2011年专升本高数试卷
- 格式:doc
- 大小:117.10 KB
- 文档页数:3
2011年成人高考专升本高数试题及答案一、填空题:1~5小题,每小题4分,共20分.把答案填在题中横线上.1.若(),,2y xy y x y x f +=-+则()=y x f ,1()2x x y -. 2.=→x n i s x in s x x 1lim 200.3.设322++=ax x y 在1=x 处取得极小值,则a =4-.4.设向量,23a i j b j k =-=-+, 则a b ⋅= 2.5.=+⎰201x dt t dx d 212x x +.二、选择题:6~10小题,每小题4分,共20分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.6.函数()41922-+-=x x x f 的定义域是 [ C ](A )()()∞+-∞-,22, ; (B )()()3,22,3 --; (C ))([]3,22,3 --; (D )]()[()∞+--∞-,32,23, .7.曲线26322-+=x x y 上点M 处的切线斜率为15,则点M 的坐标是 [ B ] (A ))15,3(; (B ))1,3(; (C ))15,3(-; (D ))1,3(-.8.设cos(2)z x y =-,则z y∂∂等于 [ D] (A )sin(2)x y --; (B )2sin(2)x y --;(C )sin(2)x y -; (D )2sin(2)x y -。
9.下列函数在给定区间上满足拉格朗日中值定理的是 [ D ](A )A x y =,[]2,1-∈x ; (B ))1ln(x y +=,[]1,1-∈x ;(C ) x y 1=,[]1,1-∈x ; (D ))1ln(2x y +=,[]3,0∈x . 10.无穷级数()∑∞=-14/511n n n [ A ](A )绝对收敛; (B )条件收敛;(C )发散; (D )敛散性不能确定.三、解答题:11~17小题,共60分.解答应写出文字说明、证明过程或演算步骤.11.(本题满分7分)计算定积分1230(1)x x dx+⎰. 解: 原式 = 123201(1)(1)2x d x ++⎰ = 1042)1(81+x =15812.(本题满分7分)设()()20061()f x x g x =-, 其中)(x g 在 1=x 处连续,且1)1(=g ,求)1(f '. 解:1)1()(lim )1('1--=→x f x f f x 20061(1)()lim 1x x g x x →-=- 200520041(1)(1)()lim 1x x x x x g x x →-++++=- 200520041lim(1)()x x x x g x →=++++ 2006= 13.(本题满分8分)求抛物线243y x x =-+-及其在点(0,3)-和(3,0)处的切线所围成的平面图形的面积.解:24,(0)4,(3)2y x y y '''=-+==- ∴在(0,3)-处的切线方程为43y x =-在(3,0)处的切线方程为26y x =-+ 两条切线的交点为3(,3)2从而所求平面图形的面积可表示为 3322230243(43)26(43)S x x x dx x x x dx ⎡⎤⎡⎤=---+-+-+--+-⎣⎦⎣⎦⎰⎰7 分 33222302(69)x dx x x dx =+-+⎰⎰94= 14.(本题满分8分)求微分方程2(6)20y x dy ydx -+=的通解.解:原方程可变形为32dx y x dy y -=- 则33()2dy dy y y y x e e dy C ---⎰⎰=-+⎰ 233331()()222y y y y dy C y C Cy y -=-⋅+=+=+⎰。
江苏省2011年普通高校专转本统一考试试卷高等数学试卷一、选择题(本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把所选项前的字母填在答题卷的指定位置上)1、当x→0时,函数f(x)=e-x-1是函数g(x)=x的。
A、高阶无穷小B、低阶无穷小C、同阶无穷小D、等价无穷小评析:本题是考查无穷小阶的比较,两个无穷小之间的关系通过作“商的极限”可以得出相x2x2x 2与函数g(x)为同阶无穷小,因此选C。
这种题型还是比较常见的,关键是掌握无穷小阶的比较的概念,即有三种关系:高阶、同阶(包括等价)、低阶。
h→0hA、-4B、-2C、2D、4评析:本题是一道经典的关于导数定义的考查题型,即通过导数的定义来构造极限。
h→0h h→0-2hf'(x0)=-2,因此选B。
3、若点(1,-2)是曲线y=ax-bx的拐点,则。
A、a=1,b=3B、a=-3,b=-1C、a=-1,b=-3D、a=4,b=6评析:本题间接地考查了导数的应用,即利用已知极值点或拐点的有关信息反求函数中的参数。
对于多项式函数y=ax-bx,显然满足二阶可导的,因此点(1,-2)一定是使得二阶导数等于零的点,因为y''=6ax-2b,所以y''(1)=6a-2b=0,又点(1,-2)本身也是曲线y=ax-bx2上的点,所以y(1)=a-b=-2,结合两个关于a,b的方程解得a=1,b=3,因此选A。
4、设z=f(x,y)为由方程z1 1 3-3yz+3x=8所确定的函数,则∂z∂y|x=0y=0=。
A、-2 B、2C、-2D、2x2 x xe-x-1e-1x 1应的关系,因为lim=lim=lim=(常数),所以当x→0时函数f(x)2f(x-h)-f(x+h)002、设函数f(x)在点x处可导,且lim=4,则f(x)=。
f(x-h)-f(x+h)f(x-h)-f(x+h)'32323评析:本题考查二元隐函数求偏导,利用的是构造三元函数F (x ,y ,z )=z2y3-3yz+3x-8,则F y =-3z,F z =3z -3y ,于是∂y=- z=- 3z 2 -3y=3z 2 -3y;把x=0,y=0代入到原方程中得z =2,所以 ∂z ∂y | x =0 y =0 = 3⋅2 3⋅2-3⋅0 = 12,因此选B 。
绝密★启用前2011年成人高等学校招生全国统一考试数 学(文史财经类)考生注意:本试题分第Ⅰ卷(选择题)第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共85分)一、选择题:本大题共17小题,每小题5分,共85分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1))函数24x y -=的定义域是( )(A)]0,(-∞ (B)]2,0[(C)]2,2[- (D)),2[]2,(+∞--∞(2)已知向量)1,(),4,2(-==m b a ,且b a ⊥ ,则实数=m ( )(A)2 (B)1 (C)1- (D)2-(3)设角α是第二象限角,则( )(A)0tan ,0cos ><αα且 (B)0tan ,0cos <<αα且(C)0tan ,0cos <>αα且 (D)0tan ,0cos >>αα且(4)一个小组共有4名男同学和3名女同学,4名男同学的平均身高为1.72m,3名女同学的平均身高为1.61m ,则全组同学的平均身高为(精确到0.01m )( )(A)1.65m (B)1.66m (C)1.67m (D)1.68m(5)已知集合}4321{A ,,,=,}31{B <<-=x x ,则=B A ( )(A)}210{,,(B)}21{, (C)}321{,,(D)}2101{,,,- (6)二次函数142++=x x y ( )(A)有最小值-3 (B)有最大值-3(C)有最小值-6 (D)有最大值-6(7)不等式32<-x 的解集中包含的整数共有( )(A)8个(B)7个(C)6个 (D)5个 (8)已知函数)(x f y =是奇函数,且35(=-)f ,则=)5(f ( ) (A) 5 (B) 3 (C) -3 (D)-5(9)若5)1(=m a ,则=-m a2( ) (A)251 (B)51 (C)5 (D)25 (10)若向量=21log 4 ( ) (A)2 (B)=21 (C)21- (D)2- (11)已知25与实数m 的等比中项是1,则m= ( ) (A)251 (B)51 (C)5 (D)25 (12)方程800253622=-y x 的曲线是 ( )(A)椭圆 (B)双曲线 (C)圆 (D)两条直线(13)在首项是20,公差为-3的等差数列中,绝对值最小的一项是( )(A)第5项 (B)第6项(C)第7项 (D)第8项(14)设圆048422=+-++y x y x 的圆心与坐标原点间的距离为d ,则( )(A)54<<d (B)65<<d (C)32<<d (D) 43<<d(15)下列函数中,既是偶函数,又在区间),(30为减函数的是( ) (A)x y cos = (B)x y 2log = (C) 42-=x y (D)x y )31(= (16)一位篮球运动员投篮两次,两投全中的概率为375.0,两投一中的概率为5.0,则他两投全不中的概率为(A)6875.0 (B)625.0(C)5.0 (D)125.0(17)B A , 是抛物线x y 82=上两点,且此抛物线的焦点在线段AB 上,已知AB 两点的横坐标之和为10,则=AB ( )(A)18 (B)14(C)12 (D)10 第Ⅱ卷(非选择题,共65分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
