高考物理二轮复习 计算题标准练(四)
- 格式:doc
- 大小:85.00 KB
- 文档页数:2
选择题专项练(四)(满分:40分时间:30分钟)一、单项选择题:本题共8小题,每小题3分,共24分。
每小题只有一个选项符合题目要求。
1.(2021山东淄博高三二模)负压病房是收治传染性极强的呼吸道疾病病人所用的医疗设施,可以大大减少医务人员被感染的可能性,病房中气压小于外界环境的大气压。
若负压病房的温度和外界温度相同,负压病房内气体和外界环境中气体都可以看成理想气体,以下说法正确的是()A.负压病房内气体分子的平均动能小于外界环境中气体分子的平均动能B.外界气体进入负压病房后体积会缩小C.负压病房内单位体积气体分子数小于外界环境中单位体积气体分子数D.相同面积负压病房内壁受到的气体压力等于外壁受到的气体压力2.(2021山东济南高三一模)某同学将一网球竖直向上抛出,一段时间后落回原处,此过程中空气阻力大小保持不变,以竖直向上为正方向,下列位移—时间图像中可能正确的是()3.(2021山东泰安高三三模)位于贵州的“中国天眼”(FAST)是目前世界上口径最大的单天线射电望远镜,通过FAST可以测量地球与木星之间的距离。
当FAST接收到来自木星的光线传播方向恰好与地球公转线速度方向相同时,测得地球与木星的距离是地球与太阳距离的k倍。
若地球和木星绕太阳的运动均视为匀速圆周运动且轨道共面,则可知木星的公转周期为()A.(1+k)34年 B.(1+k2)32年C.(1+k2)34年 D.k32年4.(2021湖南衡阳高三一模)《中国制造2025》是国家实施强国战略第一个十年行动纲领,智能机器制造是一个重要方向,其中智能机械臂已广泛应用于各种领域。
如图所示,一机械臂铁夹竖直夹起一个金属小球,小球在空中处于静止状态,铁夹与球接触面保持竖直,则()A.机械臂受到的摩擦力方向向上B.小球受到的压力与重力是一对平衡力C.若增大铁夹对小球的压力,小球受到的摩擦力变大D.若机械臂夹着小球在空中沿水平方向做匀加速直线运动,则机械臂对小球的作用力相比静止时的作用力一定变大5.(2021天津高三模拟)如图甲所示,理想变压器原、副线圈的匝数比n1∶n2=5∶1,原线圈接入如图乙所示的正弦交流电压u,R为阻值随光强增大而减小的光敏电阻,L1和L2是两个完全相同的灯泡,电表均为理想交流电表。
计算题标准练(四)满分32分,实战模拟,20分钟拿到高考计算题高分!1.(12分)如图甲所示,弯曲部分AB和CD是两个半径相等的14圆弧,中间的BC段是竖直的薄壁细圆管(细圆管内径略大于小球的直径),分别与上下圆弧轨道相切连接,BC段的长度L可作伸缩调节。
下圆弧轨道与地面相切,其中D、A分别是上下圆弧轨道的最高点与最低点,整个轨道固定在竖直平面内。
一小球多次以某一速度从A点水平进入轨道而从D点水平飞出。
今在A、D两点各放一个压力传感器,测试小球对轨道A、D两点的压力,计算出压力差ΔF。
改变BC的长度L,重复上述实验,最后绘得的ΔF-L图像如图乙所示。
(不计一切摩擦阻力,g 取10m/s2)(1)某一次调节后,D点的离地高度为0.8m,小球从D点飞出,落地点与D点的水平距离为2.4m,求小球经过D点时的速度大小。
(2)求小球的质量和弯曲圆弧轨道的半径。
【解析】(1)小球在竖直方向做自由落体运动,有:H D=12gt2,在水平方向做匀速直线运动,有:x=v D t,得:v D=xt =√Dg=6m/s。
