最大公因数与最小公倍数专项练习题(经典汇总)教学提纲
- 格式:doc
- 大小:16.00 KB
- 文档页数:2
五年级下册数学教案-3.11 最大公因数和最小公倍数的练习
丨苏教版
一、教学目标
1.理解最大公因数和最小公倍数的含义,能够用自己的话简单描述。
2.掌握求最大公因数和最小公倍数的方法。
3.能够运用所学知识解决实际问题。
二、教学重难点
1.最大公因数和最小公倍数的概念和意义。
2.求最大公因数和最小公倍数的方法。
3.如何应用所学知识解决实际问题。
三、教学过程
1. 导入新知识
1.引导学生回忆最大公因数和最小公倍数的概念和含义。
2.让学生解决两个数的最大公因数和最小公倍数问题,引导学生总结出求最大公因数和最小公倍数的方法,并将其写在黑板上。
2. 案例演练
1.让学生分组,完成以下练习题:题目1:求24和32的最大公因数和最小公倍数。
题目2:某幼儿园有90个学生和135个苹果,请问这些苹果能平均分配给多少个学生?题目3:某班级5年级的学生有30人,6年级的学生有20人,请问至少需要多少张课桌和椅子?
2.让每组学生依次将所得答案展示在黑板上,全班共同讨论对错和方法是否正确,并做出讲评。
3. 拓展应用
让学生根据自己的经验,设计自己喜欢的题目,然后将题目写在黑板上,由全班学生分组进行拓展应用。
每组分别交换题目并进行解答,并在班级成员面前展示自己的解答结果。
4. 课后练习
1.完成教材上的习题。
2.自己根据所学知识,编写数学问题,并解答。
四、教学注意事项
1.学生需要注重方法的总结和归纳。
2.学生需要在练习中掌握最大公因数和最小公倍数的求解方法。
3.学生需要注重应用题的解题方法和策略。
新人教版五年级下册数学《最大公因数和最小公倍数》重点知识点和精选练习题人教版五年级下册数学《最大公因数和最小公倍数》知识点及重点题分析最大公因数一、基础知识1) 定义:几个数公有的因数中,其中最大的公因数叫做它们的最大公因数。
2) 求最大公因数的方法:①列举法;②短除法:把各个数公有的质因数从小到大依次作为除数,连续去除这几个数,一直除到各个商是互质数为止,然后把左半圈所有除数相乘,所得的积就是这几个数的最大公因数。
例如:求36,24,48的最大公因数。
2.36.24.482.18.12.243.9.6.123.2.4此时3与2,4都互质,这三个数的公因数只有1,停止短除。
因此,36,24,48的最大公因数是2×2×3=12.3) 求两个数最大公因数的特殊情况:①当两个数成倍数关系时,较小数就是这两个数的最大公因数;②互质的两个数最大公因数是 1.(如连续的非零自然数、不同的质数等)4) 最大公因数和公因数的关系:所有的公因数都是这两个数的因数,最大公因数是这些公因数中最大的。
二、求最大公因数在计算中的应用作用:最大公因数在计算中的最重要的作用是约分,即把分数的分子和分母约成最大公因数为1的最简分数。
化最简分数最简捷的方法:①短除法求出最大公因数;②用划线法分别约去分子分母的最大公因数,分别写出分子、分母被最大公因数除的商。
③练:1)填空:Aα,b都是非自然数,如果a÷b=10,那么α,b的最大公因数是(b),最小公倍数是(α)。
解题分析:由题可知,α是b的倍数,此时两数的最大公因数是其中的较小数b,最小公倍数是其中的较大数α。
B甲=2×3×5,乙=2×3×7,甲和乙的最大公因数是(2×3=6)。
解题分析:用几个质因数的积给出两个数,算式相同的因数是两数的公因数,所有相同因数的乘积就是两数的最大公因数。
2)化最简分数:1824÷4536=4÷10=2÷56398÷4536=2÷37550÷4536=5÷3因此,1824/4536=2/5,6398/4536=2/3,7550/4536=5/3.3) 判断:比的分数单位小,所以比小。
