表面工程学
- 格式:docx
- 大小:20.02 KB
- 文档页数:2
关于表面工程技术论文表面工程是由多个学科交叉、综合、复合,以系统为特色,逐步发展起来的新兴学科,从上世纪八十年代开始一直保持较快的发展速度,在科研和生产中得到广泛应用,收到了良好的效益。
下文是店铺为大家搜集整理的关于表面工程技术论文的内容,欢迎大家阅读参考! 关于表面工程技术论文篇1试谈表面工程技术在模具制造中的应用摘要:作为一门科学与技术,表面工程能够有效的改善电子电器元件、机械零件等基质材料表面的性能。
如今,表面工程中的各项表面技术已经被广泛的应用到各类机电产品当中,显然已经成为了现代制造技术的重要组成部分,是当前维修、再制造环节中是基本手段。
文章首先对模具表面的主要处理技术进行了详细的阐述,其次对表面工程技术在模具制造中的应用进行了系统的分析与探讨。
关键词:模具制造;表面工程技术;应用作为模具工业的基础,模具材料随着模具工业的迅猛发展,其不但需要具备较高的韧性、强度之外,还需要具有良好的综合性能。
通过表面工程技术的应用,不仅能让模具表面的各种性能得到相应的提高,并且模具内部也将保持着足够的强韧性。
显然,它的应用对于模具综合性能的改善、材料潜力的发挥、成本的降低、合金元素的节约以及模具新材料的进一步利用来说,都十分有效。
1 模具表面的主要处理技术1.1 硬化膜沉积技术物理气相沉积技术、化学气相沉积(CVD)是目前较为成熟的硬化膜沉积技术。
硬化膜沉积技术在最早出现的时候,通常都是应用在刀具、量具等工具上,有着极佳的效果。
并且,很多刀具都已经将涂覆硬化膜当做成最为标准的工艺。
在目前的实际应用过程中,我们不难发现,硬化膜沉积技术的成本是较高的,尤其体现在设备的成本上。
同时,硬化膜沉积技术依旧只应用于一些较精密且具有长寿命的模具上,如果通过建立热处理中心的方式来对其应用,必定会大大降低涂覆硬化膜的成本。
显然,在硬化膜沉积技术的应用下,整个模具制造的水平将得到实质性的提高。
1.2 渗氮技术在整个渗氮工艺中,具有离子渗氮、液体渗氮、气体渗氮等多种方式,而每一种不同的渗氮方式中都具有诸多不同的渗氮技术,这些不同的技术能够有效的适应不同工件、不同钢种的实际要求。
表面工程学复习名词解释表面能:材料表面的内能,包括原子的动能,原子间的势能以及原子中原子核和电子的动能和势能。
表面扩散:是指原子、离子、分子以及原子团在固体表面沿表面方向的运动。
当固体表面存在化学势梯度场,扩散物质的浓度变化或样品表面的形貌变化时,就会发生表面扩散。
洁净表面:尽管材料表面原子结构的周期性不同于体内,但其化学成分仍与体内相同的表面。
清洁表面:一般之零件经过清洗(脱脂、侵蚀)以后的表面。
滚光:将零件放入盛有磨料和化学溶液的滚筒中,借滚筒的旋转使零件与磨料、零件与零件表面相互摩擦,以达到清理零件表面的过程。
电化学抛光:电解抛光是以被抛工件为阳极,不溶性金属为阴极,两极同时浸入到电解槽中,通以直流电而产生有选择性的阳极溶解,从而达到工件表面光亮度增大的效果。
表面淬火:采用特定热源将钢铁材料表面快速加热到AC3或AC1之上,然后使其快速冷却,形成表面强化层的工艺过程。
表面形变强化:在金属的表面形变过程中当外力超过屈服强度后,要塑性变形继续进行必须不断增加外力,从而在真实的应力-应变曲线上表现为应力不断上升。
等离子体热扩渗: 利用低真空中气体辉光放电产生的离子轰击工件表面,形成热扩渗层的工艺过程。
液体热扩渗:将工件浸渍在熔融的液体中,使表面渗入一种或几种元素的热扩渗工艺方法。