2011年普通专升本高等数学真题一一. 选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分)1.函数()()x x x f cos 12+=是( ).()A 奇函数 ()B 偶函数 ()C 有界函数 ()D 周期函数2.设函数()x x f =,则函数在0=x 处是( ).()A 可导但不连续 ()B 不连续且不可导()C 连续且可导 ()D 连续但不可导3.设函数()x f 在[]1,0上,022>dxfd ,则成立( ). ()A ()()0101f f dxdf dxdf x x ->>== ()B ()()0110==>->x x dx df f f dxdf()C ()()0101==>->x x dxdf f f dxdf()D ()()101==>>-x x dxdf dxdf f f4.方程22y x z +=表示的二次曲面是( ).()A 椭球面 ()B 柱面()C 圆锥面 ()D 抛物面5.设()x f 在[]b a ,上连续,在()b a ,内可导,()()b f a f =, 则在()b a ,内,曲线()x f y =上平行于x 轴的切线( ).()A 至少有一条 ()B 仅有一条().C 不一定存在 ().D 不存在二.填空题:(只须在横线上直接写出答案,不必写出计算过程,每小题4分,共40分)考学校:______________________报考专业:______________________姓名: 准考证号: ----------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------2.设函数()x f 在1=x 可导, 且()10==x dx x df ,则()().__________121lim=-+→xf x f x .3.设函数(),ln 2x x f =则().________________________=dxx df4.曲线x x x y --=233的拐点坐标._____________________5.设x arctan 为()x f 的一个原函数,则()=x f ._____________________6.()._________________________2=⎰xdt t f dx d7.定积分().________________________2=+⎰-ππdx x x8.设函数()22cos y x z +=,则._________________________=∂∂x z9. 交换二次积分次序().__________________________,010=⎰⎰xdy y x f dx10. 设平面∏过点()1,0,1-且与平面0824=-+-z y x 平行,则平面∏的方程为._____________________三.计算题:(每小题6分,共60分)1.计算xe x x 1lim 0-→.2.设函数()()x x g e x f xcos ,==,且⎪⎭⎫⎝⎛=dx dg f y ,求dx dy .3.计算不定积分()⎰+.1x x dx4.计算广义积分⎰+∞-0dx xe x .5.设函数()⎩⎨⎧<≥=0,0,cos 4x x x x x f ,求()⎰-12dx x f . 6. 设()x f 在[]1,0上连续,且满足()()⎰+=12dt t f e x f x,求()x f .7.求微分方程xe dx dy dxy d =+22的通解. 8.将函数()()x x x f +=1ln 2展开成x 的幂级数.9.设函数()yx yx y x f +-=,,求函数()y x f ,在2,0==y x 的全微分. 10.计算二重积分,()⎰⎰+Ddxdy y x22,其中1:22≤+y x D .四.综合题:(本题共30分,其中第1题12分,第2题12分,第3题6分) 1.设平面图形由曲线xe y =及直线0,==x e y 所 围成,()1求此平面图形的面积;()2求上述平面图形绕x 轴旋转一周而得到的旋转体的体积.2.求函数1323--=x x y 的单调区间、极值及曲线的凹凸区间.3.求证:当0>x 时,e x x<⎪⎭⎫⎝⎛+11.__报考专业:______________________姓名: 准考证号------------------------------密封线---------------------------------------------------------------------------------------------------2011年普通专升本高等数学真题二一. 选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分)1.当0→x 时,1sec -x 是22x 的( )..A 高阶无穷小 .B 低阶无穷小 .C 同阶但不是等阶无穷小 D .等阶无穷小2.下列四个命题中成立的是( )..A 可积函数必是连续函数 .B 单调函数必是连续函数 .C 可导函数必是连续函数 D .连续函数必是可导函数 3.设()x f 为连续函数,则()⎰dx x f dx d等于( ). .A ()C x f + .B ()x f.C ()dx x dfD .()C dxx df + 4.函数()x x x f sin 3=是( )..A 偶函数 .B 奇函数.C 周期函数 D .有界函数5.设()x f 在[]b a ,上连续,在()b a ,内可导,()()b f a f =, 则在()b a ,内,曲线()x f y =上平行于x 轴的切线( ).()A 不存在 ()B 仅有一条 ().C 不一定存在 ().D 至少有一条二.填空题:(只须在横线上直接写出答案,不必写出计算过程,每小题4分,共40分)__________=a .2.()()().___________________311sin lim221=+--→x x x x3..___________________________1lim 2=++--∞→xx x x x 4.设函数()x f 在点1=x 处可导,且()11==x dx x df ,则()()._______121lim=-+→xf x f x5设函数()x x f ln 2=,则().____________________=dxx df6.设xe 为()xf 的一个原函数,则().___________________=x f 7.()._________________________2=⎰x dt t f dxd 8.._________________________0=⎰∞+-dx e x9.().________________________2=+⎰-ππdx x x10.幂级数()∑∞=-022n nnx 的收敛半径为.________________三.计算题:(每小题6分,共60分) 1.求极限()()()()()x b x a x b x a x ---+++∞→lim.2.求极限()nnnn n n 75732lim+-++∞→.3.设()b ax ey +=sin ,求dy .4.设函数xxe y =,求22=x dx yd .5.设y 是由方程()11sin =--xy xy 所确定的函数,求(1).0=x y ; (2).=x dx dy .6.计算不定积分⎰+dx x x132.7.设函数()⎩⎨⎧≤<≤≤=21,210,2x x x x x f ,求定积分()⎰20dx x f .8.计算()xdte ex t tx cos 12lim--+⎰-→.9.求微分方程022=+dxdydx y d 的通解. 10.将函数()()x x x f +=1ln 2展开成x 的幂级数.四.综合题:(每小题10分,共30分)1. 设平面图形由曲线xe y =及直线0,==x e y 所围成, (1)求此平面图形的面积;(2)求上述平面图形绕x 轴旋转一周而得到的旋转体的体积. 2.求过曲线xxey -=上极大值点和拐点的中点并垂直于0=x 的直线方程。
山东省二〇一一年专升本统一考试高等数学真题一、单选题(在每个小题的备选答案中选出一个正确的答案,并将正确答案的序号填入题后的括号内。