人教版五年级下册数学《最大公因数和最小公倍数》知识点及重点题分析最大公因数一、基础知识(1)定义:几个数公有的因数中,其中最大的公因数叫做它们的最大公因数。
,(2)求最大公因数的方法①列举法:②短除法:把各个数公有的质因数从小到大依次作为除数,连续去除这几个数,一直除到各个商是互质数为止,(也可以用较大的合数质公因数去除)然后把左半圈所有除数相乘,所得的积就是这几个数的最大公因数。
3 2 4此时3与2,4都互质,这三个数的公因数只有1,停止短除。
(即用短除法求最大公因数时,要使所有的数最后所得的商没有公因数就可,如果其中几个商有公因数,也不再除)。
因此,36,24,48的最大公因数是2×2×3=12。
(3)求两个数最大公因数的特殊情况:①当两个数成倍数关系时,较小数就是这两个数的最大公因数。
②互质的两个数最大公因数是1。
(如连续的非零自然数、不同的质数等)(4)最大公因数和公因数的关系:所有的公因数都是这两个数的因数,最大公因数是这些公因数中最大的。
二、求最大公因数在计算中的应用作用:最大公因数在计算中的最重要的作用是约分,即把分数的分子和分母约成最大公因数为1的最简分数。
化最简分数最简捷的方法:①短除法求出最大公因数②用划线法分别约去分子分母的最大公因数,分别写出分子、分母被最大公因数除的商。
③练习:(1)填空:A α,b 都是非0自然数,如果a ÷b=10 ,那么α,b 的最大公因数是( ),最小公倍数是( )。
解题分析:由题可知,α是b 的倍数,此时两数的最大公因数是其中的较小数b ,最小公倍数是其中的较大数α。
B 甲=2×3×5,乙=2×3×7,甲和乙的最大公因数是( )。
(2)化最简分数6318、9824、7545、5036 (3)判断: A 6318比216的分数单位小,所以6318比216小。
( ) B 分子分母是不同的质数,分子、分母的最大公因数一定是1.( )C 分子分母分别是不同的合数,分子、分母的最大公因数一定不是1.( )D 分子分母是两个连续的非零自然数,分子、分母的最大公因数一定是1.( )E两个不同的自然数的最大公因数一定比最小公倍数小.()三、求最大公因数的实际问题1.五年级(2)班男生有48人,女生有36人。
1.3数的认识:最大公因数和最小公倍数(小考复习精编专项练习)人教版六年级数学小升初复习系列:第一章数的认识(含知识点与答案)【知识要点】一、公因数:几个数公有的因数,叫做这几个数的公因数。
二、最大公因数:1、几个公因数中,最大的一个,叫做这几个数的最大公因数。
2、若较小数是较大数的因数,那么较小数就是这两个数的最大公因数。
例如:9的因数有1、3、9;12的因数有1、2、3、4、6、12。
其中,1、3是9和12的公因数;3就是它们的最大公因数。
特别的:公因数只有1的两个数,叫做互质数,简称“互质”。
换句话说,如果两个数是互质数,那么它们的最大公因数就是1。
成互质关系的两个数,有下列几种情况:1、1和任何自然数互质。
2、相邻的两个自然数互质。
3、不同的两个质数互质。
4、当合数不是质数的倍数时,这个合数和这个质数也互质。
例如:4和7互质;16和11互质;25和13互质。
5、两个合数的公因数只有1时,这两个合数也互质。
三、公倍数:几个数公有的倍数,叫做这几个数的公倍数。
四、最小公倍数:1、几个公倍数中最小的一个,叫做这几个数的最小公倍数。
例如:4的倍数有4、8、12、16、20、24……3的倍数有3、6、9、12、15、18、21、24……其中12、24……就是4和3的公倍数;而12是它们的最小公倍数。
2、较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
3、如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
例如:4和5是互质数,那么它们的最小公倍数就是:4×5=204、几个数的公因数的个数是有限的;而它们的公倍数的个数却是无限的。
