分,其作用是接收来自发送端的无线信号,并将其转换为可供解调的基带信号。
接收机的性能直接影响到通信系统的可靠性和传输质量。
因此,了解接收机的工作原理对于理解无线通信系统至关重要。
接收机的原理可以简单地分为三个主要部分,信号接收、信号处理和信号解调。
首先,信号接收部分是接收机的核心。
当无线信号经过天线接收后,会被放大并转换为中频信号。
这一过程中,需要对接收到的信号进行滤波、放大和混频等处理,以便将其转换为中频信号并去除掉不需要的频率成分。
这样做的目的是为了减小信号在传输过程中的损耗,并提高信号的抗干扰能力。
其次,信号处理部分是接收机中的重要环节。
在信号处理过程中,接收机需要对接收到的中频信号进行解调、解调和滤波等处理,以便将其转换为可供解调的基带信号。
这一过程中,需要对信号进行数字化处理,以便进行后续的数字信号处理和解调操作。
同时,还需要对信号进行时钟和同步处理,以保证信号的稳定和可靠性。
最后,信号解调部分是接收机的最后一个环节。
在信号解调过程中,接收机需要对接收到的基带信号进行解码、解交织和误码纠正等处理,以便将其转换为可供上层系统使用的数据信号。
这一过程中,需要对信号进行解码和解交织处理,以保证数据的完整性和可靠性。
同时,还需要对信号进行误码纠正处理,以提高数据的传输质量和可靠性。
综上所述,接收机的原理主要包括信号接收、信号处理和信号解调三个部分。
在整个接收过程中,接收机需要对接收到的信号进行滤波、放大、混频、解调、解码、解交织和误码纠正等处理,以便将其转换为可供上层系统使用的数据信号。
通过对接收机原理的深入了解,可以更好地理解无线通信系统的工作原理和性能特点,为通信系统的设计和优化提供重要参考。
接收机的原理
接收机是一种用于接收信号的设备,它能够将传输过程中的电磁波信号转化为可读取的信息。
接收机的原理主要包括以下几个方面:
1. 天线接收:接收机首先通过天线接收传输介质中的电磁波信号。
天线将接收到的电磁波信号转换为电信号,并将其发送给接收机的输入端。
2. 信号放大:接收机的输入端会将接收到的微弱电信号经过放大电路进行放大,以增加信号的强度和稳定性,方便后续信号处理。
3. 信号滤波:为了去除无用的噪声和干扰信号,接收机会采用滤波电路对信号进行滤波处理。
滤波器可以选择性地通过特定频率的信号,抑制其他频率的信号。
4. 解调:当接收机接收到调制信号时,需要将其解调还原成原始的信息信号。
解调的方法根据信号的调制方式而不同,常见的有幅度解调、频率解调和相位解调等。
5. 信号处理:接收机会对解调后的信号进行进一步处理,以提取出所需要的信息。
这个过程包括信号的放大、滤波、调整等操作来获得高质量的输出信号。
6. 输出:接收机最终将处理后的信号输出到扬声器、显示屏或其他设备上,供人们观察、听取或记录。
通过以上原理的实现,接收机能够将传输中的电磁波信号转换为人们可感知的信息,广泛应用于无线电通信、广播、电视、卫星通信等领域。
接收机原理概述范文
接收机是无线电通信应用中最重要的组成部分,可以接收和检测远距离传来的信号,从而使远程发射的信号变成可用的信号或者说变成可用的噪声。
接收机的原理包括以下几个方面:
1、振荡器:它是接收机的核心部件,它可以将一个无形的电磁波变成一个有形的声波。
振荡器使用振荡电路,它是一个电路,可以将输入的电流转变为电磁波,在一个闭合的环境中,电磁波被自由地运动,当它们碰到一个有形的振荡元件时,就会变成有形的声波。
2、频率控制:频率控制用于挑选出发射的正确信号波。
它的作用是保持接收机的振荡频率与发射信号的频率一致。
这样,接收机就可以有效地把发射信号转变成可用信号。
3、滤波器:滤波器的作用是消除接收机的干扰信号。
它可以把有用信号过滤出来,同时把无用的信号消除掉。
滤波器可以用带通滤波器、带阻滤波器等设备来实现。
4、强度检测:强度检测是接收机的最后一个步骤。
它的作用是检测接收机接收到的信号的强度,以便确定可以使用的有效信号的质量。
如果信号太弱,接收机就可能无法识别有效信号。
总的来说,接收机原理包括振荡器、频率控制、滤波器和强度检测四个步骤。
传呼机的工作原理
传呼机是一种便携式的通讯设备,它的工作原理是通过无线电波传输信息。
传呼机的主要组成部分包括发射机、接收机、天线和控制电路。