每小题1分,共10分)1.函数21arcsin7x y -=+)(A )[3,4]- (B )(3,4)- (C )[0,2] (D )(0,2)2.极限211lim1x x x →--等于( )(A )0 (B )2 (C )1 (D )1-3.曲线1y x=在点1(2,)2的切线方程是( )(A )440x y +-= (B )440x y --= (C )440x y +-= (D )440x y --= 4. 函数()f x 在0x 点可导,且0()f x 是函数()f x 的极大值,则( )(A )0()0f x '< (B )0()0f x ''> (C )0()0f x '=,且0()0f x ''> (D )0()0f x '=5. 函数sin (1)x y x x =-的铅直渐近线是( )(A )1x = (B )0x = (C )2x = (D )1x =- 6.定积分20⎰的值是( )(A )2π (B )π (C )2π(D )4π7. 已知(0)3f '=,则0()(0)lim4x f x f x ∆→-∆-∆等于( )(A )14(B )14-(C )34(D )34-8. 已知点(1,1,1)A ,点(3,,)B x y ,且向量AB与向量(2,3,4)a = 平行,则x 等于( )(A )1 (B )2 (C )3 (D )49. 如果级数1nn u∞=∑(0nu ≠)收敛,则必有( )(A )级数11n nu∞=∑发散 (B )级数1n n u ∞=∑收敛(C )级数1(1)nn n u ∞=-∑收敛 (D )级数11n n u n ∞=⎛⎫+ ⎪⎝⎭∑收敛 10. 函数()f x x =在点0x =处( )(A )不连续 (B )连续,但图形无切线 (C )图形有铅直的切线 (D )可微 二、填空题(每小题2分,满分20分)1.若3,0(),xe xf x a x ⎧+>=⎨≤⎩ 在0x =点连续,则a = .2.极限422123lim32x x x x x →+-=-+ .3.0x =是函数sin ()x f x x=的第 类间断点.4.由方程2240x y xy --=确定隐函数的导数dy dx= .5.函数2()3f x x x =-的极值点是 .6.函数43()f x x =的图形的(向上)凹区间是 . 7.3x xe dx =⎰ .8.向量(1,1,4)a = 与向量(1,2,2)b =-的夹角的余弦是 .9.级数131nn xn ∞=+∑的收敛区间是 .10.微分方程560y y y '''++=的通解为 .三、计算题(每小题5分,共50分) 1.3113lim 11x x x →-⎛⎫-⎪++⎝⎭. 2.0sin(4)limx x →.3.求由参数方程33cos sin x a y a θθ⎧=⎨=⎩ 所确定的函数的导数d yd x .4.求函数1xx y x ⎛⎫= ⎪+⎝⎭(0x >)的导数.5.求23sin cos x xdx ⎰.6.求120arcsin xdx ⎰.7.求微分方程cot 2sin y y x x x '-=的通解.8.求与两平面43x z -=和251x y z --=的交线平行且过点(3,2,5)-的直线方程. 9.计算Dxyd σ⎰⎰,其中D 为由直线1y =,2x =及y x =所围成的闭区域.10.已知函数44224z x y x y =+-,求2z x y∂∂∂.四、应用和证明题(第1,2小题各7分,第3小题6分,共20分)1.某车间靠墙壁要盖一间长方形小屋,现有存砖只够砌20m 长的墙壁.问应围成怎样的长方形才能使这间小屋的面积最大? 2.求抛物线212y x =将圆228x y +=分割后形成的两部分的面积.3.已知()f x 为连续的奇函数,证明()x f t dt为偶函数.需要答案的联系我 152******** QQ 86174269。
2011年江苏省普通高校“专转本”统一考试高等数学参考答案一、选择题(本大题共6小题,每小题4分,共24分)1、C2、B3、A4、B5、D6、D二、填空题(本大题共6小题,每小题4分,共24分)7、-1 8、2ln 22+ 9、32 10、dx 41 11、2π 12、[)11,- 三、计算题(本大题共8小题,每小题8分,共64分)13、原式=4lim 22))((2lim )(lim 00220=-=+-=--→--→-→x e e x e e e e x e e xx x x x x x x x x x 14、)12)(1(21212++=++==t e t t e t dtdx dt dydx dy y y 15、原式=⎰⎰⎰+-=+=+x xd x dx x x x dx xx x x x sin cos 2)cos sin 2(cos sin 22 =C x x x ++-sin cos16、令t x =+1,则原式=⎰⎰=-=+-21221235)22(211 dt t t tdt t t 17、设所求平面方程为0=+++D Cz By Ax .因为该平面经过x 轴,所以0==D A ;又该平面经过已知直线,所以法向量互相垂直,即03=+C B .综上,所求平面方程为03=-Bz By ,即03=-z y .18、'-=⎥⎦⎤⎢⎣⎡⋅'+-⋅'⋅+⋅=∂∂12210)(1f x y f f x y f x f x z "-"-'=⎥⎦⎤⎢⎣⎡⋅"+⋅"⋅+'⋅⋅-⋅'+⋅'=∂∂∂12112212111212)11(11)11(f x y f x y f f x f y f x f x f y x z 19、原式=⎰⎰=20243232sin dr r d θθππ 20、由已知可得x x x x e x e x e x e x f )13()1(2)1()(+=++++=,特征方程:0232=++r r ,齐次方程的通解为x x e C e C Y 221--+=.令特解为x e B Ax y )(+=*, 代入原方程得:43656+=++x B A Ax ,有待定系数法得:⎩⎨⎧=+=46536B A A ,解得⎪⎩⎪⎨⎧==4121B A ,所以通解为x x x e x e C e C Y )4121(221+++=--. 四、证明题(本大题共2小题,每小题9分,共18分)21、令012)1ln()(,2)1ln()(2222>+++='-+=x x x x f x x x f 则,所以)(x f 单调递增. 又025ln 2)2(,02)0(>-=<-=f f ,所以由零点定理可知命题得证.22、设20112011)(,20112010)(20102011-='-+=x x f x x x f 则,令0)(='x f 得驻点1=x ,又020102011)1(20102011)(2009>⋅=''⋅=''f x x f ,所以,因此由判定极值的第二充分条件可知0)1(=f 为极小值,并由单峰原理可知0)1(=f 也为函数)(x f 的最小值,即0)(≥x f ,也即原不等式成立.五、综合题(本大题共2小题,每小题10分,共20分)23、2222lim 1lim arctan 1lim 22022020-=-=---=------→→→a e a x ax x e x x ax x e ax x ax x ax x 22lim 21lim 2sin 1lim 000a ae x e x e ax x ax x ax x ==-=--++→→→ (1)依题意有2222a a =-,解得21=-=a a 或,又1)0(=f ,所以2=a . (2)左右极限必须相等,且不能等于函数值,所以1-=a .(3)依题意有2222a a ≠-,解得21≠-≠a a 且. 24、(1)将原方程化为一阶线性微分方程得)1()(2)(+-=-'a x f xx f ,所以 x a Cx C x a x C dx e a e x f dx x dx x )1()1()1()(2222++=++=⎥⎦⎤⎢⎣⎡+⎰+-⎰=⎰--- 代入x a ax x f a C f )1()(1)1(2++-=-==,即,得 由此作出平面图形D ,并求出其面积[]3263)1(102=+=++-=⎰a dx x a ax S 解得1=a ,则此时函数的表达式为x x x f 2)(2+-=(2)ππ158)2(2102=+-=⎰dx x x V x (3)πππ65)11(112102=---⋅⋅=⎰dy y V y 。
河北省2011年普通高校专科接本科教育选拔考试《数学(二)》(财经类)试卷(考试时间60分钟)说明:请将答案填写在答题纸的相应位置上,填在其它位置上无效。