【优选练习】一、单选题1.两个任意偶数的和,一定是()的倍数。
A.2 B.3 C.52.两个数的最大公因数是6,最小公倍数是36,这两个数不可能是( )。
A.12和18 B.8和24 C.6和363.一个长方形纸板,长18dm,宽12dm。
要裁成同样大小的正方形,边长为整分米数且没有剩余,则边长不可能是() dm。
最大公因数与最小公倍数一、知识梳理:(1)、最大公因数和最小公倍数。
互质:两个数的最大公因数为1就叫做这两个数互质。
1.两个连续自然数是互质的。
例如:8与9;15与162.两个质数必然是互质的。
例如:5和7;11和13(2)、求最大公因数或最小公倍数的方法1.若两个数是互质的,则最大公因数为1,最小公倍数为这两个数的乘积。
2.若两个数是倍数关系,则较小的数为它们的最大公因数,较大的数为它们的最小公倍数。
当两个数相差较大时,要判断大数是否为小数的倍数。
3.两个数不是倍数关系的,也不是互质的才适合用分解质因数去求最大公因数和最小公倍数。
(3)、应用题中如何识别是求公因数还是公倍数的方法1.分析题意,判断结果应该比所给数量大,则是求公倍数;2.分析题意,判断结果应该比所给数量小,则是求公因数3.题目中含“最多”或“最长”等字眼,则是求最大公因数4.题目中含“至少”,“下一次”字眼,则是求最小公倍数二、最大公因数与最小公倍数针对性练习:一、填空题。
1、如果有两个质数的和等于24,可以是( 5 )+(19 ),(7)+(17)或(11 )+(13 )。
2、a b c 都是质数,甲数=a×b×b,乙数=a×b×c,甲乙两数的最大公因数是(ab),最小公倍数是( ab2c)3.a=2×2×5,b=2×3×5,那么a 和b的最小公倍数是(60),最大公因数是(10)。
4、找出下列每组数的最大公因数、最小公倍数15和12的最大公因数是(3),最小公倍数是(60)18和27的最大公因数是(9 ),最小公倍数是( 54)17和34的最大公因数是(17),最小公倍数是( 34)5、一个自然数除以4余2,除以5余3,除以6余4,这个数最小是(58)。
6、有三根铁丝,一根长48dm,一根长60dm,,一根长36dm,要把他们截成同样长的几段,不许剩余,每段最长是(12 )dm,一共可以截成( 12)段。
最小公倍数与最大公因数典型的应用题汇总一、解题技巧:最大公因数解题技巧:通常从问题入手,所求的数量处于小数(即处于除数、商、因数)的地位时,因为小数(即处于除数、商、因数)是大数(即处于被除数、被除数、积)的因数,此时,所求的数量就处于因数的地位。
如果出现相同的(公有的)/最长的所求数量,即求他们的公因数/最大公因数的应用题。
最小公倍数解题技巧:通常从问题入手,所求的数量处于大数(即处于被除数、被除数、积)的地位时,因为大数(即处于被除数、被除数、积)是小数(即处于除数、商、因数)的倍数,此时,所求的数量应处于倍数的地位。
如果出现相同的(公有的)/最小的所求数量,即求他们的公倍数/最小公倍数的应用题。
补充部分公式小长方形个数=(大正方形边长÷小长方形长)×(大正方形边长÷小长方形的宽)小正方形个数=(大长方形的长÷小正方形边长)×(大长方形的宽÷小正方形边长)小长方体个数=(大正方体边长÷小长方体长)×(大正方体边长÷小长方体的宽)×(大正方体边长÷小长方体高)小正方体个数=(大长方体边长÷小正方体边长)×(大长方体的宽÷小正方体边长)×(大长方体的高÷小正方体边长)剩余定理余数相同时,总数(被除数)=最小公倍数+余数缺数相同时,总数(被除数)=最小公倍数-缺数植树问题公式不封闭型:2、只有一端都栽1、两端都栽间隔个数=株数间隔个数=株数-1株数=间隔个数+1 株数=间隔个数距离=一个间隔的长度×间隔个数距离=一个间隔的长度×间隔个数3、两端都不栽间隔个数=株数+1株数=间隔个数-1封闭型:间隔个数=株数株数=间隔个数距离=一个间隔的长度×间隔个数封闭型再正方形边上栽,并且4个顶点都栽:株数=(每边株数-1)×4备注:上下多少层楼以及锯段数及敲钟问题等实际运用实质上是两端都栽树的植树问题,这类题通常先求一层/一段需要多少时间,再乘以段数即可二、经典题目1、一个大长方形长24厘米,宽18厘米,把它裁成若干个小正方形而没有剩余,如小正方形的边长最长,边长是多少厘米?