直流稳定电源设计制作人某某题目直流稳定电源地设计任务设计
- 格式:doc
- 大小:692.12 KB
- 文档页数:19
可调直流稳压电源设计报告I. 设计目的本设计旨在实现一个可调直流稳压电源,能够提供多种输出电压和电流,同时还能稳定地保持输出电压在规定范围内。
II. 设计原理直流稳压电源的基本原理是将变压器输出的交流电转换为直流电,并使用电子元件如二极管、电容器、稳压管等实现对输出电压和电流的稳定。
在本设计中,我们采用如下电路结构实现直流稳压电源。
电路主要由变压器、整流桥、滤波电容、调节电路、稳压管和输出端口等组成。
(1)变压器:变压器主要将交流输入变换为需要的交流输出电压,通常变压器转换后的电压需要经过整流、滤波和稳压等多道处理才能成为稳定的直流电源输出。
因此,本设计中我们采用了含有两只二次线圈的变压器。
(2)整流桥:整流桥主要用来将变压器输出的交流电流转换成直流电流,这里我们采用了四个二极管构成的整流桥,如图所示,其中D1和D2对应于变压器中一只二次线圈所产生的正半交流电流,D3和D4则对应于产生的负半交流电流。
(3)滤波电容:滤波电容主要用来滤除多余的高频成分,以使直流电波尽可能平滑,保证输出电压的稳定性。
(4)调节电路:调节电路用来控制和调整稳压管的工作状态,以实现输出电压的稳定性和调节。
(5)稳压管:稳压管是关键元件之一,其主要作用是在电路中设置一个固定的工作电压,以保证输出电压在一定范围内稳定。
III. 设计过程(1) 变压器设计:根据我们的需求,我们需要将输入的220V交流电转变为24V 的交流电,在此基础上再进行转换为稳定的直流电源输出。
因此,我们需要采用一只含有两只二次线圈的变压器,并且将两只二次线圈采用串联方案,以实现较大的输出电压值。
最终选用的变压器型号为220V/24V/10W,其中10W为变压器最大输出功率。
(2) 整流桥设计:为了将变压器输出的24V交流电转换为直流电源,我们需要采用整流桥电路。
对于整流桥电路中的每个二极管来说,其承受的最大反向电压应该大于所采用变压器的输出电压。
在此基础上,我们选用的整流桥电路中的二极管容量为1N4001,其最大反向电压为50V。
<电子技术课程设计>直流稳压电源课程设计任务书一:设计任务及要求:1. 设计任务设计一集成直流稳压电源,满足:(1)当输入电压在220V交流时,输出直流电压为6V。
(2)输出纹波电压小于5mv,稳压系数<=0.01;(3)具有短路保护功能。
(4) 最大输出电流为:Imax=1.0A;2.通过集成直流稳压电源的设计,要求学会:(1)选择变压器、整流二极管、滤波电容及集成稳压器来设计直流稳压电源。
(2)掌握直流稳压电源的调试及主要技术指标的测试方法。
3.设计要求(1)电源变压器、整流二极管、滤波电容等元件只做选择性设计;(2)合理选择集成稳压器;(3)完成全电路理论设计、绘制电路图;(4)撰写设计报告。
全文格式可参照下附一目录格式要求。
(5)希望:设计有新意,切忌完全照搬、抄袭、上下文不统一、文不对题等。
(6)文章请在某些方面12月13日前完成初稿,14日进行初审答辩。
附一:部分目錄一.设计任务及要求:二.基本原理与分析三.三端集成稳压器四.稳压电源的技术指标及对稳压电源的要求五.集成电路选用时应注意的问题六.参数性能指标及测试方法七.心得体会八.参考文献二、原理与分析1.直流稳压电源的基本原理直流稳压电源一般由电源变压器T、整流滤波电路及稳压电路所组成,基本框图如下。
各部分的作用:器T的作用是将电网220V的交流电压变换成整流滤波电路所需要的交流电压Ui。
变压器副边与原边的功率比为P2/ P1=η,式中η是变压器的效率。
(2)整流滤波电路:整流电路将交流电压Ui变换成脉动的直流电压。
再经滤波电路滤除较大的纹波成分,输出纹波较小的直流电压U1。
常用的整流滤波电路有全波整流滤波、桥式整流滤波等。
容C满足RL-C=(3~5)T/2,或中T为输入交流信号周期,RL为整流滤波电路的等效负载电阻。
)三端集成稳压器:常用的集成稳压器有固定式三端稳压器与可调式三端稳压器。
常用可调式正压集成稳压器有CW317(LM317)系列,它们的输出电压从1.25V-37伏可调,最简的电路外接元件只需一个固定电阻和一只电位器。
直流稳压电源设计方案2篇【直流稳压电源设计方案(一)】随着电子设备的广泛应用,直流稳压电源的需求在不断增加。
直流稳压电源能够将交流电转换为稳定的直流电,并根据需要提供不同电压和电流的输出。
本篇将介绍直流稳压电源的设计方案以及其应用。
直流稳压电源的设计方案首先需要确定电源输出的电压和电流。
根据实际需求,我们选择了输出电压为12V,电流为3A的直流稳压电源。
为了确保输出电压的稳定性,我们选择采用稳压模块进行电压调节。
稳压模块是一种能够实现电压稳定输出的电子元件。
常见的稳压模块有线性稳压模块和开关稳压模块。
线性稳压模块成本低、实现简单,但效率较低;开关稳压模块效率高,但成本相对较高。
根据需求和经济性,我们选择了线性稳压模块。
接下来,我们需要选取适当的稳压模块以及其他所需的电子元件。
首先,选择一款符合要求的线性稳压模块。
通过对市面上的产品进行比较和测试,我们选择了一款额定输入电压为24V的线性稳压模块,该模块具有良好的稳定性和可靠性。
其次,我们还需要选择输入电压为24V的电源适配器,用于提供输入电源。
适配器的选取需要考虑电源输出电压的稳定性和适配器的质量可靠性。
我们选择了一款质量可靠、输入电压稳定的适配器。
除了稳压模块和电源适配器外,我们还需要选择其他电子元件,如滤波电容、电位器等。
这些元件的选择需要根据实际需求和设计要求来确定。
设计好电路原理图后,我们还需要进行模拟仿真和实际测试,以验证电路的稳定性和性能。
在模拟仿真中,我们可以通过电路仿真软件进行电路分析,并对电路进行优化。
在实际测试中,我们可以通过连接实际元件并进行电路调试来验证电路的性能。