化学镀::在无外加电流的状态下,借助合适的还原剂,使镀液中的金属离子还原成金属,并沉积到零件表面的一种镀覆方法。
复合镀:在电镀或化学镀溶液中加入非溶性的固体微粒,并使其与主体金属共沉积在基体表面,或把长纤维迈入或卷缠于基体表面后沉积金属,形成一层金属基的表面复合材料的过程。
合金镀:在一种溶液中,两种或两种以上金属离子在阴极上共沉积,形成均匀细致镀层的过程。
堆焊:在零件表面熔覆一层耐磨、耐蚀、耐热等具有特殊性能合金属的技术。
热喷焊:采用热源使涂层料在机基体表面重新融化或部分熔化,实现涂层与基体之间,涂层内颗粒之间的冶金结合,消除孔隙。
材料表面工程学
材料表面工程学是一门研究如何改变和优化材料表面性质的学科,旨在改善材料的功能和性能。
它涉及到对材料表面进行物理、化学和机械处理,以改变其化学组成、晶体结构、形貌和表面能等方面的特性。
材料表面工程学的研究内容包括表面修饰、涂层技术、薄膜制备、层析技术、电化学表面处理等。
通过这些方法,可以实现对材料表面硬度、耐磨性、耐腐蚀性、防腐性、生物相容性、光学性能等的改善。
材料表面工程学应用广泛,可以用于改善金属材料的耐蚀性和耐磨性,提高陶瓷材料的密封性和耐热性,增强玻璃材料的光学透明度和耐冲击性,改善塑料材料的润湿性和粘附性等。
此外,材料表面工程学还应用于生物医学领域,用于制备生物材料和医用器械,提高其生物相容性和组织相容性。
总之,材料表面工程学通过对材料表面进行工艺处理,可以改善材料的性能和功能,拓展材料在各个应用领域的应用范围。
《表面工程学》课程教学大纲课程代码:050241025课程英文名称:Surface engineering课程总学时:40 讲课:40 实验:0 上机:0适用专业:金属材料工程大纲编写(修订)时间:2017.11一、大纲使用说明(一)课程的地位及教学目标1.课程地位:表面工程学是必修、专业学位课。
2.教学目标:通过本课程的学习使学生了解现代表面技术基本知识。
掌握有关材料表面的基本概念和某些重要理论,对现代表面技术的形成、分类、涵义和内容有一定深度的了解。
通过一些典型的表面技术来掌握其主要设备、技术路线、工艺实施、分析检验和具体应用等,从而使学生对现代表面技术的形成、现状和发展有基本的了解。
积极培养学生理论联系实际以及开拓创新的能力,为学习其它有关专业课程和将来从事生产技术工作奠定必要的理论基础。
(二)知识、能力及技能方面的基本要求1.知识方面的基本要求:掌握表面工程学的定义和内涵、表面工程技术的特点与意义、表面工程技术的分类。
掌握典型固体表面与界面;掌握金属腐蚀原理和防护技术,材料磨损原理及其耐磨性。
掌握表面工程技术的预处理工艺。
掌握表面淬火技术的原理与特点;掌握感应加热淬火技术、火焰加热表面淬火技术、激光淬火、电阻加热表面淬火技术、表面形变强化技术的原理。
掌握热扩渗技术的基本原理;掌握热扩渗工艺的分类、等离子体热扩渗。
掌握电镀、化学镀的基本原理与工艺;掌握常用单金属电镀、合金电镀、复合镀技术。
掌握磷化、铬酸盐钝化膜;掌握转化膜的基本特性及用途、化学氧化、草酸盐钝化、电化学氧化、着色技术。
掌握涂料的基本组成及其作用、涂料成膜机理、涂装材料;掌握涂装工艺。
掌握物理气相沉积方法中蒸发镀、溅射镀和离子镀的原理及特点;掌握各类化学气相沉积方法的原理及特点,分子束外延制膜方法。
了解常用工业激光器及激光加工系统,掌握激光表面改性技术;掌握离子束表面改性技术、电子束表面改性技术的特点及应用。
掌握常用微细加工技术、纳米工艺、生物芯片技术。