一、单项选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个备选项中,选出一个正确的答案,并将所选项前面的字母填写在答题纸的相应位置上,填写在其它位置上无效)1.函数 91)1ln(2-++=x x y 定义域为( )A. (-1,+∞)B. (-1,3)C. (3,+∞)D. (-3,3)2.极限)(x 1x 2xx lim =⎪⎭⎫⎝⎛-∞→A.e 2B. 1C. 2D. e 2-3.已知函数⎪⎪⎩⎪⎪⎨⎧>+=<=021cos 00sin )(x x x x b x xaxx f 在定义域内连续,则)(=+b aA. 4B. 2C. 1D. 04.由方程3+=xy e y 所确定的隐函数)(x y y =的导数)(=dxdy-A. x e y y -B.yx e y - C.x e y y + D. x e y y --5.曲线1322+-=x x y 的凹区间为( )A. (]0,∞-B.[)+∞,0C.(]1,∞-D.[)+∞,16.已知某产品的总收益函数与销售量x 的关系为210)(2x x x R -=,则销售量x=12时的边际收益为( )A. 2B.2-C.1D.1-7.设)(x F 是)(x f 的一个原函数,则⎰=--)()(dx e f e xxA.C e F x +-)(B.C eF x+--)( C. C e F x +)( D. C e F x +-)(8.微分方程xe y y =-'满足初始条件00==x y的特解为( )A. )(c x e x+ B. )1(+x e xC.1-x eD. xxe9. 当( )时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλλ 有非零解-A.1≠λB.2-≠λC.12=-=λλ或 D. 12≠-≠λλ且10.下列级数发散的是( )A. ∑∞=-11)1(n nn B.∑∞=-152)1(n n n C.∑∞=11n n D.∑∞=-121)1(n n n 二.填空题(本大题共5小题,每小题4分,共20分,将答案填写在答题纸的相应位置上,填写在其它位置上无效)11.已知2xe 为)(x f 的一个原函数,则⎰________)('dx x xf12.幂级数∑∞=--113)1(n n nn x 的收敛半径为_____________ 13.已知二元函数________________),ln(22=∂∂+=xzy x x z 则14.二阶方阵A 满足⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡10122111A ,则_____________=A 15.微分方程y y xy ln '=的通解为_____________________=y三.计算题(本大题共4小题,每小题10分,共40分,将解答的主要过程、步骤和答案填写在答题的相应位置上,填写在其它位置上无效) 16. 求极限⎪⎭⎫ ⎝⎛--→1e 1x 1lim x 0x 17.求由曲线2e y =与其在点)e ,1(处的切线及主轴所围成平面图形的面积。
2011年专生本(高等数学二)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题选择题1.A.0B.1C.2D.3正确答案:C2.已知函数f(x)的导函数f’(x)=3x2-x-1,则曲线y=f(x)在x=2处切线的斜率是A.3B.5C.9D.11正确答案:C3.A.B.C.D.正确答案:B4.已知函数f(x)在区间(-∞,+∞)单调增加,则使f(x)>f(2)成立的x的取值范围是A.(2,+∞)B.(-∞,0)C.(-∞,2)D.(0,2)正确答案:A5.设函数y=cosx+1,则dy= A.(sin x+1)dxB.(cos x+1)dxC.-sin xdxD.sin xdx正确答案:C6.∫(x-sinx)dx=A.x2+cos x+CB.x2/2+cos+CC.x2-sin x+CD.(x2/2)-sin x+C正确答案:B7.A.0B.1C.2D.π正确答案:A8.A.3x2B.3x2+3y2C.y4/4D.3y2正确答案:D9.A.2y3B.6xy2C.6y2D.12xy正确答案:A10.随机事件A与B为互不相容事件,则P(AB)=A.P(A)十P(B)B.P(A)P(B)C.1D.0正确答案:D填空题11.正确答案:012.正确答案:113.曲线y=2x2在点(1,2)处的切线方程为y=____________。
正确答案:4x-214.设函数y=sinx,则y”‘____________。
正确答案:-cos x15.函数y=(x2/2)-x的单调增加区间是_____________。
正确答案:(1,+∞)16.∫x5dx=____________。
正确答案:17.正确答案:x+arctan x18.正确答案:2/319.设函数z=ex+y,则dz=__________。
正确答案:exdx+dy20.正确答案:0。
2011年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学一、选择题 (每小题2 分,共60 分) 1.函数()ln(2)2f x x x =-+的定义域是( )A .(,2)-∞B .(2,)-+∞C .(2,2)-D .(0,2)【答案】C【解析】202220x x x ->⎧⇒-<<⎨+>⎩,故函数()f x 的定义域是(2,2)-.2.设2(1)22f x x x +=++,则()f x =( )A .2xB .21x +C .256x x -+D .232x x -+【答案】B【解析】22(1)22(1)1f x x x x +=++=++,故()f x =21x +.3.设函数()f x 在R 上为奇函数,()g x 在R 上为偶函数,则下列函数必为奇函数的是( )A .()()f x g x ⋅B .[]()f g xC .[]()g f xD .()()f x g x +【答案】A【解析】由于奇函数与偶函数的乘积为奇函数,故()()f x g x ⋅为奇函数.4.01lim sinx x x→=( ) A .1- B .1 C .0 D .不存在【答案】C【解析】当0x →时,x 无穷小量,1sin 1x ≤,1sin x为有界函数,由于无穷小量与有界函数的乘积仍为无穷小量,故01lim sin0x x x→=.5.设()1f x '=,则0(2)(3)limh f x h f x h h→+--=( )A .4B .5C .2D .1【答案】B 【解析】000(2)(3)(2)()(3)()lim2lim 3lim 5()523h h h f x h f x h f x h f x f x h f x f x h h h→→→+--+---'=+==-.6.当0x →时,下列无穷小量与x 不等价的是( )A .2x x -B .321x e x --C .2ln(1)x x+D .sin(sin )x x +【答案】D 【解析】000sin(sin )sin 1cos limlim lim 21x x x x x x x xx x →→→+++===,故sin(sin )x x +与x 不等价.7.11,0()10,0x x f x e x ⎧≠⎪=⎨+⎪=⎩,则0x =是()f x 的( )A .可去间断点B .跳跃间断点C .连续点D .第二类间断点【答案】B 【解析】11lim 01x xe +→=+,101lim 11x xe -→=+,()f x 在0x =处的左、右极限存在但不相等,故0x =是()f x 的跳跃间断点.8.sin y x =的三阶导数是( )A .sin xB .sin x -C .cos xD .cos x -【答案】D【解析】(sin )cos x x '=,(sin )(cos )sin x x x '''==-,(sin )(sin )cos x x x ''''=-=-.9.设[]1,1x ∈-,则arcsin arccos x x +=( )A .2π B .4π C .0 D .1【答案】A【解析】22(arcsin arccos )011x x x x '+=--,故arcsin arccos x x +为常数,令22x =,可得arcsin arccos 442x x πππ+=+=.10. 若0()0f x '=,0()0f x ''>,则下述表述正确的是( ) A .0x 是()f x 的极大值点 B .0x 是()f x 的极小值点C .0x 不是()f x 的极值点D .无法确定0x 是否为()f x 的极值点【答案】B【解析】由极值的判定条件可知,0x 是()f x 的极小值点.11.方程1arcsin y x=所表示的曲线( )A .仅有水平渐近线B .仅有垂直渐近线C .既有水平渐近线,又有垂直渐近线D .既无水平渐近线,又无垂直渐近线【答案】A【解析】函数的定义域为(,1][1,)-∞-+∞,而1limarcsin0x x →∞=,故1arcsin y x=仅有水平渐近线. 12.1211dx x -=⎰( )A .0B .2C .2-D .以上都不对【答案】D 【解析】10101122211011111dx dx dx x x x x x---=+=---⎰⎰⎰,积分值不存在,故选D .13.方程sin 10x x +-=在区间(0,1)内根的个数是( )A .0B .1C .2D .3【答案】B【解析】令()sin 1f x x x =+-,()cos 1f x x '=+,所以()f x 在区间(0,1)上单调递增,又 (0)10f =-<,(1)sin10f =>,故sin 10x x +-=在区间(0,1)内只有一个根.14.