matlab实验3-模型求解
- 格式:ppt
- 大小:1.71 MB
- 文档页数:39
数学建模实验二:微分方程模型Matlab求解与分析实验二:微分方程模型Matlab 求解与分析一、实验目的[1] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析; [2] 熟悉MATLAB 软件关于微分方程求解的各种命令;[3] 通过范例学习建立微分方程方面的数学模型以及求解全过程;[4] 熟悉离散 Logistic 模型的求解与混沌的产生过程。
二、实验原理1. 微分方程模型与MATLAB 求解解析解用MATLAB 命令dsolve(‘eqn1’,’eqn2’, ...) 求常微分方程(组)的解析解。
其中‘eqni'表示第i 个微分方程,Dny 表示y 的n 阶导数,默认的自变量为t 。
(1)微分方程例1 求解一阶微分方程21y dxdy+= (1) 求通解输入:dsolve('Dy=1+y^2')输出:ans =tan(t+C1)(2)求特解输入:dsolve('Dy=1+y^2','y(0)=1','x')指定初值为1,自变量为x 输出:ans =tan(x+1/4*pi)例2 求解二阶微分方程 221()04(/2)2(/2)2/x y xy x y y y πππ'''++-=='=-原方程两边都除以2x ,得211(1)04y y y x x'''++-= 输入:dsolve('D2y+(1/x)*Dy+(1-1/4/x^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x')ans =- (exp(x*i)*(pi/2)^(1/2)*i)/x^(1/2) +(exp(x*i)*exp(-x*2*i)*(pi/2)^(3/2)*2*i)/(pi*x^(1/2))试试能不用用simplify 函数化简输入: simplify(ans)ans =2^(1/2)*pi^(1/2)/x^(1/2)*sin(x) (2)微分方程组例3 求解 d f /d x =3f +4g ; d g /d x =-4f +3g 。
2017年-matlab实验内容2017年文化素质课 MATLAB实验实验一、MATLAB基本操与运算基础【实验目的】(1)熟悉MATLAB基本环境,掌握MATLAB变量的使用(2)掌握MATLAB数组的创建(3)掌握MATLAB数组和矩阵的运算【实验内容及步骤】熟悉建立数组的方法:逐个元素输入法、冒号法、特殊方法(使用函数linspace建立)1、有关向量、矩阵或数组的一些运算(1)设A=15;B=20;求C=A+B与c=a+b?(2)设A=[1 2 3;4 5 6;7 8 9],B=[9 8 7;6 5 4;3 2 1];求A*B与A.*B?(3)设a=10,b=20;求i=a/b=?与j=a\b= ?(4)设a=[1 -2 3;4 5 -4;5 -6 7](5)在MATLAB命令行窗口运行A=[1,2;3,4]+i*[5,6;7,8];看结果如何?如果改成运行A=[1,2;3,4]+i[5,6;7,8],结果又如何?(6)请写出完成下列计算的指令:a=[1 2 3;3 4 2;5 2 3],求a^2=?,a.^2=?(7)有一段指令如下,请思考并说明运行结果及其原因clearX=[1 2;8 9;3 6];X( : ) %转化为列向量(8)写出下列指令的运行结果>> A = [ 1 2 3 ]; B = [ 4 5 6 ];>> C = 3.^A>> D = A.^B2、设有矩阵A和B,A=[1 2 3 4 5;6 7 8 9 10;11 12 13 14 15;16 17 18 19 20;21 2223 24 25],B=[3 0 16;17 -6 9;0 23 -4;9 7 0;4 13 11]1)求它们的乘积C2)将矩阵C的右下角3x2子矩阵赋给D3、完成下列操作1)求[100,999]之间能被61整除的数及其个数(提示:先利用冒号表达式,再利用find和length 函数。
封面作者:PanHongliang仅供个人学习桂林电子科技大学数学与计算科学学院实验报告实验室:实验日期:年月日x附录Ⅱ综合性、设计性实验报告格式桂林电子科技大学数学与计算科学学院综合性、设计性实验报告版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理。
版权为潘宏亮个人所有This article includes some parts, including text, pictures, and design. Copyright is Pan Hongliang's personal ownership.用户可将本文的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律的规定,不得侵犯本网站及相关权利人的合法权利。
除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人的书面许可,并支付报酬。