最多能裁成多少个小正方形?2、一个长方形的长6厘米,宽4厘米,至少要多少个这样的小长方形才能拼成一个大的正方形?此时,大的正方形的边长是多少厘米?3、一个大长方体长24厘米,宽18厘米,高12厘米,把它裁成若干个小正方体而没有剩余,如小正方体的边长最长,正方体的棱长是多少厘米?最多能裁成多少个小正方体?4、一个长方体的长6厘米,宽4厘米,高2厘米。
最大公因数和最小公倍数应用的典型例题和专题练习TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】最大公因数和最小公倍数应用的典型例题和专题练习[典型例题]例1、有三根铁丝,一根长18米,一根长24米,一根长30米。
现在要把它们截成同样长的小段。
每段最长可以有几米一共可以截成多少段分析与解:截成的小段一定是18、24、30的最大公因数。
先求这三个数的最大公因数,再求一共可以截成多少段。
解答:(18、24、30)=6(18+24+30)÷6=12段答:每段最长可以有6米,一共可以截成12段。
例2、一张长方形纸,长60厘米,宽36厘米,要把它截成同样大小的长方形,并使它们的面积尽可能大,截完后又正好没有剩余,正方形的边长可以是多少厘米能截多少个正方形分析与解:要使截成的正方形面积尽可能大,也就是说,正方形的边长要尽可能大,截完后又正好没有剩余,这样正方形边长一定是60和36的最大公因数。
解答:(36、60)=12(60÷12)×(36÷12)=15个答:正方形的边长可以是12厘米,能截15个正方形。
例3、用96朵红玫瑰花和72朵白玫瑰花做花束。
若每个花束里的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,最多可以做多少个花束每个花束里至少要有几朵花分析与解:要把96朵红玫瑰花和72朵白玫瑰花做成花束,每束花里的红白花朵数同样多,那么做成花束的个数一定是96和72的公因数,又要求花束的个数要最多,所以花束的个数应是96和72的最大公因数。
解答:(1)最多可以做多少个花束(96、72)=24(2)每个花束里有几朵红玫瑰花96÷24=4朵(3)每个花束里有几朵白玫瑰花72÷24=3朵(4)每个花束里最少有几朵花4+3=7朵例4、公共汽车站有三路汽车通往不同的地方。
第一路车每隔5分钟发车一次,第二路车每隔10分钟发车一次,第三路车每隔6分钟发车一次。
最小公倍数与最大公因数典型的应用题汇总一、解题技巧:最大公因数解题技巧:通常从问题入手,所求的数量处于小数(即处于除数、商、因数)的地位时,因为小数(即处于除数、商、因数)是大数(即处于被除数、被除数、积)的因数,此时,所求的数量就处于因数的地位。
如果出现相同的(公有的)/最长的所求数量,即求他们的公因数/最大公因数的应用题。
最小公倍数解题技巧:通常从问题入手,所求的数量处于大数(即处于被除数、被除数、积)的地位时,因为大数(即处于被除数、被除数、积)是小数(即处于除数、商、因数)的倍数,此时,所求的数量应处于倍数的地位。
如果出现相同的(公有的)/最小的所求数量,即求他们的公倍数/最小公倍数的应用题。