最后,我们需要对电路进行封装和外壳设计,以保护电路和电子元件。
电路封装的设计需要考虑元件布局的合理性和电路的散热性能。
外壳设计则需要考虑美观性和产品的使用便捷性。
【直流稳压电源设计方案(二)】直流稳压电源广泛应用于各类电子设备和实验设备中,其设计方案多样化。
本篇将继续介绍直流稳压电源的设计方案以及其应用。
直流稳压电源的设计与制作直流稳压电源是一种用于给电子设备提供稳定直流电压的电源设备。
在电子制作、实验以及工业控制系统中广泛应用。
下面将介绍如何设计和制作一个简单的直流稳压电源。
首先,设计一个电源电路。
直流稳压电源的核心是一个稳压器件,常用的稳压器有线性稳压器和开关稳压器。
线性稳压器的原理是通过调节电源电压上端的电阻来控制输出电压,其优点是稳压性好,但效率较低。
开关稳压器的原理是通过开关控制元件来调节输出电压,其优点是效率较高,但稳压性较差。
根据自己的需求选择适合的稳压器件。
接下来,根据选定的稳压器件制作电路板。
首先,在电路板上布置稳压器件和其他必要的元器件,如滤波电容、限流电阻等。
然后,连接电路板上的各个元器件,使用焊锡将其固定在电路板上。
注意保持电路的紧凑和结构的稳定,防止元器件之间短路或松动。
接着,搭建电源电路的输入和输出端。
将输入端与市电或其他电源连接,确保输入电压和电流在稳定范围内。
将输出端与需要供电的设备连接,确保输出电压和电流符合设备的要求。
最后,进行电源的测试和调试。
将电源接通电源,通过电压表和电流表测量稳压电源的输出电压和电流,确保其在稳定范围内。
根据需要,可以使用可调电阻来调节输出电压,以确保满足设备的电源要求。
需要注意的是,直流稳压电源设计和制作过程中要保证安全。
如需接通电源泄漏和短路保护装置,注意绝缘和接地,避免触电和设备损坏。
总之,设计和制作直流稳压电源需要根据自己的需求选择稳压器件,设计电路图,制作电路板,搭建输入输出端,进行测试和调试。
通过这些步骤,一个简单的直流稳压电源就可以制作完成。
在直流稳压电源设计和制作的过程中,还需要考虑一些其他要素,如过流保护、过压保护和温度保护等。
这些保护措施可以提高电源的可靠性和安全性。
过流保护是指在输出端口控制电流的大小,防止电流超过设定值而损坏设备或电源本身。
常用的过流保护电路有两种:电阻式和电子式。
电阻式过流保护是通过在输出回路中串联一定大小的电阻,当电流超过设定值时,电阻将发热并触发保险丝或继电器断开电路,实现过流保护。
直流稳定电源设计制作人:某某题目:直流稳定电源的设计一、任务:设计并制作交流变换为直流的稳定电源。
二、要求:1.基本要求(1)稳压电源在输入电压220V、50Hz、电压变化范围+15%~-20%条件下:a.输出电压可调范围为+9V~+12Vb.最大输出电流为1.5Ac.电压调整率≤0.2%(输入电压220V变化范围+15%~-20%下,空载到满载)d.负载调整率≤1%(最低输入电压下,满载)e.纹波电压(峰-峰值)≤5mV(最低输入电压下,满载)f.效率≥40%(输出电压9V、输入电压220V下,满载)g.具有过流及短路保护功能(2)稳流电源在输入电压固定为+12V的条件下:a.输出电流:4~20mA可调b.负载调整率≤1%(输入电压+12V、负载电阻由200Ω~300Ω变化时,输出电流为20mA时的相对变化率)(3)DC-DC变换器在输入电压为+9V~+12V条件下:a.输出电压为+100V,输出电流为10mAb.电压调整率≤1%(输入电压变化范围+9V~+12V)c.负载调整率≤1%(输入电压+12V下,空载到满载)d.纹波电压(峰-峰值)≤100mV (输入电压+9V下,满载)2.发挥部分(1)扩充功能a.排除短路故障后,自动恢复为正常状态b.过热保护c.防止开、关机时产生的“过冲”(2)提高稳压电源的技术指标a.提高电压调整率和负载调整率b.扩大输出电压调节范围和提高最大输出电流值(3)改善DC-DC变换器a.提高效率(在100V、100mA下)b.提高输出电压(4)用数字显示输出电压和输出电流.三,稳压电源的研究背景本电源在市场上很有应用前景,可以作为收音机或掌机的外接电源,也可以用作手机电池的充电器,功率高点的还作为小型电视或其他家用电器的电源。
直流稳压电源是电子技术常用的仪器之一,它现在广泛的应用在学校教学,科学研究等领域,是电子设计人员进行实验操作和科学研究必不可少的电子仪器。
在日常的电子电路中,供电电源常常要用到稳压直流电源。
三端直流稳压电源的设计与制作设计与制作三端直流稳压电源需要考虑多个方面,包括输入电压范围、输出电压和电流的需求、稳定度要求、过载保护等参数。
下面以一个简单的三端直流稳压电源为例,进行详细介绍。
首先需要明确电源的输入电压范围和输出电压和电流的需求,假设输入电压范围为AC220V,输出电压范围为0-30V,输出电流范围为0-5A。
1.电源基本电路设计:通过桥整流电路将交流电转换为直流电,然后通过大电容滤波,去除电源波动和噪声。
接下来使用三端稳压器稳定输出电压,同时加入电流限制电路保护电源和负载。
2.交流输入电源设计:根据输入电压为AC220V,需要使用变压器将其降压,一般采用12V的变压器,可以使用具有多个输出端的变压器。
3.整流和滤波器设计:使用桥式整流电路来将交流电转换为直流电,可以使用具有四个二极管的桥式整流电路。
为了提供稳定的直流输出,需要加入滤波电容器来去除脉动和噪声。
根据输出电流的需求选择合适的电容容值。
4.稳压电路设计:稳压电路可以选择常用的三端稳压器,例如LM317、通过外部电路连接稳压器芯片,可以实现调节输出电压和电流的功能。
根据需求,可以选择调节电位器和电阻来调整输出电压和电流。
5.输出保护电路设计:为了保护电源和负载,需要加入过载保护电路。
过载保护电路一般使用电流限制器,当输出电流超过设定范围时,电流限制器会自动切断电源。
可以使用电流限制器芯片,例如LM317制作步骤:1.根据设计要求,选购合适的元件和芯片,例如变压器、桥式整流器、电容器、三端稳压器和电流限制器等。