当用户需要发送信息时,传呼机的发射机会将信息转换成无线电信号,并通过天线发送出去。
接收机会接收到这些信号,并将其转换成可读的信息,然后在传呼机的屏幕上显示出来。
传呼机的工作原理可以分为两个步骤:发送和接收。
在发送信息时,用户需要输入所需发送的信息,然后按下发送键。
传呼机的发射机会将这些信息转换成无线电信号,并通过天线发送出去。
这些信号会被传输到接收机,接收机会将其转换成可读的信息,并在传呼机的屏幕上显示出来。
在接收信息时,传呼机的接收机会不断地扫描无线电信号,以寻找发送给它的信息。
当接收机接收到信息时,它会将其转换成可读的信息,并在传呼机的屏幕上显示出来。
用户可以通过查看屏幕上的信息来了解所接收到的信息内容。
传呼机的工作原理非常简单,但它在通讯领域中有着广泛的应用。
传呼机可以用于个人通讯、商业通讯、医疗保健等领域。
它的便携性和高效性使得它成为了许多人的首选通讯设备。
传呼机的工作原理是通过无线电波传输信息。
它的主要组成部分包括发射机、接收机、天线和控制电路。
传呼机的工作原理非常简单,但它在通讯领域中有着广泛的应用。
无线电寻呼系统学院: 电气工程学院班级:姓名:学号:2012年11月25日无线电寻呼系统一、概述无线电寻呼系统是一种单向通信系统,属于移动通信的一个分支。
无线电寻呼系统是通过公用网和无线电寻呼系统来实现的。
无线电寻呼系统〔Radio Paging System〕简称为无线寻呼系统,通常由一个控制中心〔简称寻呼台〕,一个或数个无线电发射基站以及持有无线电寻呼系统接收机的用户组成,如以下图1-1所示。
其中控制中心由计算机系统,接续设备和话务人员构成。
图1-1 无线电寻呼系统的组成从寻呼系统效劳对象的角度来看,无线寻呼系统可分为公用寻呼网〔公用无线电寻呼系统〕和专用寻呼网〔专用无线电寻呼系统〕。
公用寻呼网通常是由电信部门经营的,为整个社会提供无线寻呼效劳;而专用寻呼网那么是指由非电信部门经营的寻呼系统。
由于我国已经开放了经营无线寻呼业务。
所以专用寻呼系统又分为两类:一类是年向社会公众效劳的寻呼系统;另外一类是为特定范围内的用户提供效劳的寻呼系统:如医院,厂矿,酒店等单位建立的内部寻呼系统,主要供内部工作人员使用。
寻呼的发生和开展开始于1948年,后来逐步由小规模,小范围的应用,其主要原因是寻呼机体积大,当时用的是话音呼叫。
一直道70年代,出现了大规模集成电路才解决了体积的问题,逐步形成了中,大规模的寻呼系统。
目前寻呼增值产品逐渐成为主流。
目前,无线电寻呼系统正向着标准化、大容量、联网和自动化方向开展。
其中,无线电寻呼接收机将继续朝着缩小体积、减轻重量、多功能、多款式、存储和显示信息量大等方向开展。
传输的速率从512 b/s#, 1 200 b/s开展到 3 200 b/s和6 400 b/s。
为了满足不同用户需要,出现了手表式、卡片式、笔式和项链式等各种款式的无线寻呼机。
目前我国无线电寻呼系统的频率如图1-2所示。
图1-2 我国无线电寻呼系统的频率二、特点1. 无线寻呼系统的分类无线寻呼系统的主要特点是:系统信道容量大,频率利用率高,一个频点可以为上万个用户效劳,体积小,重量轻的寻呼接收机价格廉价,携带方便,这些是其它任何一种移动通信都无法比似的。
接收机的工作原理
接收机(信号接收装置)是一种电子设备,用于接收无线电、电视、卫星或其他通信信号。
接收机的工作原理基本上分为三个步骤:接收、解调和放大。
首先,接收机通过天线接收到无线电信号。
这些信号在空气中以无线电波的形式传输。
接收机的天线将这些波转换成电信号,并将其传送到接收机的电路中。
接下来,接收机的调谐电路用于选择特定的频率,并将其过滤出来。
这是为了排除其他频率的干扰信号,只保留所需的信号。
调谐电路可以通过改变其电容或电感值来选择不同的频率。
然后,接收机的解调电路用于将模拟信号转换为可被扬声器或其他音频设备播放的音频信号。
解调电路根据所接收到的信号类型的不同,使用不同的方法进行解调。
例如,AM(幅度调制)信号使用包络检测解调,FM(频率调制)信号使用频率
解调。
最后,接收机的放大电路用于增强解调后的信号,使其能够被扬声器或其他设备放大放出。
放大电路使用放大器增加信号的功率,并消除任何噪音或失真。
总结来说,接收机的工作原理包括信号接收、调谐、解调和放大这几个过程,通过这些步骤,接收机能够将无线电信号转换为可听或可见的信息。