补充部分公式小长方形个数=(大正方形边长÷小长方形长)×(大正方形边长÷小长方形的宽)小正方形个数=(大长方形的长÷小正方形边长)×(大长方形的宽÷小正方形边长)小长方体个数=(大正方体边长÷小长方体长)×(大正方体边长÷小长方体的宽)×(大正方体边长÷小长方体高)小正方体个数=(大长方体边长÷小正方体边长)×(大长方体的宽÷小正方体边长)×(大长方体的高÷小正方体边长)剩余定理余数相同时,总数(被除数)=最小公倍数+余数缺数相同时,总数(被除数)=最小公倍数-缺数植树问题公式不封闭型:2、只有一端都栽1、两端都栽间隔个数=株数间隔个数=株数-1株数=间隔个数+1 株数=间隔个数距离=一个间隔的长度×间隔个数距离=一个间隔的长度×间隔个数3、两端都不栽间隔个数=株数+1株数=间隔个数-1封闭型:间隔个数=株数株数=间隔个数距离=一个间隔的长度×间隔个数封闭型再正方形边上栽,并且4个顶点都栽:株数=(每边株数-1)×4备注:上下多少层楼以及锯段数及敲钟问题等实际运用实质上是两端都栽树的植树问题,这类题通常先求一层/一段需要多少时间,再乘以段数即可二、经典题目1、一个大长方形长24厘米,宽18厘米,把它裁成若干个小正方形而没有剩余,如小正方形的边长最长,边长是多少厘米?最多能裁成多少个小正方形?2、一个长方形的长6厘米,宽4厘米,至少要多少个这样的小长方形才能拼成一个大的正方形?此时,大的正方形的边长是多少厘米?3、一个大长方体长24厘米,宽18厘米,高12厘米,把它裁成若干个小正方体而没有剩余,如小正方体的边长最长,正方体的棱长是多少厘米?最多能裁成多少个小正方体?4、一个长方体的长6厘米,宽4厘米,高2厘米。
五年级数学最大公因数,最小公倍数练习题(含提高)定义:最大公约数:最大公约数.也称最大公因数.最大公因子.指两个或多个整数共有约数中最大的一个·a.b的最大公约数记为(a.b).同样的.a.b.c的最大公约数记为(a.b.c).多个整数的最大公约数也有同样的记号·求最大公约数有多种方法.常见的有质因数分解法.短除法.辗转相除法.更相减损法·与最大公约数相对应的概念是最小公倍数.a.b的最小公倍数记为[a.b]·质因数分解法:把每个数分别分解质因数.再把各数中的全部公有质因数提取出来连乘.所得的积就是这几个数的最大公约数·例如:求24和60的最大公约数.先分解质因数.得24=2×2×2×3.60=2×2×3×5.24与60的全部公有的质因数是2.2.3.它们的积是2×2×3=12.所以.(24.60)=12·把几个数先分别分解质因数.再把各数中的全部公有的质因数和独有的质因数提取出来连乘.所得的积就是这几个数的最小公倍数·例如:求6和15的最小公倍数·先分解质因数.得6=2×3.15=3×5.6和15的全部公有的质因数是3.6独有质因数是2.15独有的质因数是5.2×3×5=30.30里面包含6的全部质因数2和3.还包含了15的全部质因数3和5.且30是6和15的公倍数中最小的一个.所以[6.15]=30·短除法:短除法求最大公约数.先用这几个数的公约数连续去除.一直除到所有的商互质为止.然后把所有的除数连乘起来.所得的积就是这几个数的最大公约数·短除法求最小公倍数.先用这几个数的公约数去除每个数.再用部分数的公约数去除.并把不能整除的数移下来.一直除到所有的商中每两个数都是互质的为止.然后把所有的除数和商连乘起来.所得的积就是这几个数的最小公倍数.例如.求12.15.18的最小公倍数·[1]短除法的格式短除法的本质就是质因数分解法.只是将质因数分解用短除符号来进行·短除符号就是除号倒过来·短除就是在除法中写除数的地方写两个数共有的质因数.然后落下两个数被公有质因数整除的商.之后再除.以此类推.直到结果互质为止(两个数互质)·而在用短除计算多个数时.对其中任意两个数存在的因数都要算出.其它没有这个因数的数则原样落下·直到剩下每两个都是互质关系·求最大公因数便乘一边.求最小公倍数便乘一圈·无论是短除法.还是分解质因数法.在质因数较大时.都会觉得困难·这时就需要用新的方法·辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法.