(2)设轨道半径为r,A 到D 过程机械能守恒,有:12m v A 2=12m v D 2+mg(2r+L), ① 在A 点:F A -mg=m v A2r, ② 在D 点:F D +mg=m v D2r , ③由①②③式得:ΔF=F A -F D =6mg+2mg L r ; 由图像纵截距得:6mg=12N,得m=0.2kg;当L=0.5m 时,ΔF=17N,解得:r=0.4m 。
答案:(1)6m/s(2)0.2kg 0.4m2.(20分)如图所示,质量为m 的导体棒垂直放在光滑、足够长的U 形导轨底端,导轨宽度和棒长相等且接触良好,导轨平面与水平面成θ角。
整个装置处在与导轨平面垂直的匀强磁场中。
现给导体棒沿导轨向上的初速度v 0,经时间t 0,导体棒到达最高点,然后开始返回,到达底端前已做匀速运动,速度大小为v04。
计算题专项练(四)1.(山东烟台模拟)光纤通信以其通信容量大、抗干扰性高和信号衰减小,而远优于电缆、微波通信,成为世界通信中的主要传输方式。
但光纤光缆在转弯的地方弯曲半径不能太小,否则影响正常通信。
如图所示,模拟光纤通信,将直径为d的圆柱形玻璃棒弯成3圆环,已知玻璃的折射率为√2,光4在真空中的速度为c,要使从A端垂直入射的光线能全部从B端射出。
求:(1)圆环内径R的最小值;(2)在(1)问的情况下,从A端最下方入射的光线,到达B端所用的时间。
2.(云南昭通模拟)如图所示,光滑水平地面上方边界C、D间存在宽度d=4 m、方向竖直向上、电场强度大小E=1×105N/C的匀强电场区域。
质量m1=1 kg、长度l=6 m的水平绝缘长木板静置于该水平面,且长木板最右侧与电场边界D重合。
某时刻质量m2=0.5 kg、电荷量q=+3×10-5C的滑块(可视为质点)以初速度v0=6 m/s从长木板左端水平滑上长木板,一段时间后,滑块离开电场区域。
已知长木板与滑块间的动摩擦因数μ=0.5,重力加速度大小g取10 m/s2,滑块所带的电荷量始终保持不变。
(1)滑块刚进电场时,求长木板的速度大小。
(2)求滑块在电场中的运动时间及全过程因摩擦产生的热量。
(3)若电场等大反向,求滑块进入电场后在长木板上的相对位移。
3.如图所示,半径为l的金属圆环内部等分为两部分,两部分各有垂直于圆环平面、方向相反的匀强磁场,磁感应强度大小均为B0,与圆环接触良好的导体棒绕圆环中心O匀速转动。
圆环中心和圆周用导线分别与两个半径为R的D形金属盒相连,D形盒处于真空环境且内部存在着磁感应强度大小为B的匀强磁场(图中未画出),其方向垂直于纸面向里。
t=0时刻导体棒从如图所示的位置开始运动,同时在D形盒内中心附近的A点,由静止释放一个质量为m、电荷量为-q(q>0)的带电粒子,粒子每次通过狭缝都能得到加速,最后恰好从D形盒边缘出口射出。
专题四曲线运动『经典特训题组』1.(多选)如图甲所示,在杂技表演中,猴子沿竖直杆向上运动,其vt图象如图乙所示,同时人顶杆沿水平地面运动的xt图象如图丙所示。
若以地面为参考系,下列说法中正确的是( )A.猴子的运动轨迹为直线B.猴子在2 s内做匀变速曲线运动C.t=0时猴子的速度大小为8 m/sD.t=2 s时猴子的加速度大小为4 m/s2答案BD解析由题图乙知,猴子竖直方向上向上做匀减速直线运动,加速度竖直向下,由题图丙知,猴子水平方向上做匀速直线运动,则猴子的加速度竖直向下且加速度的大小、方向均不变,与初速度方向不在同一直线上,故猴子在2 s内做匀变速曲线运动,A错误,B正确;xt图象的斜率等于速度,则知t=0时猴子水平方向的速度大小为v x=4 m/s,又竖直方向初速度大小v y=8 m/s,则t=0时猴子的速度大小为:v=v2x+v2y=4 5 m/s,故C错误;vt图象的斜率等于加速度,则知猴子的加速度为:a=ΔvΔt=0-82m/s2=-4 m/s2,即加速度大小为4 m/s2,故D正确。