表面工程学课程小结1.表面工程技术:是赋予材料或零部件表面以特殊的成分、结构和性能(或功能)的化学、物理方法与工艺。
它的实施对象是固体材料的表面。
基材涉及几乎所有的工程材料,如金属、陶瓷、半导体材料、高分子材料、混凝土、木材、各类复合材料。
表面改性技术:主要指赋予材料表面以特定的物理、化学性能的表面工程技术。
按照工艺特点的不同,表面改性技术可分为:表面组织转化技术,表面涂层、镀层及堆焊技术,表面合金化技术等三大类。
2.表面、磨损与腐蚀典型固体表面有:理想表面、洁净表面与清洁表面、机械加工过的表面、一般表面。
最基本的磨损形式:磨粒磨损、粘着磨损、疲劳磨损、腐蚀磨损。
这些磨损过程的特点。
影响磨粒磨损过程的因素有:磨粒的硬度、磨粒形状和粒度、工况和环境条件。
影响固体材料粘着磨损性能的因素有:润滑条件或环境、硬度、晶体结构和晶体的互溶性、温度。
腐蚀:按腐蚀机理分为化学腐蚀和电化学腐蚀。
按腐蚀形态不同分为:全面腐蚀、局部腐蚀。
按环境不同,可将腐蚀分为:湿蚀,干蚀,微生物腐蚀。
电化学腐蚀:指金属在导电的液态介质中因电化学作用导致的腐蚀,在腐蚀中有电流产生。
如:电偶腐蚀:在腐蚀介质中,金属与另一种电位更正的金属或非金属导体发生电连接而引起的加速腐蚀。
大气腐蚀、海水腐蚀、土壤腐蚀属于电化学腐蚀。
化学腐蚀:是金属在干燥的气体介质中或不导电的液体介质中(如酒精、石油等)发生的腐蚀,腐蚀过程中无电流产生。
高温氧化属于化学腐蚀。
电化学保护方法分为阴极保护和阳极保护两大类。
3.电镀与化学镀(1)电镀是指在含有欲镀金属的盐类溶液中,在直流电的作用下,以被镀基体金属为阴极,以欲镀金属或其他惰性导体为阳极,通过电解作用,在基体表面上获得结合牢固的金属膜的表面工程技术。
合金电镀:在一种溶液中,两种或两种以上金属离子在阴极上共沉积,形成均匀细致镀层的过程叫做合金电镀。
电镀过程中,被镀工件接电源的负极。
电镀液分为简单盐镀液和络合物镀液。
名词解释:
1、表面工程学:为满足特定的工程要求,使材料或零部件表面具有特殊的成分、结构和性能的化学、物理方法与工艺。
2、理想表面:是一种想象的平面,在无限晶体中插进一个平面,将其分为两部分后所形成的平面,并认为半无限晶体中的原子位置和电子密度都和原来的无线晶体一样。
3、洁净表面:虽然材料表层原子结构的周期性不同于体内,但其化学成分仍与体内相同。
4、清洁表面:一般指零件经过清洗(脱脂、浸蚀等)以后的表面。
5、TLK模型:基本思想是在温度相当于0K时,表面原子结构呈静态。
表面原子层可以认为是理想的平面,其中的原子作完整二维周期性排列,且不存在缺陷和杂质。
当温度从0K升到T时,由于原子的热运动,晶体表面将产生低晶面指数的平台、一定密度的单分子或原子高度的台阶、单分子或原子尺度的扭折以及表面吸附的单原子及表面空位等。
6、固体表面的吸附包括物理吸附和化学吸附。
吸附是固体表面最重要的性质之一。
7、莱宾杰尔效应:因环境介质的影响及表面自由能减少导致固体强度、塑性降低的现象。
8、润湿:液体在固体表面铺展的现象。
9、脱脂的方法:化学脱脂、有机溶剂脱脂、水剂脱脂、电化学脱脂。
10、表面淬火技术:采用特定的热源将钢铁材料表面快速加热到AC3(对亚共析钢)或者AC1(对过共析钢)之上,然后使其快速冷却并发生马氏体变化,形成表面强化层的工艺过程。
11、受控喷丸:是利用高速喷射的细小弹丸在室温下撞击受喷工件的表面,使表层材料在再结晶温度下产生弹、塑性变形,并呈现较大的残余压应力,从而提高工件表面强度、疲劳强度和抗应力腐蚀能力的表面工程技术。