2.根据电路设计图连接各个元件和芯片,使用焊接工具进行焊接。
注意电路布局合理且电源线和信号线严格分离,以防止干扰。
3.进行电源输出和稳定性测试,使用万用表测量输出电压和电流,并验证稳定性和过载保护功能。
4.完成电路调试和组装,将电路固定在电源箱内,并连接好输入输出线和电源开关。
5.最后进行安全测试,包括漏电保护和短路保护等。
什么是直流电源如何设计一个稳定的直流电源直流电源是指电流方向始终保持不变的电源。
相对于交流电源而言,直流电源在一些特定的应用领域中具有独特的优势。
本文将介绍直流电源的基本概念和设计要点,以及如何设计一个稳定的直流电源。
一、直流电源的基本概念直流电源是指输出电流方向始终保持不变的电源。
直流电源可以为电子设备和电路提供稳定的直流电压,使其能够正常工作。
直流电源需要将交流电转换成直流电,并对输出电流进行调整和稳定。
直流电源通常由以下几个主要部分组成:1. 变压器:用于将输入的交流电压转换成适合电源的电压。
2. 整流器:用于将交流电转换成脉冲状的直流电。
3. 滤波器:用于对脉冲状的直流电进行平滑,去除其中的纹波。
4. 稳压器:用于对输出电压进行稳定控制,以保证输出的直流电压不受负载变化和输入电压波动的影响。
二、设计稳定的直流电源的要点设计一个稳定的直流电源需要考虑以下几个要点:1. 电源稳定性:直流电源的稳定性是指输出电压的波动范围。
为了保证稳定的输出电压,应选择高质量的电源元件,如稳压器、滤波电容等。
2. 输入电压范围:直流电源需要适应不同的输入电压范围,特别是在电网电压波动较大的地区。
应考虑采用变压器或者稳压器来适应不同的输入电压。
3. 电流输出能力:根据需要提供足够的电流输出能力,以保证电源能够满足负载的要求。
同时,还需要考虑负载的变化范围,确保电源在负载变化时能够自动调整输出电流。
4. 短路保护:直流电源需要具备短路保护功能,一旦负载发生短路或过载情况,电源能够自动切断输出,以保护负载和电源本身的安全。
5. 过热保护:为了防止电源过热损坏,应考虑在电源中增加过热保护电路,以便在温度过高时自动切断输出电流。
6. 输出电压调节:直流电源应具备输出电压调节功能,以适应不同负载对电压要求的变化。
7. 过电压保护:为了保护负载设备免受过高的输出电压损害,直流电源应设置过电压保护电路,及时切断输出。
三、直流电源设计示例以一个12V稳定的直流电源设计为例进行说明。
直流稳压电源课程设计引言直流稳压电源是电子工程领域中常用的电源装置,用于将交流电源转换为稳定的直流电源。
在电子设备的设计和实验过程中,直流稳压电源起到了至关重要的作用。
本课程设计旨在帮助学生深入了解直流稳压电源的原理和设计过程,并通过实践操作,掌握设计直流稳压电源的技能。
一、理论知识1.1 直流电源的概念与分类直流电源是指输出电流为直流的电源装置,根据输出的电流稳定性和特性,可以分为线性稳压电源和开关稳压电源两种类型。
1.2 线性稳压电源的工作原理线性稳压电源采用变压器、整流电路、滤波电路和稳压电路等组成。
通过将输入电压转换为直流电压,并经过稳压控制电路的调节,使得输出电压稳定在一定的范围内。
1.3 线性稳压电源的设计要点线性稳压电源的设计要点包括输入电压范围选择、稳压管的选取与设计、输出电压调节等。
在设计过程中需要考虑电源的稳定性、效率和功率损耗等因素。
1.4 开关稳压电源的工作原理开关稳压电源利用开关管的开关行为来实现对输出电压的稳压控制。
通过高效的开关变换,能够实现更高的功率转换效率。
1.5 开关稳压电源的设计要点开关稳压电源的设计要点包括:开关管的选取与驱动、滤波电路的设计、反馈控制策略的选择等。
在设计过程中需要考虑开关管的损耗、电磁干扰等问题。
二、实践操作2.1 线性稳压电源的设计实验本实验旨在通过设计线性稳压电源,了解其原理和设计要点,并实践操作电路搭建与调试过程。
实验步骤: 1. 确定输入电压范围,选择合适的变压器。
2. 设计整流电路,将交流电转换为直流电。
3. 设计滤波电路,去除交流成分,使得输出电压更加稳定。
4. 选取合适的稳压管,并设计稳压电路,实现输出电压的稳定控制。
5. 搭建电路原型并进行调试,测试输出电压的稳定性与效果。
2.2 开关稳压电源的设计实验本实验旨在通过设计开关稳压电源,了解其原理和设计要点,并实践操作开关管的驱动、滤波电路的设计以及反馈控制策略的选择。
实验步骤: 1. 选择合适的开关管,并设计驱动电路,实现对开关管的控制。
稳压直流电源的课程设计---直流稳压电源设计
一、概述
直流稳压电源是一种常见的电子电源,它可以稳定地输出电流和电压,常用于芯片电
路的供电和电子设备的集成电路供电,可以将实际的电源电压降至需求的电压和功率。
本
次课程设计采用单线桥式变换器+单线开关稳压器的结构,利用DC-DC变换器的出力信号
进行整流,最终输出直流稳压电源。
二、直流稳压电源原理
直流稳压电源的输入端接交流电源,输入AC电变成DC电,由单线桥变换器输出DC 电;单线开关稳压器采用比较电路控制共模控制电路,电动机起来控制继电器,调节单线
变换器输出电压,实现输出电压稳定,使得最后输出稳定电压。
三、硬件结构
1、采用单线桥式变换器作为输入电源,用于转换宽范围的输入电源,并将AC电变成DC电。
2、采用单线开关稳压器,用于调节输出电压,保持恒定的电压和功率输出,以达到
稳压的要求。
3、采用三级型整流电路来实现直流电源的输出,将比较出来的电压整流,达到输出
电压的要求。
四、仿真与实践
1、首先根据电路图量出各个元件,并测量运行电压、时间和电流等指标,保证元件
的可靠性。
2、采用LTspice仿真设计,精确调节单线变换器和单线开关稳压器的参数,完成仿
真设计。
3、经过组装测试,检验稳压电源的稳定性,测试出来的电压跟仿真出来的电压有所
出入,表明仿真有一定的可靠性。
五、总结
本次课程设计主要采用单线桥式变换器+单线开关稳压器,实现直流稳压电源之目标。