设()f x 是cos x 的一个原函数,则()df x =⎰( )A .sin x C +B .sin xC -+C .cos x C -+D .cos x C +【答案】A【解析】由于()f x 是cos x 的一个原函数,故1()sin f x x C =+,()df x =⎰sin x C +.15.设2cos ()sin x t xF x e tdt π+=⎰,则()F x ( )A .为正常数B .为负常数C . 恒为零D .不为常数【答案】C 【解析】2cos cos 2cos cos ()sin 0x t tx x x xxF x e tdt e e e ππ++==-=-+=⎰.16.b txd te dt dx =⎰( )A .x xe -B .x xeC .b x e e -D .b x be xe -【答案】A 【解析】b txd te dt dx =⎰x xe -.17.由曲线sin (0)y x x π=≤≤与x 轴所围成的区域的面积为( )A .0B .2C 2D .π【答案】B【解析】0sin cos 2xdx xππ=-=⎰.18. 关于二阶常微分方程的通解,下列说法正确的是( ) A .一定含有两个任意常数 B .通解包含所有解C .一个方程只有一个通解D .以上说法都不对【答案】A【解析】微分方程的解中所含任意常数相互独立,且个数与方程的阶数相同,这样的解称为微分方程的通解,由通解的定义可得A 正确.19.微分方程3y y x '+=的通解是( ) A .221x y x Ce =++ B .1x y xe Cx =+-C .139x y x Ce =++D .31139x y x Ce -=+-【答案】D【解析】通解为3331139dx dxx y e xe dx C x Ce --⎛⎫⎰⎰=+=+- ⎪⎝⎭⎰,C 为任意常数.20.已知向量=++a i j k ,则垂直于a 且垂直于y 轴的向量是( )A .-+i j kB .--i j kC .+i kD .-i k【答案】【解析】设y 轴方向向量(0,1,0)=j ,而111()010⨯==--i j ka j i k ,与a ,j 都垂直的向量是()l =-c i k ,故选D .21.对任意两向量a ,b ,下列等式不恒成立的是( ) A .+=+a b b a B .⋅=⋅a b b aC .⨯=⨯a b b aD .()()2222⋅+⨯=⋅a b a b a b【答案】C【解析】由向量积运算法则可知⨯=-⨯a b b a ,故选C .22.直线110x y z ==-与平面2x y z +-=的位置关系是( )A .平行B .直线在平面内C .垂直D .相交但不垂直【答案】A【解析】(1,1,0)(1,1,1)0-⋅-=,得直线的方向向量与平面的法向量垂直,在直线上取一点(0,0,0),该点不在平面2x y z +-=上,故直线与平面平行.23.20limsin x y yxy →→的值为( )A .0B .1C .12D .不存在【答案】C 【解析】2220011limlim lim sin 2x x x y y y y xy xy x →→→→→===.24.函数(,)f x y 在00(,)x y 处两个偏导数00(,)x f x y ',00(,)y f x y '都存在是(,)f x y 在该点处连续的( ) A .充要条件 B .必要非充分条件C .充分非必要条件D .既非充分亦非必要条件【答案】D【解析】两个偏导数存在与连续没有关系,故选D .25.函数ln 1x z y ⎛⎫=+ ⎪⎝⎭在点(1,1)处的全微分(1,1)dz=( )A .0B .1()2dx dy -C .dx dy -D .11dx dy x y y-+【答案】B【解析】1111z x x y x y y∂=⋅=∂++,2211z x xxy y y xy y ⎛⎫∂=⋅-=- ⎪∂+⎝⎭+,(1,1)1122dzdx dy =-,故选B .26.设11220yI dy x y dx -=⎰,则交换积分次序后( ) A .11220xI dx x y dy -=⎰B .112203yI x y dy -=⎰C .2112203x I dx x y dy -=⎰⎰D .2112203x I dx x y dy +=⎰⎰【答案】C【解析】201010101y x y x x y ≤≤⎧≤≤⎧⎪⎨⎨≤≤-≤≤-⎪⎩⎩,交换积分次序后为21122003x I dx x y dy -=⎰⎰.27.设L 为三个顶点分别为(1,0)A -,(0,0)O 和(0,1)B 的三角形区域的边界,L 的方向为顺时针方向,则(3)(2)Lx y dx x y dy -+-=⎰( )A .0B .1C .2D .1-【答案】 【解析】28.设(,)0,114D x y x y π⎧⎫=≤≤-≤≤⎨⎬⎩⎭,则cos(2)Dy xy dxdy =⎰⎰( )A .12-B .0C .14D .12【答案】B【解析】111411111cos(2)cos(2)sin cos 0222Dy yy xy dxdy dy y xy dx dy ππππ---===-=⎰⎰⎰⎰⎰.29.若级数1n n a ∞=∑与1n n b ∞=∑都发散,则下列表述必正确的是( )A .1()n n n a b ∞=+∑发散B .1n n n a b ∞=∑发散C .1()n n n a b ∞=+∑发散D .221()n n n a b ∞=+∑发散【答案】C【解析】1n n a ∞=∑发散,则1n n a ∞=∑发散,n n n a b a +≥,由正项级数的比较判别法可知,1()nn n ab ∞=+∑发散.30.若级数1(2)n n n a x ∞=-∑在2x =-处收敛,则此级数在4x =处( )A .发散B .条件收敛C .绝对收敛D .敛散性不能确定【答案】C【解析】级数1(2)n n n a x ∞=-∑在2x =-处收敛,由阿贝尔定理知,对于所有满足24x -<的点x ,即26x -<<,幂级数1(2)n n n a x ∞=-∑绝对收敛,故此级数在4x =处绝对收敛.二、填空题 (每小题 2分,共 20分) 31.10lim(1)xx x →-=________.【答案】1e -【解析】[]11(1)100lim(1)lim 1()xxx x x x e ⋅---→→-=+-=.32.设()f x 为奇函数,则0()3f x '=时,0()f x '-=________. 【答案】3【解析】由于()f x 为奇函数,故()f x '为偶函数,故0()f x '-=0()3f x '=.33.曲线ln y x =上点(1,0)处的切线方程为________. 【答案】1y x =- 【解析】11x y ='=,故切线方程为01y x -=-,即1y x =-.34.1(1)dx x x =-⎰________.【答案】1lnx C x-+【解析】1111ln 1ln ln (1)1x dx dx dx x x C C x x x x x-=-=--+=+--⎰⎰⎰.35. 以2212x x C e C xe --+为通解的二阶常系数齐次线性方程为________. 【答案】440y y y '''++=【解析】由题意可知,2r =-为二阶常系数齐次线性微分方程所对应的特征方程的二重根,满足特征方程2440r r ++=,故所求方程为440y y y '''++=.36.点(1,2,3)关于y 轴的对称点是________. 【答案】(1,2,3)--【解析】点(1,2,3)关于y 轴的对称点,即y 不变,x ,z 取其相反数,故对称点为(1,2,3)--.37.函数x y z e +=在点(0,0)处的全微分(0,0)dz =________.【答案】dx dy + 【解析】x y x y z zdz dx dy e dx e dy x y++∂∂=+=+∂∂,故(0,0)dz =dx dy +.38.由1x y xy ++=所确定的隐函数()y y x =在1x =处导数为________. 【答案】12-【解析】方程两边同时关于x 求导得,10y y xy ''+++=,当1x =时,0y =,代入得1(1)2y '=-.39.函数22z x y =+在点(1,2)处沿从点(1,2)A 到(2,23)B +的方向的方向导数等于________.【答案】123+【解析】(1,2)2z x∂=∂,(1,2)4z y∂=∂,与(1,3)AB =同方向的单位向量为132⎛ ⎝⎭,故方向导数为(1,2)13241232z l∂=⋅+=+∂40.幂级数1nn x n∞=∑的收敛区间为________.【答案】(1,1)- 【解析】1lim lim 11n n n n a na n ρ+→∞→∞===+,11R ρ==,故收敛区间为(1,1)-.三、计算题 (每小题5 分,共50 分) 41.用夹逼准则求极限222lim 12n nn n n n n n →∞⎛⎫+++⎪+++⎝⎭. 