Users may use the contents or services of thisarticle for personal study, research or appreciation, andother non-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目的的合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任。
MATLAB程序设计实验指导书MATLAB是集数值计算、符号运算及图形处理等强大功能于一体的科学计算语言。
作为强大的科学计算平台,它几乎能满足所有的计算需求。
在美国及其他发达国家的理工科院校里,MATLAB已经作为一门必修的课程;在科研院所、大型公司或企业的工程计算部门,MATLAB也是最普遍的计算工具之一。
有鉴于此,我院开设了《MATLAB程序设计》这门课程,它需要一定的理论基础,同时又具有很强的实践性。
如何加强理论课程的学习、加深学生对本课程中的基本理论知识及基本方法的理解,如何培养学生实践动手能力是教学的当务之急。
而MATLAB程序设计实验课程就是一种重要的教学手段和途径。
实验将MATLAB程序设计的基本方法灵活地运用在数学、电路等课程中,重点突出,内容丰富。
同时,注重理论分析与实际动手相结合,以理论指导实践,以实践验证基本原理,旨在提高学生分析问题、解决问题的能力及动手能力,使学生进一步巩固基本理论知识,建立比较全面的MATLAB程序设计的概念。
实验注意事项1、实验系统接通电源前请确保电源插座接地良好。
2、完成实验后请确保关闭电脑电源及插座电源。
实验一 矩阵及其运算一、实验目的1、熟悉MATLAB 工作环境2、掌握矩阵和数组的创建、寻访和运算 二、实验内容验证欧姆定律:iur ,其中i u r , ,分别是电阻(欧姆)、电压(伏特)、电流(安培)。
已知u=[0.89, 1.20, 3.09, 4.27, 3.62, 7.71, 8.99, 7.92, 9.70, 10.41],i=[0.028, 0.040, 0.100, 0.145, 0.118, 0.258, 0.299, 0.257, 0.308, 0.345]。
三、实验器材PC 机 (装有 MA TLAB 软件 ) 1台 四、实验原理 4.1 Desktop 简介MATLAB R2006a 版的Desktop 操作桌面,是一个高度集成的MATLAB 工作界面。
利用Matlab构建数学模型及求解方法详解引言数学模型在现代科学研究和实际应用中起着重要的作用。
利用数学模型,我们可以准确地描述问题,分析问题,并提供解决问题的方法。
而Matlab作为一种强大的数学软件,能够帮助我们构建数学模型并求解问题。
本文将详细介绍利用Matlab构建数学模型的方法和求解模型的技巧。
一、数学模型的基本概念数学模型是对真实世界问题的简化和抽象,以数学语言和符号进行表达。
一个好的数学模型应当能够准确地描述问题的本质,并能够提供解决问题的方法。
构建数学模型的基本步骤如下:1. 确定问题的目标和限制条件:首先,我们需要明确问题的目标是什么,以及有哪些限制条件需要考虑。
这些目标和限制条件将在后续的模型构建中起到重要的作用。
2. 建立假设:在构建数学模型时,我们通常需要做一些合理的假设。
这些假设可以简化问题,使得模型更易于建立和求解。
3. 确定数学表达式:根据问题的具体情况,我们需要选择适当的数学表达式来描述问题。
这些数学表达式可以是代数方程、微分方程、最优化问题等。
4. 参数估计:数学模型中通常会涉及到一些未知参数,我们需要通过实验数据或者其他手段来估计这些参数的值。
参数的准确估计对于模型的求解和结果的可靠性至关重要。
二、利用Matlab构建数学模型的方法在利用Matlab构建数学模型时,我们通常可以使用以下方法:1. 利用符号计算工具箱:Matlab中提供了丰富的符号计算工具箱,可以帮助我们处理复杂的代数方程和符号表达式。
通过符号计算工具箱,我们可以方便地推导出数学模型的方程式。
2. 利用数值计算工具箱:Matlab中提供了强大的数值计算工具箱,可以帮助我们求解各种数学问题。
例如,求解微分方程的常用方法有欧拉法、龙格-库塔法等,都可以在Matlab中轻松实现。
3. 利用优化工具箱:在一些优化问题中,我们需要求解最优解。
Matlab的优化工具箱提供了多种求解最优化问题的算法,如线性规划、非线性规划等。
实验四 用MATLAB 求解状态空间模型1、实验设备MATLAB 软件2、实验目的① 学习线性定常连续系统的状态空间模型求解、掌握MATLAB 中关于求解该模型的主要函数;② 通过编程、上机调试,进行求解。
3、实验原理说明Matlab 提供了非常丰富的线性定常连续系统的状态空间模型求解(即系统运动轨迹的计算)的功能,主要的函数有:初始状态响应函数initial()、阶跃响应函数step()以及可计算任意输入的系统响应数值计算函数lsim()和符号计算函数sym_lsim()。
数值计算问题可由基本的Matlab 函数完成,符号计算问题则需要用到Matlab 的符号工具箱。
4、实验步骤① 根据所给状态空间模型,依据线性定常连续系统状态方程的解理论,采用MATLAB 编程。
② 在MATLAB 界面下调试程序,并检查是否运行正确。