2.(多选) 如图所示,轰炸机沿水平方向匀速飞行,到达山坡底端正上方时释放一颗炸弹,炸弹垂直击中山坡上的目标A。
已知A点高度为h=360 m,山坡倾角θ为37°,sin37°=0.6,cos37°=0.8,g取10 m/s2,由此可算出( )A.炸弹的飞行时间为0.8 sB.炸弹飞行的水平位移为480 mC.轰炸机的飞行高度为680 mD.炸弹的落地速度为80 m/s答案BC解析 如图所示,已知A 点高度为h =360 m ,山坡倾角为37°,可算出炸弹飞行的水平位移为x =h tan37°=480 m ,故B 正确;炸弹垂直击中目标A ,可知炸弹的速度偏转角满足φ=π2-θ=53°,由平抛运动的速度与水平方向夹角的正切值是位移与水平方向夹角正切值的2倍可知tan φ=gt v 0=2H x,解得H =320 m ,所以轰炸机的飞行高度H 总=H +h =680 m ,故C 正确;炸弹的飞行时间t = 2H g=8 s ,故A 错误;炸弹的初速度为v 0=x t =60 m/s ,落地速度v =v 0cos φ=100 m/s ,故D 错误。
计算题专项训练(时间:80分钟满分:100分)1.(14分)如图甲所示,水平传送带AB逆时针匀速转动,一个质量为m0=1.0 kg的小物块以某一初速度由传送带左端滑上,通过速度传感器记录下物块速度随时间的变化关系如图乙所示(图中取向左为正方向,以物块滑上传送带时为计时零点)。
已知传送带的速度保持不变,g取10 m/s2。
求:(1)物块与传送带间的动摩擦因数μ;(2)物块在传送带上的运动时间;(3)整个过程中系统产生的热量。
2.(14分)(2020·全国Ⅱ卷)如图所示,两固定的绝缘斜面倾角均为θ,上沿相连。
两细金属棒ab(仅标出a端)和cd(仅标出c端)长度均为L,质量分别为2m和m;用两根不可伸长的柔软轻导线将它们连成闭合回路abdca,并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,使两金属棒水平。
右斜面上存在匀强磁场,磁感应强度大小为B,方向垂直于斜面向上。
已知两根导线刚好不在磁场中,回路电阻为R,两金属棒与斜面间的动摩擦因数均为μ,重力加速度大小为g。
已知金属棒ab匀速下滑。
求:(1)作用在金属棒ab上的安培力的大小;(2)金属棒运动速度的大小。
3.(14分)已知地球的自转周期和半径分别为T和R,地球同步卫星A的圆轨道半径为h。
卫星B沿半径为r(r<h)的圆轨道在地球赤道的正上方运行,其运行方向与地球自转方向相同。
求:(1)卫星B做圆周运动的周期;(2)卫星A和B连续地不能直接通信的最长时间间隔(信号传输时间可忽略)。
4.(14分)低空跳伞是一种极限运动,一般在高楼、悬崖、高塔等固定物上起跳。
人在空中降落过程中所受空气阻力随下落速度的增大而增大,而且速度越大空气阻力增大得越快。
因低空跳伞下落的高度有限,导致在空中调整姿态、打开伞包的时间较短,所以其危险性比高空跳伞还要高。
一名质量为70 kg的跳伞运动员背有质量为10 kg的伞包从某高层建筑顶层跳下,且一直沿竖直方向下落,其整个运动过程的v-t 图象如图所示。
一、单选题1. 如图,当电键K 断开时,用光子能量为2.5eV 的一束光照射阴极P ,发现电流表读数不为零。