【答案】1【解析】因为2221n n nn n n k n ≤≤+++,1,2,,k n =,所以2222211nk n n n n n n k n =≤≤+++∑, 又22lim 1n n n n →∞=+,22lim 11n n n →∞=+,由夹逼准则可知,222lim 112n nn n n n n n →∞⎛⎫+++= ⎪+++⎝⎭.42.讨论函数321sin ,0()0,0x x f x xx ⎧≠⎪=⎨⎪=⎩在0x =处的可导性. 【答案】【解析】3222001sin()(0)1(0)limlim lim sin 00x x x x f x f x f x x x x →→→-'====-,故函数()f x 在0x =处可导.43.求不定积分21xx e dx e +⎰.【答案】arctan x e C +【解析】()22arctan 11x xx x x e de dx e C e e ==+++⎰⎰.第 11 页 共 13 页44.求定积分10x xe dx ⎰.【答案】1【解析】11110(1)1x x xx xe dx xde xe e dx e e ==-=--=⎰⎰⎰.45.求微分方程32x y y y e '''++=的通解.【答案】21216x x x y C e C e e --=++,其中12,C C 为任意常数【解析】特征方程为2320r r ++=,解得11r =-,22r =-,1λ=不是特征方程的根, 可设x y ke =为方程的一个特解,代入得16k =, 故方程的通解为21216x x x y C e C e e --=++,其中12,C C 为任意常数.46.设2(,)z x y x ϕ=+,且ϕ具有二阶连续偏导数,求2zx y∂∂∂.【答案】11212x ϕϕ''''+ 【解析】122zx xϕϕ∂''=+∂,211212z x x y ϕϕ∂''''=+∂∂.47.求曲面:3z e z xy ∑-+=在点0(2,1,0)M 处的切平面方程. 【答案】240x y +-=【解析】令(,,)3z F x y z e z xy =-+-,则(2,1,0)1F x∂=∂,(2,1,0)2F y∂=∂,(2,1,0)0F z∂=∂,从而所求切平面的方程为(2)2(1)0x y -+-=,即240x y +-=.48.计算二重积分x y De d σ+⎰⎰,其中D 是由直线1x y +=和两条坐标轴所围成的闭区域.【答案】1【解析】{}(,)01,01D x y x y x =≤≤≤≤-,故第 12 页 共 13 页111100()()1xx yx y x x De d dx e dy e e dx ex e σ-++==-=-=⎰⎰⎰⎰⎰.49.计算(1)Lxdx ydy x y dz +++-⎰,其中L 是从点(1,1,1)A )到点(1,1,4)B 的直线段.【答案】3【解析】L 的参数方程为1x =,1y =,13(01)z t t =+≤≤,故1(1)33Lxdx ydy x y dz dt +++-==⎰⎰.50.将21()f x x =展开为(1)x +的幂级数. 【答案】11()(1)n n f x n x ∞-==+∑,(2,0)x ∈-【解析】011(1)1(1)n n x x x ∞=-==-+-+∑,(2,0)x ∈-,故1200111()(1)(1)(1)n n n n n n f x x x n x x x ∞∞∞-===''⎡⎤⎛⎫'⎡⎤==-=--+=+=+ ⎪⎢⎥⎣⎦⎝⎭⎣⎦∑∑∑,(2,0)x ∈-.四、应用题 (每小题6 分,共 12 分)51.求点(0,1)P 到抛物线2y x =上点的距离的平方的最小值. 【答案】34【解析】2222213(1)124d x y y y y ⎛⎫=+-=-+=-+ ⎪⎝⎭,故所求最小值为34.52.求几何体22444x y z ++≤的体积. 【答案】325π 【解析】令{}22(,)4D x y x y =+≤,则几何体22444x y z ++≤的体积为第 13 页 共 13 页222224224400032212124445Dx y r V d d dr r dr πσθππ+=-=-=-=⎰⎰⎰.五、证明题 (8分)52.设函数()f x ,()g x 均在区间[],a b 上连续,()()f a g b =,()()f b g a =,且()()f a f b ≠.证明:存在一点(,)a b ξ∈,使()()f g ξξ=.【解析】令()()()F x f x g x =-,则函数()F x 也在区间[],a b 上连续,且()()()F a f a g a =-,()()()F b f b g b =-.由于()()f a f b ≠,所以()()f a f b <或()()f a f b >, 当()()f a f b <时,()()()()()0F a f a g a f a f b =-=-<,()()()()()0F b f b g b f b f a =-=->, 于是由连续函数的零点定理知存在(,)a b ξ∈,使()0F ξ=,即()()f g ξξ=. 类似地可证()()f a f b >时结论也成立.。
云南专升本2011年高数试题及答案1、关联词:极光不仅是科学研究的重要课题,它还直接影响到无线电通信、长电缆通信,()长的管道和电力传送线等许多实用工程项目。
[单选题] *以及(正确答案)甚至特别特殊2、下列各组句子中,加点词的意义和用法相同的一项是()[单选题] *A.适始适还家门适得府君书B.谢谢家来贵门多谢后世人C.幸幸复得此妇幸可广问讯D.令便言多令才有此令郎君(正确答案)3、1与李白并称“李杜”的是杜牧。
[判断题] *对(正确答案)错4、下面表述有误的一项是( ) [单选题] *A.“人情小说”中的故事,趋于平凡、散漫、没有多少激烈冲突的日常生活图景,因而不能“出奇制胜”。
到了清乾隆年间,集人情小说之大成者,也是古典小说的巅峰之作《红楼梦》终于问世了。
B.《红楼梦》中有很多细节描写,诸如饮食、服饰、园林、市井、茶楼酒肆,无所不至。
这种巨细靡遗的刻画,有时会显得拖沓冗长,但增加了小说的真实感,从而拉近了和读者的距离。
C.代表古典小说艺术最高成就的《红楼梦》,采用了链式结构,以荣国府的日常生活为中心,并涉及史、王、薛三个家族,以及官府、市井等社会生活的方方面面,从而全景式地展开了四大家族由鼎盛走向衰亡的历史。
(正确答案)D.《红楼梦》中为了突出主要人物的独特性格,作者采用了类似衬托的所谓影子描写术。
金陵十二钗正册、副册、又副册的幻设,实际上就是写各种人物类型在另一个品位层次的影子。
例如,晴雯和袭人就是黛、钗的影子。
5、1《将进酒》这首诗的主旨句是“天生我材必有用,千金散尽还复来”。
[判断题] *对(正确答案)错6、1《我的母亲》作者是老舍,原名舒庆春,字舍予,现代著名作家。
[判断题] *对(正确答案)错7、下列词语中,加着重号字的读音完全相同的一项是()[单选题] *A、翩然偏执扁舟翩跹(正确答案)B、阡陌陷阱纤维纤夫C、缥缈剽窃漂白饿殍D、点缀辍学拾掇赘述8、5.下列各组词语的字形及加点字的注音全部正确的一项是()[单选题] * A.黝黑(yǒu)俯瞰(kàn)花团锦簇(cù)拈轻怕重(niān)(正确答案) B.称职(chèng)契约(qì)锲而不舍(qiè)吹毛求疵(zī)C.豢养(huàn)翘首(qiào)戛然而止(jiá)强词夺理(qiáng)D.睥睨(bì)盘桓(huán)如坐针毡(zān)惟妙惟肖(xiào)9、下列词语中,加着重号字的注音不正确的一项是()[单选题] *A、瓤肉(ráng)热忱(chén)颤抖(chàn)缅怀(miǎn)B、浓酣(hān)掮客(qián)斡旋(wò)画卷(juàn)C、罪愆(qiān)寂寥(liáo)盗跖(zhí)伺候(sì)(正确答案)D、裨益(bì)航程(háng)翌年(yì)轨道(guǐ)10、下列选项中加着重号字注音有错误的一项是()[单选题] *A、敷衍yǎn 门当户对dāngB、供给jī有求必应yīng(正确答案)C、家谱pǔ门框kuàngD、阎王yán 惦念diàn11、下列有关文学常识和鉴赏的表述,错误的一项是( ) [单选题] *A.唐代是我国古典诗歌创作的鼎盛时期。
2011年贵州省专升本招生统一考试高 等 数 学 试 卷注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
3.选择题部分必须使用 2B. 铅笔填涂,如需改动,用橡皮擦干净之后,再选涂其他答案标号;非选择题部分必须使用 0.5 毫米的黑字签字笔书写,字体工整、笔记清楚。
4.请按照题号顺序在各个题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
5.保持卷面清洁,不要折叠、不要弄破,禁用涂改液、涂改胶条。
6.本试题共4页,共150分。
第I 卷(选择题)一、选择题:(本题共10个小题,每小题4分,共40分。