12、热扩渗:将工件放在特殊介质中加热,使介质中某一种或几种元素渗入工件表面,形成合金层(或掺杂层)的工艺。
13、电镀:是指在含有欲镀金属的盐类溶液中,在直流电的作用下,以被镀基体金属为阴极,以欲镀金属或其他惰性导体为阳极,通过电解作用,在基体表面上获得结合牢固的金属膜的表面工程技术。
14、化学镀:在无外加电流的状态下,借助合适的还原剂,使镀液中的金属离子还原成金属,并沉积到零件表面的一种镀覆方法。
15、钝化:金属由于介质的作用生成的腐蚀产物如果具有致密的结构,形成了一层薄膜(往往是看不见的),紧密覆盖在金属的表面,则改变了金属的表面状态,使金属的电极电位大大向正方向跃变,而成为耐蚀的钝态。
16、磷化:金属表面与锰、锌等磷酸盐溶液发生化学反应,在其表面形成一层难容磷化膜的工艺。
17、发蓝处理:钢铁的化学氧化。
18、涂料主要是由成膜物质、颜料、溶剂、助剂四部分构成。
19、热喷涂:采用各种热源使涂层材料加热熔化或半熔化,然后用高速气体使涂层材料分散细化并高速撞击到基体表面形成涂层的工艺过程。
20、热喷焊:采用热源使涂层材料在基体表面重新熔化或部分熔化,实现涂层与基体之间、涂层内颗粒之间的冶金结合,消除空隙的技术。
简答题;
1、转化膜区别于电镀层、化学镀层或有机镀层的是什么?
基体金属发生溶解、参与反应;形成的是难溶的化合物膜层;不改变金属外观。
2、电镀和化学镀的区别。
原理上区别就是电镀需要外加的电源和阳极,而化学镀是依靠在金属表面所发生的自催
化反应;电镀无法对一些形状复杂的工件进行表面施镀,但化学镀可以对任何形状进行施镀;化学镀层为非晶态,镀层表面没有任何晶体间隙,而电镀层为典型的晶态镀层;
电镀因为有外加电源,所以镀速要比化学镀快得多;化学镀层的结合力要普遍高于电镀层;化学镀不使用有害物质,所以比电镀要环保一些;化学镀目前市场上只有纯镍磷合金的一种颜色,而电镀可以实现很多色彩。
3、热喷焊的基本特点(热喷涂与热喷焊的异同点)
热喷焊层组织致密,冶金缺陷很少,与基体结合强度很强;热喷焊材料必须与基体材料相匹配,喷焊材料和基体范围比热喷涂窄得多;热喷焊工艺中基材的变形比热喷涂大得多;热喷焊层的成分与喷焊材料的原始成分会有一定的差别。
4、封孔处理的目的
填充缝隙,防止和阻止涂层界面处的腐蚀;延长铝和锌防护涂层的寿命;在某些机械部件中防止液体和压力的密封泄漏;防止污染和研磨碎屑碎片进入涂层;保持陶瓷涂层的绝缘强度。
5、气体渗碳的主要方式滴注式气体渗碳、吸热式气氛渗碳和氮基气氛渗碳形成
6、形成热扩渗层的基本条件:
(1)渗入元素必须能够与基体金属形成固溶体和金属间化合物(2)欲渗元素与基材之间必须有直接接触(3)被渗元素在基体接触中要有一定的渗入速度(4)必须具备热力学条件。
7、表面淬火为什么要进行预先热处理:使碳化物和自由铁素体均匀、细小的分布,以便有
利于快速加热时奥氏体的均匀化。
8、为什么中碳钢适合而高碳钢不适合表面淬火:这是由于中碳调质钢经过预先热处理(正
火或调制)以后在进行表面淬火,既可以保证心部有较高的综合力学性能,又使表面具有较高的硬度(》50hrc)和耐磨性,高碳钢表面淬火后表面硬度和耐磨性虽然很高,但心部塑性和韧性较低,只能用于承受较小的冲击与交变载荷下的工具、量具及高冷硬轧辊。
10、表面淬火和热扩渗的异同点:
相同点:(1)都属于表面改性技术(2)都是冶金结合,结合强度高,结合层不易脱落。
不同点:(1)使用材料不同(2)相对表面强度、硬度、心部的韧性,热扩渗优于表面淬火(3)表面淬火的结构组织变化不同于热扩渗,热扩渗的过程中引入了新的化学元素。