合上电键,调节滑线变阻器,发现当电压表读数小于0.60V 时,电流表读数仍不为零;当电压表读数大于或等于0.60V时,电流表读数为零。
由此可知阴极材料的逸出功为( )A .1.9eV B .0.6eV C .2.5eV D .3.1eV2. 如图所示,两块质量分别为m 1和m 2的木块由一根轻弹簧连在一起,在m 1上施加一个竖直向下的力F ,整个系统处于平衡状态.现撤去F ,m 2刚好被弹簧提起(弹性势能的表达式为,其中x 为形变量,k 为劲度系数),则力F的值为A.B.C.D.3. 如图,虚线Ⅰ、Ⅱ、Ⅲ分别表示地球卫星的三条轨道,其中轨道Ⅰ为与第一宇宙速度对应的近地环绕圆轨道,轨道Ⅱ为椭圆轨道,轨道Ⅲ为与第二宇宙速度对应的脱离轨道,三点分别位于三条轨道上,点为轨道Ⅱ的远地点,点与地心的距离均为轨道Ⅰ半径的2倍,则( )A .卫星在轨道Ⅱ的运行周期为轨道Ⅰ的2倍B .卫星经过点的速率为经过点的倍C .卫星在点的加速度大小为在点的3倍D.质量相同的卫星在点的机械能小于在点的机械能4. 如图所示为一种环保“重力灯”,让重物缓慢下落,拉动绳子,从而带动发电机转动,使小灯泡发光。
某“重力灯”中的重物的质量为18kg ,它在30min 内缓慢下落了2m 使规格为“1.5V ,0.12W”的小灯泡正常发光不计绳子重力,下列说法正确的是( )A .绳子拉力对重物做正功B .重物重力做功为216J2024年新高考物理二轮复习强化训练--力与物体的平衡真题汇编版二、多选题三、实验题C .30min 内产生的电能为360JD .重物重力势能转化为灯泡电能的效率为60%5. 查阅资料知,“全飞秒”近视矫正手术用的是一种波长的激光。
已知普朗克常数,光在真空中传播速度,则该激光中光子的能量约为( )A .1.9×10-18JB .1.9×10-19JC .2.2×10-18JD .2.2×10-19J6. 如图,质量为M 、长度为l 的小车静止在光滑的水平面上。
电场和磁场中的曲线运动一、选择题(1~5题为单项选择题,6~9题为多项选择题)1.如图所示,正方形区域内存在垂直纸面向里的匀强磁场.一带电粒子垂直磁场边界从a 点射入,从b点射出.下列说法正确的是( )A.粒子带正电B.粒子在b点的速率大于在a点的速率C.若仅减小磁感应强度,则粒子可能从b点右侧射出D.若仅减小入射速率,则粒子在磁场中运动时间变短2.如图所示,两极板与电源相连接,电子从负极板边缘沿垂直电场方向射入匀强电场,电子恰好从正极板边缘飞出,现保持负极板不动,正极板在竖直方向移动,并使电子入射速度变为原来的2倍,而电子仍从原位置射入,且仍从正极板边缘飞出,则两极板间距离变为原来的( )A.2倍B.4倍C.12D.143.如图所示,两个水平平行放置的带电极板之间存在匀强电场,两个相同的带电粒子从两侧同一高度同时水平射入电场,经过时间t在电场中某点相遇.以下说法中正确的是( )A.若两粒子入射速度都变为原来的两倍,则两粒子从射入到相遇经过的时间为1 2 tB .若两粒子入射速度都变为原来的两倍,则两粒子从射入到相遇经过的时间为14tC .若匀强电场的电场强度大小变为原来的两倍,则两粒子从射入到相遇经过的时间为12tD .若匀强电场的电场强度大小变为原来的两倍,则两粒子从射入到相遇经过的时间为14t4.[2020·武汉武昌区5月调研]如图所示,真空中,垂直于纸面向里的匀强磁场只在两个同心圆所夹的环状区域存在(含边界),两圆的半径分别为R 、3R ,圆心为O .