寻呼原理及寻呼策略优化概述:寻呼成功率是衡量网络性能的一个重要指标,同时对于所有手机用户是否能够成功作被叫来说十分重要。
寻呼成功率主要取决于以下因素:位置区、寻呼方式、寻呼组设置和无线环境,本文主要讨论寻呼策略对寻呼成功率的影响,并结合实际的试验对珠海目前的寻呼策略优化提出建议。
关键位置区寻呼原理寻呼策略优化建议、寻呼原理当一个位置区下的移动台被寻呼时,MSC就会通过基站控制器(BSC)向这一位置区内的所有BSC发出寻呼消息,BSC收到寻呼消息后,向该BSC下属于此位置区的所有小区发出寻呼命令消息?当基站收到寻呼命令后,将在该寻呼组所属的寻呼子信道上发出寻呼请求消息,该消息中携带有被寻呼用户的IMSI或者TMSI号码。
移动台在收到寻呼请求消息后,通过随机接入信道(RACH)请求分配SDCCH。
BSC则在确认基站激活了所需的SDCCH信道后,在接入允许信道(AGCH)通过立即指配命令消息,将该SDCCH指配给移动台。
移动台则使用该SDCCH发送寻呼响应(Paging Resp消肖息给BSC,BSC将Paging Resp消息转发给MSC,完成一次成功的无线寻呼?如下图1:Puins P彗CQuardlP MIIU詆(PC£DCh-Wrf) Hequi redChunftl Artivit ionCoMBndIkfS&ClriJkenl皑(PMiM (SK口1)寻呼咸(5WCH>CSCCCH)(SDOOD广■■■I^Tirru'i、寻呼策略设置介绍 1、寻呼策略目前GSM 网存在TMSI 寻呼和IMSI 寻呼两种寻呼方式。
在 GSM 系统中, 每个用户都分配了一个惟一的IMSI ,IMSI 写在移动台的SIM 卡中,长8字节, 用于用户身份识别;TMSI 由VLR 为来访的移动用户在鉴权成功后临时分配, 仅在该VLR 管辖范围内代替IMSI 在空中接口中临时使用,且与IMSI 相互对应, 长4字节。
传呼机的工作原理
传呼机是一种通讯设备,它可以发出简短的信息并传递到接收方的设备上。
它的工作
原理基于传输无线电信号的方式进行,实现接收和发送信息的功能。
传呼机主要由三个部分组成:发送器、接收器和中央服务器。
发送器和接收器是用来
传输信号的设备,而中央服务器则是用来存储和处理信息的设备。
在发送信息的时候,用户会在发送器中输入想要传递的信息,然后按下发送键。
发送
器会将这个信息转换成无线电波信号,并发送到空气中。
接收器会接收这个信号,并将信
号转换成数字代码。
这个数字代码会被传递到中央服务器中进行存储和处理。
在传呼机中,发送器和接收器之间需要有一定的距离才能进行通信。
通常,这个距离
在几十米到几千米之间。
传呼机使用的是UHF频段,频率在400MHz-470MHz之间。
传呼机工作的稳定性比较高,因为它可以通过中央服务器的集中管理进行监控和维护。
同时,由于传呼机的信息传输不需要太高的带宽,因此它的通信成本比较低。
在一些需要
节约通信成本的场合,传呼机仍然是一种非常实用的通讯工具。
总的来说,传呼机的工作原理是通过空中传输无线电信号来实现信息的收发功能。
其
优点是稳定性高、成本低和可靠性高。
虽然近年来,由于技术的进步,传呼机的使用率已
经逐渐下降,但在一些特定的场合仍然具有一定的应用价值。
寻呼机接收电路的原理
邓松亮;陈绍群
【期刊名称】《电信技术》
【年(卷),期】1995(000)009
【摘要】寻呼机接收电路的原理邓松亮,陈绍群无线电寻呼机的硬件结构可分为
射频接收电路和数据处理控制电路两部分。
由于寻呼机的许多指标,如灵敏度、选择性、镜像抑制、杂散响应抑制、频率偏移适应性、同频道干扰抑制、杂波辐射等,主要与接收电路的性能有关,所以,接收电路的...
【总页数】1页(P24)
【作者】邓松亮;陈绍群
【作者单位】不详;不详
【正文语种】中文
【中图分类】TN924
【相关文献】
1.基于超再生原理的单片机无线接收电路设计 [J], 任娟;张永华
2.零中频寻呼机接收板的原理与维修 [J], 张东
3.射频识别IC卡读卡机接收电路工作原理分析 [J], 刘颖;刘跃刚
4.用功率平衡原理分析超外差接收电路 [J], 梁永清;黄炳华;张俊杰
5.摩托罗拉数显寻呼机电路原理详解 [J], 刘胜利;饶刚
因版权原因,仅展示原文概要,查看原文内容请购买。