经过仿真和实际测试,表明稳压电源拥有良好的稳定性,可以满足各种电子设备的采集需求。
简单直流稳压电源设计实验报告目录一、实验目的二、实验原理三、实验器材四、实验步骤五、实验结果分析六、实验结论七、实验感想一、实验目的本实验的主要目的是通过自行设计并搭建简单的直流稳压电源电路,实现对直流电压的稳定输出。
通过实验实际操作,加深对稳压电源原理的理解,培养学生动手能力和实践操作能力。
二、实验原理直流稳压电源是将不稳定的直流电压(如电池、整流器等输出的电压)通过稳压电路的处理,转换为稳定的输出电压。
经过稳压电路处理后的输出电压可以保持在一定的范围内不变,不受输入电压波动的影响。
稳压电源的主要原理是通过负反馈电路来调节输出电压,使其保持在设定值。
常见的稳压电路有三种:电阻稳压、二极管稳压和集成电路稳压。
在本实验中,我们将采用二极管稳压电源电路进行设计和实验。
三、实验器材1. 直流电源:用于提供实验电压源。
2. 电阻、二极管、电容:用于搭建稳压电源电路。
3. 示波器、万用表:用于测量电路的输入输出波形和电压值。
四、实验步骤1. 检查实验器材是否齐全并连接好各部分。
2. 根据设计要求,选择适当的电阻、二极管和电容进行搭建稳压电源电路。
3. 通过万用表测量搭建好的稳压电源电路的输入输出电压,并通过示波器观察电压波形。
4. 对输入电压进行调节,观察输出电压是否稳定。
5. 记录实验数据,并进行分析。
五、实验结果分析经过实验操作和数据记录,我们得到了如下结果:1. 搭建好的稳压电源电路可以稳定输出设计要求的电压。
2. 经过调节输入电压,输出电压基本保持不变,证明了稳压电源的稳定性。
3. 通过示波器观察,电路的输入输出波形符合稳压电源的特性,没有明显的波动和噪声。
六、实验结论通过本次实验,我们成功设计并搭建了简单的直流稳压电源电路,并验证了其稳定输出的功能。
实验结果符合稳压电源的设计要求,证明了电路的稳定性和可靠性。
七、实验感想通过本次实验,我们深刻理解了稳压电源的原理和设计方法,学会了如何利用电阻、二极管和电容搭建稳压电源电路,并通过实际操作获得了丰富的实验经验。
直流稳定电源摘要本设计有二个模块电路构成:稳压电源,稳流电源.稳压电源采用两级稳压电路,前级是DC-DC开关电源,后级是线性稳压电路,为了进一步提高效率,两级间采用了恒压差控制技术.稳流电源采用运放构成.AbstractThe design of two modules circuit: power supply, stable power supply. Regulator used two power regulator circuit, the former class is the DC-DC switching power supply, after-class is the linear regulator circuit, in order to further enhance efficiency, Two of the constant pressure difference between the use of control technology. Stable power supply byYun-constitute.一:方案论证与比较在本设计中电路都是采用模块设计思想.因此,对电路进行分析、论证都以模块来进行的.1.稳压电路方案一:采用单级开关电源,由220V交流整流后,经开关电源稳压输出.但此方案所产生的直流电压纹波大,在以后的几级电路中很难加以抑制,很有可能造成设计的失败和超出技术指标参数.方案二:从滤波电路输出后,直接进入线性稳压电路如下1.1所示.线性稳压电路输出值可调,为9-12V直流稳压输出.这中方案的优点是:电路简单,容易调试,但效率上难以保证.线性稳压电路的输入端一般大约为15V,而其输出端只为9-12V,两端压降太大,功率损耗严重,从而使得总电路效率指标难以实现.图1.1方案三:在方案二的基础上加上DC-DC变换器(即在线性稳压电路前端加入),采用脉宽调制(PWM)技术,并采用恒压差控制技术,如图1.2所示.图1.2在这种情况下,由DC-DC变换器来完成从不稳定的直流电压到稳定的直流电压的转变,由于采用脉宽调制技术和恒差控制技术,使得线性稳压电路两端呀差减小,电路消耗大幅度下降,解决了方案二中的效率低的问题.其次,由于使用脉宽调制技术,很容易过流、过热、自动保护恢复.此外,还可在DC_DC变换器中加入软启动电路,以抑制开关是的”过冲”.本设计正是采用这一方案.2.稳流电路下图1.3由双运放构成的恒流电路.图1.3Out1是深反馈同相放大器;out2接成电压和跟随器组态,它把输出电压反馈回输入端.依放大器特性:Up=Ur*R22/(R22+R23)+Uo*R23/(R23+R22)Un=Uo’*R24/(R24+R25)Up=Un在设计中,取R22=R23=R24=R25 .由以上三式可得 Uo’-Uo=Ur ,即电路R26 上的压降(Uo’-Uo)等于控制电压 Ur.忽略集成运放的输入偏置电流,则输出电流为: Io=Ur/R26这种方案利用运放构成一深反馈电路,有效地抑制了外界干扰,使得恒流电源工作稳定性增强,理论上可以达到0.001-0.0001之间的稳定度,完全满足设计要求.二、电路设计及参数计算1.稳压电源(第一模块)(1)交流变直流转换电路.本电路的目的在于从50Hz、220V的交流电压中得到直流电压.电路图如1-A所示.图1-A当输入为220V交流电压时,首先通过变压器降至25V左右交流电压.整流部分选用了全波桥式整流电路,输出为32V直流电压.(2)DC-DC转换电路.使用此电路的目的在于最大限度地降低模块低功耗,同时为下一级提供一个稳定直流电压.它的电路如1-B所示.图1-BDC-DC电路为由核心芯片TL494作控制的单端PWM降压型开关稳压电路.图中R3与C3决定开关电源的开关频率.电阻R11作为限流保护电阻用.