一重力不计的带正电粒子从大圆边缘的P 点沿PO 方向以速率v 1射入磁场,其运动轨迹如图所示,轨迹所对的圆心角为120°.若将该带电粒子从P 点射入的速率变为v 2时,不论其入射方向如何,都不可能进入小圆内部区域,则v 1v 2至少为( )A.233B. 3C.433D .2 3 5.三个质量相等的带电微粒(重力不计)以相同的水平速度沿两极板的中心线方向从O 点射入,已知上极板带正电,下极板接地,三微粒的运动轨迹如图所示,其中微粒2恰好沿下极板边缘飞出电场,则( )A .三微粒在电场中的运动时间有t 3>t 2>t 1B .三微粒所带电荷量有q 1>q 2=q 3C .三微粒所受电场力有F 1=F 2>F 3D .飞出电场时微粒2的动能大于微粒3的动能 6.如图所示,14圆形区域AOB 内存在垂直纸面向内的匀强磁场,AO 和BO 是圆的两条相互垂直的半径,一带电粒子从A 点沿AO 方向进入磁场,从B 点离开,若该粒子以同样的速度从C 点平行于AO 方向进入磁场,则( )A .粒子带负电B .只要粒子入射点在AB 弧之间,粒子仍然从B 点离开磁场C .入射点越靠近B 点,粒子偏转角度越大D .入射点越靠近B 点,粒子运动时间越短 7.如图所示,竖直平面内有水平向左的匀强电场E ,M 点与N 点在同一电场线上,两个质量相等的带正电荷的粒子,以相同的速度v 0分别从M 点和N 点同时垂直进入电场,不计两粒子的重力和粒子间的库仑力.已知两粒子都能经过P 点,在此过程中,下列说法正确的是( )A .从N 点进入的粒子先到达P 点B .从M 点进入的粒子先到达P 点C .粒子在到达P 点的过程中电势能都减小D .从M 点进入的粒子的电荷量小于从N 点进入的粒子的电荷量 8.如图,S 为一离子源,MN 为长荧光屏,S 到MN 的距离为L ,整个装置处在范围足够大的匀强磁场中,磁场方向垂直纸面向里,磁感应强度大小为B .某时刻离子源S 一次性沿平行纸面的各个方向均匀地射出大量的正离子,各离子的质量m ,电荷量q ,速率v 均相同,不计离子的重力及离子间的相互作用力,则( )A .当v <qBL2m时,所有离子都打不到荧光屏上B .当v <qBLm时,所有离子都打不到荧光屏上 C .当v =qBL m 时,打到荧光屏MN 的离子数与发射的离子总数比值为512 D .当v =qBL m 时,打到荧光屏MN 的离子数与发射的离子总数比值为129.[2020·西南名校联盟5月模拟]如图所示,直角三角形ABC 内存在垂直于纸面向外的匀强磁场,磁感应强度为B 0,AC 边长为2L ,AB 边长为L .从AC 边的中点D 连续发射不同速率的相同粒子,方向与AC 边垂直,粒子带正电,电荷量为q ,质量为m ,不计粒子重力与粒子间的相互作用,下列判断正确的是( )A .以不同速率入射的粒子在磁场中运动的时间一定不等B .BC 边上有粒子射出的区域长度不超过33L C .AB 边上有粒子射出的区域长度为(3-1)L D .从AB 边射出的粒子在磁场中运动的时间最短为πm6qB 0二、非选择题 10.如图所示的空间分为Ⅰ、Ⅱ两个区域,边界AD 与边界AC 的夹角为30°,边界AC 与MN 平行,Ⅰ、Ⅱ区域均存在磁感应强度为B 的匀强磁场,磁场的方向分别为垂直纸面向外和垂直纸面向里,Ⅱ区域宽度为d ,边界AD 上的P 点与A 点间距离为2d .一质量为m 、电荷量为+q 的粒子以速度v =2Bqdm,沿纸面与边界AD 成60°角的方向从左边进入Ⅰ区域磁场(粒子的重力可忽略不计).