习题1:试在Matlab 中计算如下系统在[0,5s]的初始状态响应,并求解初始状态响应表达式。
Matlab 程序如下:A=[0 1; -2 -3];B=[]; C=[]; D=[];x0=[1; 2];sys=ss(A,B,C,D);[y,t,x]=initial(sys,x0,0:5);plot(t,x)0011232⎡⎤⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦x x x习题2:试在Matlab 中计算如下系统在[0,10s]内周期为3s 的单位方波输入下的状态响应。
并计算该系统的单位阶跃状态响应表达式。
Matlab 程序如下:A=[0 1; -2 -3];B=[0; 1]; C=[]; D=[];x0=[1; 2];sys=ss(A,B,C,D);[u t]=gensig('square',3,10,0.1)0011232⎡⎤⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦x x x[y,t,x] = lsim(sys,u,t,x0)plot(t,u,t,x);(注:文档可能无法思考全面,请浏览后下载,供参考。
实验2 利用MATLAB 对状态空间模型进行分析2.1 实验设备 同实验1。
2.2 实验目的1、根据状态空间模型分析系统由初始状态和外部激励所引起的响应;2、通过编程、上机调试,掌握系统运动的分析方法。
2.3 实验原理说明给定系统的状态空间模型:)()()()()()(t t t t t t Du Cx y Bu Ax x+=+=& (2.1)设系统的初始时刻,初始状态为,则系统状态方程的解为)0(x 00=t ∫∫−−+=+=tt t tt t e e eee t 0)(0d )()0(d )()0()(ττττττBu x Bu x x A A A A A (2.2)输出为)(d )()0()(0)(t e e t tt t Du Bu C x C y A A ++=∫−τττ (2.3))(t x 包括两部分,第一部分是由系统自由运动引起的,是初始状态对系统运动的影响;第二部分是由控制输入引起的,反映了输入对系统状态的影响。
输出由三部分组成。
第一部分是当外部输入等于零时,由初始状态引起的,故为系统的零输入响应;第二部分是当初始状态为零时,由外部输入引起的,故为系统的外部输入响应;第三部分是系统输入的直接传输部分。
)(t y )(0t x )(0t x MATLAB 函数:函数initial(A,B,C,D,x0)可以得到系统输出对初始状态x0的时间响应; 函数step(A,B,C,D)给出了系统的单位阶跃响应曲线; 函数impulse(A,B,C,D) 给出了系统的单位脉冲响应曲线;函数 [y,T,x]=lsim(sys,u,t,x0) 给出了一个状态空间模型对任意输入的响应,其中的sys 表示贮存在计算机内的状态空间模型,它可以由函数sys=ss(A,B,C,D)得到,x0是初始状态。
u 2.4 实验步骤1、构建系统的状态空间模型,采用MATLA 的m-文件编程;2、求取系统的状态和输出响应;3、在MATLA 界面下调试程序,并检查是否运行正确。
第7讲 MATLAB连续模型求解方法作者:卓金武, MathWorks 中国连续模型是指模型是连续函数的一类模型总称,具体建模方法主要是微分方程建模。
微分方程建模是数学建模的重要方法,因为许多实际问题的数学描述将导致求解微分方程的定解问题。
把形形色色的实际问题化成微分方程的定解问题,大体上可以按以下几步:1.根据实际要求确定要研究的量(自变量、未知函数、必要的参数等)并确定坐标系。
2.找出这些量所满足的基本规律(物理的、几何的、化学的或生物学的等等)。
3.运用这些规律列出方程和定解条件。
MATLAB 在微分模型建模过程中的主要作用是求解微分方程的解析解,将微分方程转化为一般的函数形式。
另外,微分方程建模,一定要做数值模拟,即根据方程的表达形式,给出变量间关系的图形,做数值模拟也需要用MATLAB 来实现。
微分方程的形式多样,微分方程的求解也是根据不同的形式采用不同的方法,在建模比赛中,常用的方法有三种:1.用dsolve 求解常见的微分方程解析解2.用ODE 家族的求解器求解数值解3.使用专用的求解器求解1. 常规微分方程的求解微分方程在MATLAB 中固定的表达方式,这些基本的表达方式如下表所示:对于通常的微分方程,一般需要先求解析解,那么dsolve 是首先考虑的求解器,因为dsolve 能够求解解析解,其具体的用法如下:[实例]求微分方程xy'+y-e^x=0 在初始条件y(1)=2e 下的特解,并画出解函数的图形.求解本问题的Matlab 程序为:syms x yy=dsolve('x*Dy+y-exp(x)=0','y(1)=2*exp(1)','x')ezplot(y)微分方程的特解为:y=1/x*exp(x)+1/x*exp (1) (Matlab格式),即y=(e+e^x)/x ,此函数的图形如图1:图1y关于x的函数图象2. ODE 家族求解器如果微分方程的解析形式求解不出来,那么退而求其次的办法是求解数值解,那么这个时候就需要用ODE 家族的求解器求解微分方程的数值解啦。