也叫欧几里德算法·这就是辗转相除法的原理·辗转相除法的格式例如.求(319.377):∵ 319÷377=0(余319)∴(319.377)=(377.319);∵ 377÷319=1(余58)∴(377.319)=(319.58);∵ 319÷58=5(余29).∴(319.58)=(58.29);∵ 58÷29=2(余0).∴(58.29)= 29;∴(319.377)=29.可以写成右边的格式·用辗转相除法求几个数的最大公约数.可以先求出其中任意两个数的最大公约数.再求这个最大公约数与第三个数的最大公约数.依次求下去.直到最后一个数为止·最后所得的那个最大公约数.就是所有这些数的最大公约数·更相减损法:也叫更相减损术.是出自《九章算术》的一种求最大公约数的算法.它原本是为约分而设计的.但它适用于任何需要求最大公约数的场合·《九章算术》是中国古代的数学专著.其中的“更相减损术”可以用来求两个数的最大公约数.即“可半者半之.不可半者.副置分母.子之数.以少减多.更相减损.求其等也·以等数约之·”翻译成现代语言如下:第一步:任意给定两个正整数;判断它们是否都是偶数·若是.则用2约简;若不是则执行第二步·第二步:以较大的数减较小的数.接着把所得的差与较小的数比较.并以大数减小数·继续这个操作.直到所得的减数和差相等为止·则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数·其中所说的“等数”.就是最大公约数·求“等数”的办法是“更相减损”法·所以更相减损法也叫等值算法·例1.用更相减损术求98与63的最大公约数·解:由于63不是偶数.把98和63以大数减小数.并辗转相减:98-63=3563-35=2835-28=728-7=2121-7=1414-7=7所以.98和63的最大公约数等于7·这个过程可以简单的写为:(98.63)=(35.63)=(35.28)=(7.28)=(7.21)=(7.14)=(7.7)=7最小公倍数:两个或多个整数公有的倍数叫做它们的公倍数·两个或多个整数的公倍数里最小的那一个叫做它们的最小公倍数·分解质因数法:先把这几个数的质因数写出来.最小公倍数等于它们所有的质因数的乘积(如果有几个质因数相同.则比较两数中哪个数有该质因数的个数较多.乘较多的次数)·比如求45和30的最小公倍数·45=3*3*530=2*3*5不同的质因数是2,3,5·3是他们两者都有的质因数.由于45有两个3.30只有一个3.所以计算最小公倍数的时候乘两个3.最小公倍数等于2*3*3*5=90又如计算36和270的最小公倍数36=2*2*3*3270=2*3*3*3*5不同的质因数是5·2这个质因数在36中比较多.为两个.所以乘两次;3这个质因数在270个比较多.为三个.所以乘三次·最小公倍数等于2*2*3*3*3*5=54020和40的最小公倍数是40[4]公式法:由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积·即(a.b)×[a.b]=a×b·所以.求两个数的最小公倍数.就可以先求出它们的最大公约数.然后用上述公式求出它们的最小公倍数·例如.求[18.20].即得[18.20]=18×20÷(18.20)=18×20÷2=180·求几个自然数的最小公倍数.可以先求出其中两个数的最小公倍数.再求这个最小公倍数与第三个数的最小公倍数.依次求下去.直到最后一个为止·最后所得的那个最小公倍数.就是所求的几个数的最小公倍数·常用结论:在解有关最大公约数.最小公倍数的问题时.常用到以下结论:(1)如果两个自然数是互质数.那么它们的最大公约数是1.最小公倍数是这两个数的乘积·例如8和9.它们是互质数.所以(8.9)=1.[8.9]=72·(2)如果两个自然数中.较大数是较小数的倍数.