(1)若粒子从P 点进入磁场,从边界MN 飞出磁场,求粒子经过两磁场区域的时间; (2)粒子从距A 点多远处进入磁场时,在Ⅱ区域运动时间最短?11.[2020·全国卷Ⅱ,24] 如图,在0≤x≤h,-∞<y<+∞区域中存在方向垂直于纸面的匀强磁场,磁感应强度B的大小可调,方向不变.一质量为m、电荷量为q(q>0)的粒子以速度v0从磁场区域左侧沿x轴进入磁场,不计重力.(1)若粒子经磁场偏转后穿过y轴正半轴离开磁场,分析说明磁场的方向,并求在这种情况下磁感应强度的最小值B m;(2)如果磁感应强度大小为B m2,粒子将通过虚线所示边界上的一点离开磁场.求粒子在该点的运动方向与x轴正方向的夹角及该点到x轴的距离.12.[2020·浙江7月,22]某种离子诊断测量简化装置如图所示.竖直平面内存在边界为矩形EFGH、方向垂直纸面向外、磁感应强度大小为B的匀强磁场,探测板CD平行于HG水平放置,能沿竖直方向缓慢移动且接地.a、b、c三束宽度不计、间距相等的离子束中的离子均以相同速度持续从边界EH水平射入磁场,b束中的离子在磁场中沿半径为R的四分之一圆弧运动后从下边界HG竖直向下射出,并打在探测板的右边缘D点.已知每束每秒射入磁场的离子数均为N,离子束间的距离均为0.6R,探测板CD的宽度为0.5R,离子质量均为m、电荷量均为q,不计重力及离子间的相互作用.(1)求离子速度v 的大小及c 束中的离子射出磁场边界HG 时与H 点的距离s ; (2)求探测到三束离子时探测板与边界HG 的最大距离L max ;(3)若打到探测板上的离子被全部吸收,求离子束对探测板的平均作用力的竖直分量F 与板到HG 距离L 的关系.13.[2020·江苏卷,16]空间存在两个垂直于Oxy 平面的匀强磁场,y 轴为两磁场的边界,磁感应强度分别为2B 0、3B 0.甲、乙两种比荷不同的粒子同时从原点O 沿x 轴正向射入磁场,速度均为v .甲第1次、第2次经过y 轴的位置分别为P 、Q ,其轨迹如图所示.甲经过Q 时,乙也恰好同时经过该点.已知甲的质量为m ,电荷量为q .不考虑粒子间的相互作用和重力影响.求:(1)Q 到O 的距离d ;(2)甲两次经过P 点的时间间隔Δt ; (3)乙的比荷q ′m ′可能的最小值.供向心力有qv 1B =m v 21r 1,解得v 1=3qBRm .当粒子竖直向上射入磁场时,如果粒子不能进入小圆区域,则粒子从其他所有方向射入磁场都不可能进入小圆区域,粒子恰好不能进入小圆区域时轨道半径r 2=R ,由洛伦兹力提供向心力有qv 2B =m v 22r 2,解得v 2=qBR m ,则有v 1v 2=3,B 正确,A 、C 、D 错误.答案:B5.解析:粒子在电场中运动的时间t =xv ,水平速度相等而位移x 1<x 2=x 3,所以t 1<t 2=t 3,故A 错误;竖直方向y =12at 2=12·qE m t 2,对粒子1与2,两者竖直位移相等,在y 、E 、m 相同的情况下,粒子2的时间长,则电荷量小,即q 1>q 2,而对粒子2和3,在E 、m 、t 相同的情况下,粒子2的竖直位移大,则q 2>q 3,故B 错误;由F =qE ,q 1>q 2可知,F 1>F 2,故C 错误;由q 2>q 3,且y 2>y 3,则q 2Ey 2>q 3Ey 3,电场力做功多,增加的动能大,故D 正确.答案:D 6.