) l.下列各组函数相同的是( ) A.()2lg x x f =与()x x g lg 2=B.()31−−=x x x f 与()31−−=x x x g C.()334x x x f −=与()31−=x x x gD.()x x f =与()2x x g =2.下列函数为奇函数的是( ) A.()2x x x f −=B.()()()11+−=x x x x fC.()2xx a a x f −+=D.()x xee xf 1+= 3.设()232−+=xxx f ,当0→x 时,有( ) A.()x f 与x 等价无穷小B.()x f 与x 同阶但非等价无穷小C.()x f 是比x 高阶的无穷小D.()x f 是x 低阶的无穷小4.设函数()⎪⎩⎪⎨⎧>−=<=121012x x x x x x f ,则为()x f 的( )间断点 A.无穷B.振荡C.跳跃D.可去5.若()0x f ''存在,则()()=+−+→202002lim hh x f h x f h ( ) A.()()002x f x f h '−' B.()02x f ' C.()02x f '−D.()()002x f x f '−'6.下列函数中,哪个函数在所给定区间内连续且可导( ) A.()+∞∞−∈=,,2x x yB.()+∞∞−∈=,,3x x yC.⎪⎭⎫⎝⎛∈=2,0,sin πx x yD.[]1,1,−∈=x x y7.设函数()x f 在0x 的某个领域内有定义,那么下列选项中哪个不是()x f 在0x 处可导的一个充分条件( ) A.()⎥⎦⎤⎢⎣⎡−⎪⎭⎫⎝⎛++∞→001lim x f h x f h h 存在B.()()[]hh x f h x f h +−+→0002lim存在C.()()[]hh x f h x f h 2lim000−−+→存在D.()()[]hh x f x f h −−→000lim存在8.已知函数()()()311++=x x x x f ,则()x f 的单调递增区间是( ) A.()1,−∞−B.⎪⎭⎫ ⎝⎛−−211,C.⎪⎭⎫ ⎝⎛∞,21D.⎥⎦⎤⎢⎣⎡−211,9.已知函数()x f 为可导函数,且()x F 为()x f 的一个原函数,则下列关系不成立的是( ) A.()()()dx x f dx x f d=⎰B.()()()x f dx x f ='⎰C.()()C x F dx x F +='⎰D.()()C x F dx x f +='⎰10.若()x f 的导数是x cos ,则()x f 的一个原函数是( ) A.x sin 1+B.x sin 1−C.x cos 1+D.x cos 1−第II 卷(非选择题)二、填空题(本题10个小题,每小题4分,共40分。
2011年成人高等学校专升本招生全国统一考试高等数学(二)试题一、选择题:1~10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1=--→11lim 21x x x ( C )。
A 0 B 1 C 2 D 3 知识点:计算0型极限:解:=--→11lim21x x x 212lim 1=→x x ; 或=--→11lim 21x x x =-+-→1)1)(1(lim 1x x x x 2)1(lim 1=+→x x 2 已知函数)(x f 的导函数13)(2--='x x x f ,则曲线)(x f y =在2=x 处的切线斜率是(C ).A 3B 5C 9D 11 知识点:切线斜率 )()(00x f x y k '='=, 本题91212)2(=--='=f k3 设函数21x y =, 则='y ( B )。
A 31x -B 32x -C31x Dx 1知识点:幂函数导数公式1)(-='a aax x 。
解:332222)()1(x x x x y -=-='='='--4已知函数)(x f 在区间(-∞,+∞)内单调增加,则使)2()(f x f >成立的x 的取值范围是( A )A (2,+∞)B (-∞,0)C (-∞,2)D (0,2) 知识点:单调增加的定义:21x x >时有)()(21x f x f >;本题2>x 时有)2()(f x f >5 设函数1cos +=x y ,则=dy ( C )。
A dx x )1(sin +B dx x )1(cos +C xdx sin -D xdx sin知识点:导数公式,求导规则 v u v u '±'='±)(,微分公式6⎰=-dx x x )sin (( B )。
2011年陕西省专升本(高等数学)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.下列极限存在的是( )A.B.C.D.正确答案:C解析:因为所以存在极限,选C。
2.设曲线y=x2+x一2在点M处的切线率为3,则点M的坐标是( ) A.(一2,0)B.(1,0)C.(0,一2)D.(2,4)正确答案:B解析:由题意可得:f’(x)=2x+1=3,把A、B、C、D代入上式,只有B项符合,故选B。
3.设函数f(x)=xex,则f11(x)=( )A.10xexB.11xexC.(x+10)exD.(x+11)ex正确答案:D解析:f’(x)=ex+xex=ex(1+x)f’’(x)=ex+ex+xex=ex(2+x)f’’(x)=ex+ex+ex+xex=ex(3+x)由此可得f’’(x)=ex(11+x) 选D4.下列级数绝对收敛的是( )A.B.C.D.正确答案:D解析:因为收敛所以原级数绝对收敛.5.设闭曲线L:x2+y2=4,则对弧长的曲线积分的值为( ) A.4πe2B.一4πe2C.2πe2D.一2πe2正确答案:A解析:由题意可知积分路径为0≤θ≤2π填空题6.已知函数则定积分的值等于___________.正确答案:解析:7.微分方程的通解为y=_________.正确答案:Cx解析:原微分方程可变为:变形为8.过点(1,1,0)并且与平面x+2y一3z=2垂直的直线方程为__________.正确答案:解析:由题可知平面的法向量为(1,2,一3)其法向量是平行于过点(1,1,0)的直线,所以过该点直线方程为:9.设函数f(x,y)=x3+3xy2,则函数f(x,y)在点(1,1)处的梯度为__________.正确答案:6i+6j解析:由题可知梯度公式为:gradf(x,y)=fx’i+fy’j所以f(x,y)在点(1,1)处梯度为6i+6j10.已知函数f(x)在[0,1]上有连续的二阶导数,且f(0)=1,f(1)=2,f’(1)=3,则定积分的值等于__________.正确答案:2解析:=3—2+1=2综合题11.求极限正确答案:12.设参数方程确定了函数y=y(x),求正确答案:13.设函数f(x)=2x3一9x2+12x一3,求f(x)的单调区间和极值.正确答案:f’(x)=6x2一18x+12=6(x一1)(x一2)令f’(x),得驻点x=1,x=2当x<1时,f’(x)>0;当1<x<2时,f’(x)<0当x>2时,f’(x)>0,故函数f(x)在区间(一∞,1)和(2,一∞)内单调增加;f(x)在区间(1,2)内单调减少f(x)在x=1处取得极大值f(1)=2,在x=2处取得极小值f(2)=114.设函数z=f(x,xlnx),其中f(u,v)具有二阶连续偏导数,求正确答案:15.计算不定积分正确答案:16.设函数f(x)在(_∞,+∞)内具有二阶导数,且f(0)=f’(0)=0,试求函数f(x)=的导数。
(B 01) 高等数学试卷 第1页(共5页) 福建专升本网( )机密★启用前2011年福建省高职高专升本科入学考试高等数学 试卷(考试时间120分钟,满分150分)答题说明:请将答案写在答题纸相应的位置上. 注意事项:答案写在试卷上一律不给分一、单项选择题 (本大题共10小题,每小题3分,共30分)在下面每小题列出的四个备选项中只有一个是符合题目要求的选项,请将正确答案代码填写在答题纸相应的位置上. 1.当定义域取(B )时,12()x x f x --=与12()x x g x --=表示同一个函数. A. [1,)+∞ B. (2,)+∞ C. (,1]-∞D. (,1](2,)-∞+∞出卷教师评析:本题测验函数的基本概念. 对于所给的两个函数,只有定义域与对应法则都相同时,才表示同一个函数. 本题对于所给的()f x 与()g x ,当它们都有意义时,由中学知识知道,1122x x x x --=--,故它们的对应法则相同,从而只要约束使得两个式子都有意义的公共的定义域.1()2x f x x -=-根据约定的自然定义域是1|0(,1](2,)2x x x -⎧⎫=-∞+∞⎨⎬-⎩⎭≥; B 01(B 01) 高等数学试卷 第2页(共5页) 福建专升本网( )1()2x g x x -=-根据约定的自然定义域是10|(2,)20x x x ⎧-⎫⎧=+∞⎨⎨⎬->⎩⎩⎭≥, 所以,如果没有约定定义域,则它们表示不同的函数. 只有约定公共的定义域:(2,)+∞,它们才表示相同的函数. 