那么较小数就是这两个数的最大公约数.较大数就是这两个数的最小公倍数·例如18与3.18÷3=6.所以(18.3)=3.[18.3]=18·(3)两个整数分别除以它们的最大公约数.所得的商是互质数·例如8和14分别除以它们的最大公约数2.所得的商分别为4和7.那么4和7是互质数·(4)两个自然数的最大公约数与它们的最小公倍数的乘积等于这两个数的乘积·例如12和16.(12.16)=4.[12.16]=48.有4×48=12×16.即(12.16)× [12.16]=12×16·例1:两个数的最大公因数是15,最小公倍数是90,求这两个数分别是多少?15×1=15,15×6=90;当a1b1分别是2和3时,a.b分别为15×2=30,15×3=45·所以.这两个数是15和90或者30和45·例2:两个自然数的积是360,最小公倍数是120,这两个数各是多少?分析我们把这两个自然数称为甲数和乙数·因为甲.乙两数的积一定等于甲.乙两数的最大公因数与最小公倍数的积·根据这一规律.我们可以求出这两个数的最大公因数是360÷120=3·又因为(甲÷3=a,乙÷3=b)中,3×a×b=120,a和b一定是互质数.所以,a和b可以是1和40,也可以是5和8·当a和b是1和40时.所求的数是3×1=3和3×40=120;当a 和b是5和8时.所求的数是3×5=15和3×8=24·分析甲跑一圈需要600÷3=200秒.乙跑一圈需要600÷4=150秒.丙跑一圈需要600÷2=300秒·要使三人再次从出发点一齐出发.经过的时间一定是200.150和300的最小公倍数·200.150和300的最小公倍数是600,所以.经过600秒后三人又同时从出发点出发·综合练习:一. 填空题·1. 都是自然数.如果.的最大公约数是().最小公倍数是()·2. 甲.乙.甲和乙的最大公约数是()×()=().甲和乙的最小公倍数是()×()×()×()=()·3. 所有自然数的公约数为()·4. 如果m和n是互质数.那么它们的最大公约数是().最小公倍数是()·5. 在4.9.10和16这四个数中.()和()是互质数.()和()是互质数.()和()是互质数·6. 用一个数去除15和30.正好都能整除.这个数最大是()·7. 两个连续自然数的和是21.这两个数的最大公约数是().最小公倍数是()·8. 两个相邻奇数的和是16.它们的最大公约数是().最小公倍数是()·9. 某数除以3.5.7时都余1.这个数最小是()·10. 根据下面的要求写出互质的两个数·(1)两个质数()和()·(2)连续两个自然数()和()·(3)1和任何自然数()和()·(4)两个合数()和()·(5)奇数和奇数()和()·(6)奇数和偶数()和()·11.两个数的最大公因数是6.最小公倍数是144.这两个数的和是()·12.有一个数.同时能被9,10,15整除.满足条件的最大三位数是()·13.筐里装满了鸡蛋.已知这筐鸡蛋两个两个数多一个.五个五个数仍多一个.那么这筐鸡蛋至少有()个·14.有336个苹果.252个橘子.210个梨.用这些果品最多可分成若干份同样的礼物.这时在每份礼物中.三种水果各有()·15.有96多红花和72朵白花扎成花束.如果每个花束里红花的朵数相同.白花的朵数也相同.每个花束至少有()朵花·二. 判断题·1. 互质的两个数必定都是质数·()2. 两个不同的奇数一定是互质数·()3. 最小的质数是所有偶数的最大公约数·()4. 有公约数1的两个数.一定是互质数·()5. a是质数.b也是质数..一定是质数·()三. 直接说出每组数的最大公约数和最小公倍数·26和13() 13和6()4和6() 5和9()29和87() 30和15()13.26和52 () 2.3和7()四.求下面每组数的最大公约数和最小公倍数·(三个数的只求最小公倍数)45和60 36和6027和72 76和8042.105和56 24.36和48五.