解析:粒子从A 点正对圆心射入,恰从B 点射出,根据洛伦兹力方向可判断粒子带正电,故选项A 错误;粒子从A 点射入时,在磁场中运动的圆心角为θ1=90°,粒子运动的轨迹半径等于BO ,当粒子从C 点沿AO 方向射入磁场时,粒子的运动轨迹如图所示,设对应的圆心角为θ2,运动的轨迹半径也为BO ,粒子做圆周运动的轨迹半径等于磁场圆的半径,磁场区域圆的圆心O 、轨迹圆的圆心O 1以及粒子进出磁场的两点构成一个菱形,由于O 1C 和OB 平行,所以粒子一定从B 点离开磁场,故选项B 正确;由图可得此时粒子偏转角等于∠BOC,即入射点越靠近B 点对应的偏转角度越小,运动时间越短,故选项C 错误,D 正确.答案:BD7.解析:两粒子进入电场后做类平抛运动,因为重力不计,竖直方向匀速,水平方向向左匀加速,又因为两粒子在竖直方向的位移相同、速度相同,所以到达P 点的时间相同,故A 、B 错误;电场力对两粒子都做正功,电势能都减小,故C 正确;水平方向上,由于x =12at 2,又因为加速度a =qE m 、两粒子质量相等及到达P 点的时间相等,所以从M 点进入的粒子的加速度小、电荷量小,从N 点进入的粒子的加速度大、电荷量大,故D 正确.答案:CD8.解析:根据半径公式R=mvqB,当v<qBL2m时,R<L2,直径2R<L,所有离子都打不到荧光屏上,A项正确;根据半径公式R=mvqB,当v<qBLm时,R<L,当L2≤R<L,有离子打到荧光屏上,B项错误;当v=qBLm时,根据半径公式R=mvqB=L,离子运动轨迹如图所示,离子能打到荧光屏的范围是N′M′,由几何知识得:PN′=3r=3L,PM′=r=L,打到N′点的离子离开S时的初速度方向和打到M′的离子离开S时的初速度方向夹角为θ=56π,能打到荧光屏上的离子数与发射的离子总数之比k=θ2π=56π2π=512,C项正确,D项错误.答案:AC9.解析:若以不同速率入射的粒子在磁场中运动时都从AC边射出,则运动的时间相等,A错误;如图甲所示,当粒子的速率无穷大时,可认为粒子不发生偏转从E点射出,BC边上有粒子射出的区域为BE部分,长度不超过L tan30°=33L,B正确;如图乙所示,粒子从AB边射出的运动轨迹与AB边相切时,轨迹半径最小,则AB边上有粒子射出的区域在BF之间,由几何关系可知r3L=L-r2L,解得r=3L2+3,则L BF=L-rtan60°=(3-1)L,C正确;从AB边上射出的粒子中,从B点射出的粒子运动时间最短,粒子在磁场中运动所对的圆心角为60°,则粒子在磁场中运动的时间最短为t=T6=πm3qB0,D错误.答案:BC10.解析:(1)设粒子在磁场中做圆周运动的半径为r,则qvB=mv2r,解得r=2d粒子在磁场中做圆周运动的周期为T =2πmqB设粒子在Ⅰ区域转过的角度为θ,则 粒子在Ⅰ区域运动时间t 1=θ360°T设粒子在Ⅱ区域运动时间为t 2,由对称关系可知粒子经过两磁场区域的时间t =t 1+t 2=2t 1解得t =πm3qB.(2)在Ⅱ区域运动时间最短时,圆弧对应的弦长应为d ,由几何关系可知,粒子入射点Q 到边界AC 的距离应为d2,则入射点Q 与A 点的距离为d.答案:(1)πm3qB(2)d11.命题意图:本题考查了带电粒子在磁场中的运动,意在考查考生综合物理规律处理问题的能力.解析:(1)由题意,粒子刚进入磁场时应受到方向向上的洛伦兹力,因此磁场方向垂直于纸面向里.设粒子进入磁场中做圆周运动的半径为R ,根据洛伦兹力公式和圆周运动规律,有qv 0B =m v 2R ①由此可得 R =mv 0qB②粒子穿过y 轴正半轴离开磁场,其在磁场中做圆周运动的圆心在y 轴正半轴上,半径应满足R≤h③由题意,当磁感应强度大小为B m 时,粒子的运动半径最大,由此得 B m =mv 0qh④(2)若磁感应强度大小为B m 2,粒子做圆周运动的圆心仍在y 轴正半轴上,由②④式可得,此时圆弧半径为R′=2h⑤粒子会穿过图中P 点离开磁场,运动轨迹如图所示.