其片内误差放大器(EA1)的同相输入端(脚2)通过5.1K欧姆电阻( R4 )接入反馈信号,从后级线性稳压电路得到分压.开关管采用PNP型大功率晶体管.工作原理:在恒定频率的PWM通断中,控制开关通断状态的控制信号是通过一个控制电压 Ucon与锯齿波相比较而产生的.控制电压则是通过偏差(即实际输出电压与其整定值之间的差值)获得的. 锯齿波的峰值固定不变,其重复频率就是开关的通断频率. 在PWM控制中,这一频率保持不变,频率范围从几千赫到几十万赫.当放大的偏差信号电平高于锯齿波的电平时,比较器输出高电平,这一高电平的控制信号导致开关导通,否则,开关处于关断状态.当后级反馈电压高于TL494的基准电压5V时,片内误差放大器EA1输出电压增加,将导致外接晶体管T和TL494内部T1、T2管的导通时间变短,使输出电压下降到与基准电压基本相等,从而维持输出电压稳定,否则结果相反.参数计算:由R3=39K, C3=0.001微法,得振荡频率:F=28.2Hz为了保证电流连续,电感取值不能太小,但也不能太大.计算如下:Lmin=[(U1-Uo/(2*Io))]*Ton=[(35-10)/(2*15)]*0.00002=167HzC>Uo*Toff/(8*L*F*Uo)=15*10*0.000001/(8*0.001*30*1000*0.1)=6.25微法Iop=[(U1-Uo)/(2*L)]*Ton+Io=[(35-10)/(2*0.001)]*0.00002+1.5=1.75A(3)线性稳压电路.本电路的目的是在第一级稳压电路的基础上实现线性高精度稳压,降低纹波,提高电压调整率和负载调整率,最终达到题目的设计要求.电路图如下图1-C所示.图1-C此电路继承了DC-DC变换电路的输出电压.在本电路中,首先输入电压在精密稳压源上产生一个稳定的参考电压,接到由运放组成的比较电路的正端输入脚.输出电压经过电阻分压之后反馈到运放的负输入端.运放的输出电压控制至三极管的发射极电压,得到所需的高稳定的直流电压.参数计算:Uo=Uref*(R16+R18+R17)/(R17+R18’)取R16=3K时,R18=1K,Uref=6V则当R17’=067K时,Uo=(2.5*6)/(1+0.67)=9V当R17=0.25K时,Uo=(2.5*6)/(1+0.25)=12V(4)恒压差控制.在DC-DC转换电路和线性稳压电路间采用恒压差控制,即:通过反馈,使DC-DC变压器输出电压与线性稳压器输出电压差值恒定,这样,既可以保证线性稳压电路所需的电压差,又降低了线性电路低压输出时的功耗,提高稳压模块的整体效率.而且,在整个模块输入电压发生较大幅度变化时也能够进行高精度的稳定,纹波也会因此大大降低.在一模块电路中,还接有软启动电路,在开关机时,对产生过冲现象有相当大程度上的抑制.同时,通过控制DC-DC变换器的脉宽,可实现过热、过流保护.2.稳流模块(第二模块)原理图见上面的图1.3所示,out1接深度反馈同相放大器,out2接成电压跟随器.由公式Io= Ur/R18 知输出电流Io只与 Ur 和 R18 有关.因此可看出,电流的极性可以外加电压Ur控制.参数计算:稳压输入最大2.5V,取R5=100 欧姆公式Io=Ur/R18 max=25mA.稳压输入最小0V,Imin=0V.所以实现了在要求范围内的可调.三、数据分析与性能指标1.测试方法(1)稳压电源①在规定范围内输入电压,调节输出电压,用电表测试输出端电压范围:到 V. 用电流表测得输出电流可达1.7A(由保护电路设定).②改变输入电压,用数字电压表测输出端电压,数据如下:次数 1 2 3 4 5 输入交流电压 155V 176V 221V 253V 258V 输出直流电压计算电压率为:③接入负载,改变负载大小,用数字电压表测负载电压,数据如下:次数 1 2负载输出电压计算负载调整率:④用示波器观察输出电压,得纹波电压(峰-峰值)< .⑤在输入端接入交流功率表,输出端接入直流电流表和直流电压表,测得:Pin= W, Uo= V, Io= A.计算效率为:(2)稳流电源①在输出端接入电流表,调节输出电流,测得输出电流在4-20mA可调.②在输出端接入负载,改变负载,用电流表测输出电流,数据如下:次数 1 2 3负载输出电流计算负载调整率为:2.测试器材: (电流表和数字电压表或万用表)、示波器参考文献:<<稳定电源电路设计手册>>曲学基(2003年)<<全国大学生电子设计竞赛获奖作品汇篇>>(1994-1999年)。
题目 直流稳压电源电路设计一、设计任务与要求1.用桥式整流电容滤波集成稳压块电路设计固定的正负直流电源(±12V ); 2.输出可调直流电压,范围1.5∽15V ;3.输出电流I O m ≥1500mA ;(要有电流扩展功能) 4. 稳压系数Sr ≤0.05;具有过流保护功能。
二、方案设计与论证稳压电源由电源变压器、整流电路、滤波电路和稳压电路四部分组成,如下图1所示,其整流与稳压过程的电压输出波形如图2所示。
图1 稳压电源的组成框图图2 整流与稳压过程波形图电网供电电压交流220V(有效值)50Hz ,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压。
降压后的交流电压,通过整电网电压U1电源 变压器U2整流电路U3滤波电路Ui稳压电路Uo负载RL流电路变成单向直流电,但其幅度变化大(即脉动大)。
脉动大的直流电压须经过滤波电路变成平滑,脉动小的直流电,即将交流成份滤掉,保留其直流成份。
滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响的稳定直流电压输出,供给负载RL 。
方案一、单相半波整流电路半波单相整流电路简单,电路及其电压输出波形分别如图3、图4所示,使用元件少,它只对交流电的一半波形整流,其输出波形只利用了交流电的一半波形则整流效率不高,且输出波形脉动大,其值为22/2 1.5722/U S U ππ==≈;直流成分小;o U =22U π≈0.452U ,变压器利用率低。