解答题·1.把一张长120厘米.宽80厘米的长方形的纸裁成正方形.不允许剩余.至少能裁多少张?2.已知两个自然数的最大公因数是12.(1)最小公倍数是72.求这两个数的积(2)满足已知条件的自然数有哪几组?3.一筐梨.按每份2个梨分多一个.每份3个梨多两个.每份5个梨多四个.问筐里至少有多少个梨?4.甲乙丙三人环绕操场步行一周.甲要三分钟.乙要四分钟.丙要六分钟.三人同时同地同向出发.当他们三人第一次相遇时.甲乙丙三人分别绕了多少周?5.某港口停着四艘轮船.一天他们同时开出港口.已知甲船每隔两星期回港一次.乙船每隔四星期回港一次.丙船每隔六星期回港一次.丁船八星期回港一次.至少经过几星期后.这四只轮船再次在港口重新会合?6、有一个自然数.被6除余1.被5除余1.被4除余1.这个自然数最小是几?7、一盒钢笔可以平均分给2.3.4.5.6个同学.这盒钢笔最小有多少枝?8、用96朵红花和72朵白花做成花束.如果各花束里红花的朵数相同.白花的朵数也相同.每束花里最少有几朵花?9、从小明家到学校原来每隔50米安装一根电线杆.加上两端的两根一共是55根电线杆.现在改成每隔60米安装一根电线杆.除两端的两根不用移动外.中途还有多少根不必移动?10.每筐梨.按每份两个梨分多1个.每份3个梨分多2个.每份5个梨分4个.则筐里至少有多少个梨?11.学校买来40支圆珠笔和50本练习本.平均奖给四年级三好学生.结果圆珠笔多4支.练习本多2本.四年级有多少名三好学生.他们各得到什么奖品?12.小明.小红.小王一起分17个苹果.小明分得其中的二分之一.小红分得其中的三分之一.小王分得其中的九分之一.问他们每个人分别分得几个苹果?。
最大公因数与最小公倍数专项练习题(经典汇总)
1.有三根铁丝,一根长54米,一根长72米,一根长36米,要把它们截成同样长的小段,不许剩余,每段最长是多少米?
2. 用96朵红花和72朵白花做成花束,如果各花束里红花的朵数相同,白花的朵数也相同,每束花里最少有几朵花?
3. 把长120厘米,宽80厘米的铁板裁成面积相等,最大的正方形而且没有剩余,正方形的边长最长是多少?可以裁成多少块?
4. 有一个长80厘米,宽60厘米,高115厘米的长方体储冰容器,往里面装入大小相同的正方体冰块,这个容器最少能装多少数量冰块?
5.汽车站内每隔3分钟发一辆公交车,4分钟发一辆中巴车,1小时共发了几辆汽车,其中有几辆中巴车?
6.一种长方形的地砖,长24厘米,宽16厘米,用这种砖铺一个正方形,至少需多少块砖?
7.长方体的积木,长24厘米,宽16厘米,高12厘米,用这种积木堆成一个正方体,正方体的棱长最小是多少?至少需多少块砖?
8.从小明家到学校原来每隔50米安装一根电线杆,加上两端的两根一共是55根电线杆,现在改成每隔60米安装一根电线杆,除两端的两根不用移动外,中途还有多少根不必移动?
9.公路边有一排电线杆,共25根,每相邻两根之间的的距离是45米。
现在要改成60米。
可以有几根不需要移动?
10.五(1)班同学做操,排成8排少1人,排成10排也少1人,这个班至少多少?
11.有一个自然数,被6除余1,被5除余1,被4除余1,这个自然数最小是几?
12.某班同学,排成7排多3人,排成8排少4人,这个班至少多少人?
13.每筐梨,按每份2个梨分多1个,每份3个梨分多2个,每份5个梨分4个,则筐里至少有多少个梨?
14.如果自然数A除以自然数B商是7,那么A与B的最大公因数是( ),最小公倍数是( )。
15.甲数=2×3×5×7,乙数=2×3×11,甲乙两数的最大公因数是( ),最小公倍数是( )。
16.按要求写互质数
两个都是质数( )和( );两个都是合数( )和( );
一个质数和一个奇数( )和( );一个偶数5和一个合数( )和( ); 一个质数和一个合数( )和( );一个偶数和一个合数( )和( )。