故应选(B ).本题类似于10年的第2题. 2.在区间(1,1)-内, 函数21()ex f x +=是( ).A. 有界且单调增加函数B. 有界且单调减少函数C. 无界且单调增加函数D. 无界且单调减少函数3. 当0x →时,221x -是2(arctan )x 的( ).A. 高阶无穷小B. 等价无穷小C. 低阶无穷小D. 同阶无穷小, 但不是等价无穷小4.函数()f x 在0x x →时存在极限是()f x 在0x x =处连续的( ).A. 必要条件B. 充分条件C. 充要条件D. 既不充分, 也不必要条件5.设()f x 为可导函数,则0(1)(1)lim2x f f x x→--=( ).A. ()f x 'B. 1()2f x ' C. (1)f 'D. 1(1)2f ' 6.设函数2e xy x =,则(10)y= ( ).A. 1022(210)e xx + B. 922(29)e xx + C. 1022(29)e xx +D. 922(210)e xx +7.若()f x 在区间(,)a b 内有()0,()0f x f x '''>>,则()f x 在(,)a b 内( ).A. 单调增加,曲线()f x 是凹的 B . 单调增加,曲线()f x 是凸的(B 01) 高等数学试卷 第3页(共5页) 福建专升本网( )C. 单调减少,曲线()f x 是凹的D. 单调减少,曲线()f x 是凸的 8.若()f x '为连续函数,则下列等式正确的是( ).A. d ()()f x f x =⎰B. ()()d ()f x x f x '=⎰C.()d ()f x x f x '=⎰ D. d ()d ()f x x f x =⎰9.在空间直角坐标系中,点1(1,2,3)M --与点2(1,2,3)M -关于( ) 对称.A.x 轴B. yz 坐标面C.zx 坐标面D. 原点10.下列微分方程中( ) 是二阶线性微分方程.A. 2xy y x '+= B. e xy yy '''+= C. 2()1y y '+=D. e cos xy y y x '''++=二、填空题 (本大题共10小题,每小题4分,共40分)请将答案写在答题纸相应的位置上. 11.设()1xf x x =-,则1()1f f x ⎛⎫= ⎪-⎝⎭. 12.3cot 0lim(12tan )xx x →-= .13.2221lim(tan sin )x x x x x→∞+= .14.曲线1yx xy y ++=e 在0x =处的切线方程为 . 15.函数12()ln d x f x t t =⎰的极值点是 .16.定积分1cos2x x π+=⎰.17.广义积分21d 45x x x +∞-∞=++⎰.(B 01) 高等数学试卷 第4页(共5页) 福建专升本网( )18.定积分2131(e tan 2(arcsin )3)d x x x x --+=⎰.19.微分方程1y y '-=的通解为 . 20. 已知1,2a b ==, a 与b 的夹角为6π, 则()(2)a b a b -⨯+= . 三、计算题 (本大题共8小题,每小题7分,共56分)请将答案写在答题纸相应的位置上.21.讨论函数111arctan ,0()1,011e cos ,0x x x f x x x x ⎧+>⎪⎪⎪==⎨⎪⎪-<⎪⎩在0x =处的连续性; 若0x =是()f x 的间断点, 指出间断点的名称.22.计算极限4(sin )d lime 1x x x t t t→--⎰.23.已知函数322(1)2(3)exx x y x -+=-, 求d y . 24.求由参数方程2arcsin 1x ty t=⎧⎪⎨=-⎪⎩所确定的函数的二阶导数22d d y x . 25.求不定积分1d xx x-⎰. 26.计算定积分30x x ⎰.27.求微分方程cos cot cos 2(cot )exy x y x x x -'-=的通解.(B 01) 高等数学试卷 第5页(共5页) 福建专升本网( )28.求过点0(1,2,3)M -, 且与直线1132:213x y z l --+==-和231:232x t l y t z t =-⎧⎪=+⎨⎪=--⎩都平行的平面方程.四、应用题 (本大题共2小题,每小题8分,共16分)请将答案写在答题纸相应的位置上.29.求由曲线ln y x =与直线0y =和e x =所围成的平面图形绕y 轴旋转所得到的旋转体体积.30. 要做一个容积为2π的密闭圆柱形罐头筒,问底半径r 和筒高h 如何确定才能使所用材料最省?五、证明题 (本大题共1小题,每小题8分,共8分)请将答案写在答题纸相应的位置上.31.已知0a b <<,试证:ln b a b b ab a a--<<.。
浙江省2011 年选拔优秀高职高专毕业生进入本科学习统一考试
高等数学
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分
注意事项:
1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
一、选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分)
1. 函数1()arcsin(1)ln()1x f x x x
+=-+-的定义域为 ( ) A .[0,1) B .[0,2) C .(1,1)- D .(1,2]-
2. 设(21)x
f x e '-=,则()f x = ( )
A .2112x e C -+
B .1(1)22x e
C ++ C .2112x e C ++
D .1(1)2
2x e C -+ 3. 设()x
f x e -=,则(ln )f x dx x '=⎰ ( )
A .x e C -+
B .1
C x + C .x e C --+
D .1C x -+ 4. 设()f x 连续,220()()x F x f t dt =
⎰,则()F x '= ( ) A .4()f x B .24()x f x C .42()xf x D .22()xf x
5. 下列级数中,条件收敛的是 ( )
A .
21sin n n π∞=∑ B
.11(1)n n ∞-=-∑ C .12(1)3n n n ∞=-∑ D
.1(1)n n ∞-=-∑
二、填空题(只需在横线上直接写出答案,不必写出计算过程,本题共有10个小题,每小题4分,共40分)
1. lim [ln(2)ln ]x x x x →+∞
+-= . 2. 设函数sin , 0(), 0
x x f x x a x ⎧≠⎪=⎨⎪=⎩在(,)-∞+∞内处处连续,则a = .
3. 当0x →时,()f x 与1cos x -等价,则0()lim
sin x f x x x
→= . 4. 设函数()y y x =由方程23ln()sin x y x y x +=+确定,则0x dy dx == . 5. 过点(1,2,1)-与直线2341x t y t z t =-+⎧⎪=-⎨⎪=-⎩
垂直的平面方程为 .
6. 计算不定积分
2dx x x =+⎰ . 7. 2
21cos x x ππ
-=+⎰ . 8. 已知(0)2,(2)3,(2)4f f f '===,则
20()xf x dx ''=⎰ . 9. 已知微分方程x y ay e '+=的一个特解为x y xe =,则a = .
10. 级数03!n
n n ∞
=∑的和为 .
三、计算题(本题共有10个小题,每小题6分,共60分)
1. 求极限tan 20lim tan x x
x e e x x
→-.
2. 已知函数()x x y =由参数方程2ln(1)arctan
x t t y t ⎧=-+⎨=⎩确定,求22d x dy .
3. 已知函数()y y x =由方程sin cos 2xy e y x x +=确定,求
dy dx
4. 已知ln sin(12)y x =-,求
dy dx
.
5. 计算不定积分2
(1)x
x xe dx e +⎰.
6. 计算定积分
10ln(1)x dx +⎰.
7. 求cos()x z e x y =+的全微分.(超纲,去掉)
8. 计算二重积分
D σ,其中D 是由圆223x y +=所围成的闭区域.(超纲,去掉)
9. 求微分方程22x y xy xe -'-=的通解.
10. 将函数1()f x x
=展开成(3)x -的幂级数,并指出收敛区间.
四、综合题(本题3个小题,共30分,其中第1题12分,第2题12分,第3题6分)
1. 平面图形由抛物线22y x =与该曲线在点1(,1)2处的法线围成.试求:
⑴ 该平面图形的面积;
⑵ 该平面绕x 轴旋转一周形成的旋转体的体积.
2. 已知113()()f x f x x -=
,求()f x 的极值.
3. 设函数()f x 在闭区间[0,1]上连续,在开区间(0,1)内可导,且(0)0,(1)2f f ==.证明:在(0,1)内至少存在一点ξ,使得()21f ξξ'=+成立.。