图3 单相半波整流电路 图4 单相半波整流电路电压输出波形方案二、单相全波整流电路使用的整流器件是半波电路的两倍,整流电压脉动较小,是半波的一半,无滤波电路时的输出电压o U =0.92U ,变压器的利用率比半波电路的高,整流器件所承受的反向电压要求较高。
方案三、单相桥式整流电路单相桥式整流电路使用的整流器件较多,但其实现了全波整流电路,它将u2的负半周也利用起来,所以在变压器副边电压有效值相同的情况下,输出电压的平均值是半波整流电路的两倍,且如果负载也相同的情况下,输出电流的平均值也是半波整流电路的两倍,且其与半波整流电路相比,在相同的变压器副边电压下,对二极管的参数要求一样,还具有输出电压高、变压器利用率高、脉动小等优点。
直流稳压电源设计摘要21世纪的我们正在处于蓬勃发展的信息时代,在此,越来越多的电气、电子设备涌现在市场的各个角落,于是必不可少的能源供应部件需求日益增加,而且对电源的功能、稳定性等各项指标也提出了更高的要求。
对电源的研究和开发已经成为新技术、新设备开发的重要环节,在推动科技发展中起着重要作用。
本实验设计有三个电路模块构成:稳压电源、稳流电源、DC-DC变换器。
一律采用仿真技术设计调试。
依上述顺序,每个模块的输入即为前一模块的输出,而稳压电源的输入为市电220v\50Hz。
其中稳定电源的设计要满足在输入电压220V、50Hz、电压变化围+15%~-20%条件下.输出电压可调围为+9V~+12V,最大输出电流为 1.5A,电压调整率≤0.2%(输入电压220V变化围+15%~-20%下,空载到满载),负载调整率≤1%(最低输入电压下,满载),纹波电压(峰-峰值)≤5mV(最低输入电压下,满载),效率≥40%(输出电压9V、输入电压220V下,满载),具有过流及短路保护功能。
电流设计要满足在输入电压固定为+12V的条件下,输出电流:4~20mA 可调,负载调整率≤1%(输入电压+12V、负载电阻由200Ω~300Ω变化时,输出电流为20mA时的相对变化率)。
DC-DC变换器设计要求要满足在输入电压为+9V~+12V条件下,输出电压为+100V,输出电流为10mA,电压调整率≤1%(输入电压变化围+9V~+12V),负载调整率≤1%(输入电压+12V下,空载到满载),纹波电压(峰-峰值)≤100mV (输入电压+9V下,满载)。
关键词:稳压电源电路设计仿真调试数据整理目录1、原理电路的设计 (2)1.1直流稳压电源电路设计 (2)1.2 直流稳流电源电路设计 (5)1.3 DC-DC转换电路设计 (8)1.4电路图与主要工作原理 (10)1.5主要参数的选择与计算 (10)2、仿真、调试过程 (11)2.1电路实物的安装与调试 (11)2.2DC-DC转换器的仿真与参数分 (12)2.3针对问题的调试 (13)3、数据整理及最终分析及遇到的问题 (14)4、元器件清单 (16)5、主要参考文献 (17)1、原理电路的设计1.1直流稳压电源电路设计在本设计中电路都是采用模块设计思想.因此,对电路进行分析、论证都以模块来进行的。
可调的直流稳压电源电路设计课题名称直流稳压电源所在院系班级学号姓名指导老师时间目录一、摘要 (3)二、设计要求 (3)三、元件及其介绍 (4)四、设计原理及参数计算 (4)(1)电源变压器 (4)(2)整流电路 (5)(3)滤波电路 (5)五、直流稳压电源的工作原理 (6)六、可调式三端稳压器的引脚图及其典型应用电路6(1)设计电路图 (6)(2)仿真 (7)七、设计结论心得体会 (8)八、附表附录 (9)摘 要电源是电子设备中的一个重要组成部分, 其性能的优劣直接影响着设备的工作质量, 随着技术的不断革新, 电源技术发生了巨大变化。
随着科技的发展,直流稳压电源的工作频率有原来的几十千赫发展到现在的几百千,但是和西方的发达国家还是有一定的差距;以美国为首的几个发达国家在这方面的研究已经转向高频下电源的拓扑理论、工作原理、建模分析等等方面技术领先;因此,直流稳压电源的研制及应用在此方面与之也从在很大的差距。
本次设计的题目为串联型连续可调直流稳压负电源:先是家用电源经过变压器得到一个大约(15~30V )的电压U1,然后U1经过一个桥堆进行整流,再采用可调阻值的滑动变阻器进行分压,在桥堆的输出端加一电容C 进行滤波,滤波后再通过LM317(具体参数参照手册)输出一个负电压,在LM317的输出端加一个电阻R1,调整端加一个电位器RW ,这样输出的电压就可以在某一范围内可调。
因为电源的设计中要求输出电流可以扩展,在LM317的输出端加一个晶体管。
这样输出的电压就可以在0~9.9V 范围内可调。
经过一系列的分析、准备、设计、调试…除了在布局和无焊接方面之外,设计的电路基本符合设计要求。
关键词: 开关电源; 稳压电源;可调 直流稳压电源设计要求输入(AC ):U=220V ,f=50HZ ;输出直流电压0~9.9v输出电流Imax=100mA;(有电流扩展功能)负载电流mA I 800具有过流保护功能。
系统框图元件及其介绍[1] 变压器:型号TS POWER 10 TO 1变压器的最基本型式,包括两组绕有导线之线圈,并且彼此以电感方式称合一起。
直流稳压电源设计课 程 设 计 任 务 书题 目 直流稳压电源设计(写自己的)一、 设计的目的 电源技术是一门很重要的技术,服务于各行各业。
直流稳压电源是电子技术中常用的仪器设备之一,广泛应用于教学、科研等领域,是电子科技人员及电路开发部门进行实验操作和科学研究不可缺少的电子仪器。
整个电源系统是由变压、整流、滤波、稳压四部分组成。
家用电器和其它各类电子设备都需要电压稳定的直流电源供电,但实际生活中是由220V 的交流电网供电,这就需要通过电源系统将交流电转换成低电压直流电。