设粒子在P 点的运动方向与x 轴正方向的夹角为α,由几何关系sin α=h 2h =12⑥则α=π6⑦ 由几何关系可得,P 点与x 轴的距离为y =2h(1-cos α)⑧联立⑦⑧式得y =(2-3)h⑨答案:见解析12.命题意图:本题考查洛伦兹力和牛顿运动定律、动量及其相关知识点,考查的核心素养是物理观念和科学思维.解析:(1)qvB =mv 2R 得v =qBR m几何关系OO′=0.6Rs =R 2-0.6R 2=0.8R(2)a 、c 束中的离子从同一点Q 射出,α=βtan α=R -s L max。
二轮复习计算题专题训练1、航模兴趣小组设计出一架遥控飞行器,其质量m=1kg,动力系统提供的恒定升力F=14N,试飞时,飞行器从地面由静止开始竖直上升,设飞行器飞行时所受的阻力大小不变,g取10m/s2.(1)第一次试飞,飞行器飞行t1=8s时到达高度S m=64m,求飞行器阻力f的大小;(2)第二次试飞,飞行器飞行t2=6s时遥控器出现故障,飞行器立即失去升力,求飞行器能达到的最大高度.2、如图所示,滑块b静止在光滑水平面上,滑块a右端与一轻弹簧相连后以某一速度冲向滑块b,与b碰撞后弹簧不与b相粘连,b在与弹簧分离后,冲上半径为R的竖直光滑固定半圆轨道,且恰好能从轨道顶端水平飞出。
已知a、b两个滑块的质量分别为2m和m,重力加速度为g,求:(滑块a、b可视为质点,弹簧始终处在弹性限度内),求:(1)滑块b与弹簧分离时的速度大小;(2)滑块a碰撞前的速度大小;(3)a、b在碰撞过程中弹簧获得的最大弹性势能。
3、如图所示,半径R=0.4m的光滑圆弧轨道BC固定在竖直平面内,轨道的上端点B和圆心O的连线与水平方向的夹角θ=30°,下端点C为轨道的最低点且与粗糙水平面相切,一根轻质弹簧的右端固定在竖直挡板上。
质量m=0.1kg的小物块(可视为质点)从空中的A点以v0=2m/s的速度被水平拋出,恰好从B点沿轨道切线方向进入轨道,经过C点后沿水平面向右运动至D点时,弹簧被压缩至最短,此时弹簧的弹性势能E pm=0.8J,已知小物块与水平面间的动摩擦因数μ=0.5,g取10m/s2。
求:(1)小物块从A点运动至B点的时间。
(2)小物块经过圆弧轨道上的C点时,对轨道的压力大小。
(3)C、D两点间的水平距离L。
4、如图所示,装置的左边AB部分是长为L1=1m的水平面,一水平放置的轻质弹簧左端固定并处于原长状态。
装置的中间BC部分是长为L2=2m的水平传送带,它与左右两边的台面等高,并能平滑对接,传送带始终以v=2m/s的速度顺时针转动。
计算题标准练(四)
分)如图所示,“”形框置于匀强磁场中,磁感应强度大小为
纸面向外,“”形框的三条边的长度均为
电阻.“”形框绕轴
示位置.规定回路中方向为电流的正方向,求:
的感应电流的表达式;
的感应电流的大小和方向.
本题考查交变电流的产生和瞬时值表达式、楞次定律和闭合电路欧姆定律等相关
=BωL r+R
或正方向或a→d
ωt(2)BωL
r+R
正方向
中装有大量的质量、电荷量不同但均带正电的粒子,粒子从容器下方的
初速度可视为零)做直线运动,通过小孔
垂直电场方向射入偏转电场.粒子通过平行板后沿垂直磁场方向进入磁感应强度为
垂直纸面向里的匀强磁场区域,最后打在感光片上,如图所示.已知加速电场中
,两板间距也为L,板间匀强电场强度。