(写自己的)二、设计的内容及要求1) 输入电压为220V AC ,输出为直流电压2) 输出电压可调:Uo=+3V ~+9V ;最大输出电流:Iomax=800mA ;输出电压变化量:ΔVop_p ≤5mV ;4. 稳压系数:S V ≤3103-⨯3) 学会直流稳压电源的设计方法和性能指标测试方法4) 培养实践技能,提高分析和解决实际问题的能力(写自己的)三、指导教师评语四、成 绩指导教师 (签章)2017 年 06 月 16 日承诺本人郑重承诺:所呈交的设计(论文)是本人在导师的指导下独立进行设计(研究)所取得的成果,除文中特别加以标注引用的内容外,本文不包含任何其他个人或集体已经发表或撰写的设计(研究)成果。
对本设计(研究)做出贡献的个人和集体,均已在文中以明确方式标明。
如被发现设计(论文)中存在抄袭、造假等学术不端行为,本人愿承担一切后果。
学生签名:摘要在电子电路及电子设备中,通常都需要电压稳定的直流电源供电。
本文实现了串联反馈调整型稳压电源的设计,依据功能划分,文中论述了组成该稳压电源的各个部分。
最后给出了总原理图及元器件清单,对整体电路用multisim软件进行了仿真分析。
结果表明,该稳压电源电路能够达到预期目的,结构比较简单,有较高的精度,是一种比较实用的电路,具有较高的实用价值。
关键词:直流稳压电源;串联反馈;保护电路撰写说明:摘要要简明扼要,写大概100~200字,3-8个关键词。
直流稳定电源设计制作人:某某题目:直流稳定电源的设计一、任务:设计并制作交流变换为直流的稳定电源。
二、要求:1.基本要求(1)稳压电源在输入电压220V、50Hz、电压变化范围+15%~-20%条件下:a.输出电压可调范围为+9V~+12Vb.最大输出电流为1.5Ac.电压调整率≤0.2%(输入电压220V变化范围+15%~-20%下,空载到满载)d.负载调整率≤1%(最低输入电压下,满载)e.纹波电压(峰-峰值)≤5mV(最低输入电压下,满载)f.效率≥40%(输出电压9V、输入电压220V下,满载)g.具有过流及短路保护功能(2)稳流电源在输入电压固定为+12V的条件下:a.输出电流:4~20mA可调b.负载调整率≤1%(输入电压+12V、负载电阻由200Ω~300Ω变化时,输出电流为20mA时的相对变化率)(3)DC-DC变换器在输入电压为+9V~+12V条件下:a.输出电压为+100V,输出电流为10mAb.电压调整率≤1%(输入电压变化范围+9V~+12V)c.负载调整率≤1%(输入电压+12V下,空载到满载)d.纹波电压(峰-峰值)≤100mV (输入电压+9V下,满载)2.发挥部分(1)扩充功能a.排除短路故障后,自动恢复为正常状态b.过热保护c.防止开、关机时产生的“过冲”(2)提高稳压电源的技术指标a.提高电压调整率和负载调整率b.扩大输出电压调节范围和提高最大输出电流值(3)改善DC-DC变换器a.提高效率(在100V、100mA下)b.提高输出电压(4)用数字显示输出电压和输出电流.三,稳压电源的研究背景本电源在市场上很有应用前景,可以作为收音机或掌机的外接电源,也可以用作手机电池的充电器,功率高点的还作为小型电视或其他家用电器的电源。
直流稳压电源是电子技术常用的仪器之一,它现在广泛的应用在学校教学,科学研究等领域,是电子设计人员进行实验操作和科学研究必不可少的电子仪器。
在日常的电子电路中,供电电源常常要用到稳压直流电源。
所以,稳压直流电源具有非常重要的研究意义。
在日常生活中,很多家用电器或者IT产品都要用到稳压直流电源供电。
但是在实际生活中,我们的家庭用电都是用到220V的交流电网。
这就需要通过变压,整流,滤波,稳压电路来将交流电转换成稳压的直流电,供家用电器使用。
变压器可以将220V的交流电转换成适合用电器的低压交流电。
整流器由二极管组成,用于滤去整流输出电压中的纹波。
四、课题的设计(1).电源的输出控制本系统利用lm317的稳压及其电压可调的功能,通过旋转接在调整脚的电位器,实现输出电压在1.25-20V内连续可调,调整精度较高。
LM317的电压调整电路图如图1所示。
图1 lm317的电压调整原理电路图如图1所示,通过调整可调电阻RV1的阻值,就可以调整输出电压Vo的大小。
所以,如果希望调整的精度高,可调电阻RV1的调整精度也要高。
(2).方案的设计思路:a.输出电压调节范围的制定(经小组协商确定其调节范围为1.25至20v)。
利用lm317集成稳压芯片为核心,通过变压器之后整流滤波再稳压输出稳定的直流电。
再用数字显示电压表头(内含ICL7107芯片),表头的供电也是用lm317制作+5V的稳压电源提供。
方案系统框图如图3所示。
图3 方案三系统框图a.1 LM317芯片的选择理由Lm317是可调节三端正电稳压器,在输出电压的范围是1.25V-37V的时候能够提供超过1.5A的电流,此稳压器非常容易使用,只要两个外部电阻来设置输出电压。
此外,还使用内部限流,热关断和安全工作区补偿从而使之能防止烧断保险丝。
Lm317是应用很广泛的集成电路之一。
它不仅能构成三端稳压电路的最简单形式,同时输出电压具有可调的功能。
此外,它还有众多的优点,例如,调压范围宽,稳压性能好,噪声低,纹波抑制比高。
它的主要性能参数如下:输出电压:1.25-37V DC;输出电流:5mA-1.5A;保护电路:芯片内部有过热,过流,短路保护电路;最大输入输出电压差:40V DC;最小输入输出电压差:3V DCb.整流,滤波,稳压,保护,DC-DC变换,稳流,表头供电等电路的设计(b.1)整流电路整流电路的任务是将交流电变换成直流电。
完成这一任务主要是靠二极管的单向导电作用,因此二极管是构成整流电路的关键元件。
在小功率整流电路中,常见的集中整流电路有单相半波、全波、桥式和倍压整流电路。
本设计采用单相桥式整流电路。
单相桥式整流电路是工程上最常用的单相整流电路。
在工作时,电路中的四只二极管都是作为开关运用,当正半周时,二极管V1、V3导通(V2、V4截止),在负载电阻上得到正弦波的正半周;当负半周时,二极管V2、V4导通(V1、V3截止),在负载电阻上得到正弦波的负半周。
在负载电阻上正、负半周经过合成,得到的是同一个方向的单向脉动电压。
桥式整流电路原理图如图6所示。
图6 桥式整流电路原理图选择二极管要依据二极管的反向耐压VRM 和正向电流IF 。
由于滤波电容的容量愈大,二极管导通角愈小,通过二极管脉冲电流的幅度愈大,因此,整流管的幅值电流必须加以考虑。
流过整流管的平均电流:2D Ii I =2o i R I I I =+210.01R R adj A I I I =+≈式中Ii 为稳压器的输入电流,IR1、IR2、Iadj 分别为流过R1、R2,以及调整端的电流,则:0.012o D I I =+考虑到电容充电电流的冲击,正向电流一般取平均电流的2~3 倍。
二极管最大反向电压:2max 21.2d i U U ==式中U2为电源变压器次级电压有效值,Ui 为整流输出电压(即稳压器输入电压)。
为了保证稳压器LM317稳定运行,输入电压Ui 与输出电压U0之差一般在5~15V 范围,取Ui-U0=10V ,得:max 1.2 1.2(10)12 1.2o o i d U U U U ==+=+设计时可考虑一定的余量。
根据计算,1N4007的二极管符合设计要求,可以用作整流桥。
(b.2)滤波电路采用电容滤波电路。
由于电容在电路中也是起到储存能量的作用,并联的电容器在电源供给的电压升高时,能够把部分能量储存起来,而当电源电压减低的时候,就能把能量释放出来,是负载电压比较平滑稳定,也就是电容也有平波的作用。
电容滤波电路比较简单,而且负载直流电压比较高,纹波也比较少,适用于负载电压较高,负载变动不大的场合,也减轻了电路设计和实际焊接的工作。
电容滤波电路原理图如图9所示。
图9 电容滤波电路经过滤波,电路的电压、电流波形如图10所示。
滤波电解电容C的选择原则是:取其放电时间常数RLC大于充电周期的3~5 倍,其耐压值必须大于脉动电压峰值。
对于桥式整流电路来说,脉动电压峰值为2U2,C的充电周期等于交流电源周期T的一半,即C≥(3~5) T2RL,式中RL为整流后的等效负载电阻,经过考虑,本设计取C为2200uF。
设电容两端初始电压为零,并假定t=0时接通电路,输入电压U2为正半周,当U由零上升时,V1、V3导通,C被充电,同时电流经V1、V3向负载电阻供电。
忽略二极管正向压降和变压器内阻,电容充电时间常数近似为零,因此Uo=Uc≈U2,在u2达到最大值时,Uc也达到最大值,然后U2下降,此时,Uc>U2,V1、V3截止,电容 C向负载电阻RL放电,由于放电时间常数τ=RLC一般较大,电容电压Uc 按指数规律缓慢下降,当下降到|U2|>Uc时,V2、V4导通,电容C再次被充电,输出电压增大,以后重复上述充放电过程。
其输出电压波形近似为一锯齿波直流电压,使负载电压的波动大为减小.(b.3)稳压电路稳压电路是整个设计之中一个很重要的组成部分,几乎所有的电子设备都需要稳定的直流电源供电才能正常工作。
所以,研究和熟悉稳压电路的组成和设计具有非常重要的意义。
稳压电路主要用于提供更加稳定的直流带能源。
考虑到整流滤波电路的输出电压和理想的直流电源还是有相当的距离,主要是存在两方面的问题:第一方面,但负载电流变化的时候,因为整流滤波电路存在一定的内阻,所以输出的直流电压将有可能随之发生变化。
第二方面,由于电网电压并不稳定,当电网电压发生波动时,整流电路的输出电压直接与变压器副边电压有关,因此输出直流电压也相应的发生变化。
因此,在设计中,采用三端集成稳压器lm317来实现稳定电压的功能。
其中,调整管接在输入端和输出端之间。
当电网电压或负载电流波动时,调整自身的集-射压降使输出电压基本保持不变。
放大短路将基准电压与从输出端得到的采样电压进行比较,然后再放大并送到调整管的基极。
放大倍数越大,则稳定性能越好。
由于三端集成稳压器是串联型直流稳压电路的一种,而串联型直流稳压电路的输出电压和基准电压成正比,因此,基准电压的稳定性将直接影响稳压电路的输出电压的稳定性。
采样电路由两个分压电阻组成,它将输出电压变化量的一步份送到放大电路的输入端。
启动电路的作用是在刚接通电流输入电压的时候,是调整管、放大电路和基准电源等建立各自的工作电路,而当稳压电路正常工作是启动电路被断开,影响稳压电路的性能。
保护电路主要起到限流保护,过热保护和过压保护的作用。
稳压部分的电路原理图如图11所示。
图11 稳压电路原理图 稳压电源的输出电压可用下式计算:231.25(1)o R V R =+仅仅从公式本身看,R3、R2的电阻值可以随意设定。
然而作为稳压电源的输出电压计算公式,R3和R2的阻值是不能随意设定的。
1,2脚之间为1.25V电压基准。
为保证稳压器的输出性能,R3应小于240欧姆。
改变R2阻值即可调整稳压电压值。
D5,D6用于保护LM317。
首先317稳压块的输出电压变化范围是Vo=1.25V—37V(高输出电压的317稳压块如LM317HVA、LM317HVK等,其输出电压变化范围是Vo=1.25V—45V),所以R2/R3的比值范围只能是0—28.6。
它的使用非常简单,仅需两个外接电阻来设置输出电压。
此外它的线性调整率和负载调整率也比标准的固定稳压器好。
LM317内置有过载保护、安全区保护等多种保护电路。
LM317属于深度负反馈的稳压电路,其功耗比较大,所以有必要讨论一下LM317稳压模块的散热问题。
稳压器的最大允许功耗取决于芯片的最高结温T JM,当T<T JM时稳压器才能正常工作。
因此,稳压器的散热能力愈强, 结温就愈低,它所能承受的功率也愈大。
稳压器的散热能力取决于它的热阻给半导体器件加散热片后可减小总热阻。
若令Rθ1表示从结到器件外壳的热阻,Rθ2表示从器件外壳到散热片表面的热阻,RθA表示从结到散热片表面的热阻,则RθA=Rθ1+Rθ2。
若令Rθd 表示散热片到周围空气的热阻,Rθ’表示加散热片后结到空气的总热阻,则Rθ’=RθA+Rθd。