高一数学平面向量单元测试
- 格式:doc
- 大小:255.00 KB
- 文档页数:3
必修4第二章《平面向量》单元测试 姓名 班级一、选择题(每小题5分,共50分)1.在矩形ABCD 中,O 是对角线的交点,若e e 则213,5===A .)35(2121e e + B .)35(2121e e - C .)53(2112e e - D .)35(2112e e -( )2.对于菱形ABCD ,给出下列各式: ①BC AB =②||||BC AB =③||||+=-④||4||||22=+ 2其中正确的个数为 ( )A .1个B .2个C .3个D .4个3 ABCD 中,设d BD c AC b AD a AB ====,,,,则下列等式中不正确的是( )A .=+B .=-C .=-D .=-4.已知向量b a 与反向,下列等式中成立的是 ( )A .||||||b a b a -=-B .||||b a b a -=+C .||||||-=+D .||||||+=+5.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个点的坐标为 ( ) A .(1,5)或(5,-5) B .(1,5)或(-3,-5) C .(5,-5)或(-3,-5) D .(1,5)或(-3,-5)或(5,-5) 6.与向量)5,12(=平行的单位向量为 ( )A .)5,1312(B .)135,1312(--C .)135,1312(或 )135,1312(-- D .)135,1312(±± 7.若32041||-=-b a ,5||,4||==,则与的数量积为 ( )A .103B .-103C .102D .108.若将向量)1,2(=a 围绕原点按逆时针旋转4π得到向量,则的坐标为 ( )A . )223,22(-- B .)223,22( C .)22,223(-D .)22,223(-9.设k ∈R ,下列向量中,与向量)1,1(-=一定不平行的向量是 ( )A .),(k k b =B .),(k k c --=C .)1,1(22++=k kD .)1,1(22--=k k10.已知12||,10||==,且36)51)(3(-=b a ,则与的夹角为 ( ) A .60° B .120° C .135°D .150°二、填空题(每小题4分,共16分)11.非零向量||||||,+==满足,则,的夹角为 .12.在四边形ABCD 中,若||||,,-=+==且,则四边形ABCD 的形状是 13.已知)2,3(=a ,)1,2(-=,若b a b a λλ++与平行,则λ= .14.已知为单位向量,||=4,与的夹角为π32,则在方向上的投影为 . 三、解答题(每题14分,共84分)15.已知非零向量,满足||||-=+,求证: ⊥16.已知在△ABC 中,)3,2(=,),,1(k =且△ABC 中∠C 为直角,求k 的值.17、设21,e e 是两个不共线的向量,2121212,3,2e e e e e k e -=+=+=,若A 、B 、D 三点共线,求k 的值.18.已知2||= 3||=,与的夹角为60o,35+=,k +=3,当当实数k 为何值时,⑴∥ ⑵⊥19.如图,ABCD 为正方形,P 是对角线DB 上一点,PECF 为矩形, 求证:①PA=EF ;②PA ⊥EF.20.如图,矩形ABCD 内接于半径为r 的圆O ,点P 是圆周上任意一点,求证:PA 2+PB 2+PC 2+PD 2=8r 2.沁园春·雪 <毛泽东>北国风光,千里冰封,万里雪飘。
平面向量单元测试题一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.向量a =(1,-2),向量a 与b 共线,且|b |=4|a |.则b =( )A .(-4,8)B .(-4,8)或(4,-8)C .(4,-8)D .(8,4)或(4,8)2.已知a=(2,1),b =(x ,1),且a +b 与2a -b 平行,则x 等于( )A .10B .-10C .2D .-23.已知向量a 和b 满足|a |=1,|b |=2,a ⊥(a -b ).则a 与b 的夹角为( ) A .30º B .45º C .75º D .135º4.设e 1、e 2是两个不共线向量,若向量 a =3e 1+5e 2与向量b =m e 1-3e 2共线,则m 的值等于( )A .- 53B .- 95C .- 35D .- 595.设□ABCD 的对角线交于点O ,AD → =(3,7),AB → =(-2,1),OB → =( )A .( -52 ,-3)B .(52 ,3)C .(1,8)D .(12 ,4) 6.设a 、b 为两个非零向量,且a ·b =0,那么下列四个等式①|a |=|b |;②|a +b |=|a -b |; ③a ·(b +a )=0;④(a +b )2=a 2+b 2.其中正确等式个数为( )A .0B .1C .2D .37.下列命题正确的是( )A .若→a ∥→b ,且→b ∥→c ,则→a ∥→c B .两个有共同起点且相等的向量,其终点可能不同 C .向量AB 的长度与向量BA 的长度相等D .若非零向量AB 与CD 是共线向量,则A 、B 、C 、D 四点共线8.a =),(21-,b =),(1-1,c =),(2-3用a 、b 作基底可将c 表示为c =p a +q b ,则实数p 、q 的值为( )A .p =4 q =1B . p =1 q =4C . p =0 q =4D . p =1 q =09.设平面上四个互异的点A 、B 、C 、D ,已知(DB → +DC → -2DA → )·(AB→ -AC → )=0.则ΔABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形10.设()()2211,,,y x b y x a ==定义一种向量积()()().,,,21212211y y x x y x y x b a =⊗=⊗已知,0,3,21,2⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=πn m 点()y x P ,在x y sin =的图象上运动,点Q 在()x f y =的图象上运动,且满足(),为坐标原点其中O n OP m OQ +⊗=则()x f y =的最大值A 及最小正周期T 分别为( ) A .π,2 B .,2π4 C .,21π4 D .π,21二、填空题:每小题5分,共25分.11.已知()2,1,10==b a ,且b a //,则a 的坐标为_______ 12.已知向量a 、b 满足a=b =1,b a 23-=3,则 b a +3 =13.已知向量a =( 2 ,- 2 ),b =( 3 ,1)那么(a +b )·(a -b )的值是 . 14.若a =(2,3),b =(-4,7),a +c =0,则c 在b 方向上的投影为 .15.若对n 个向量 a 1,a 2,a 3,…,a n ,存在n 个不全为零的实数k 1,k 2,…,k n ,使得k 1 a 1+k 2a 2+…+k n a n =0成立,则称a 1,a 2,…,a n 为“线性相关”.依此规定,能使a 1=(1,0),a 2=(1,-1),a 3=(2,2)“线性相关”的实数k 1,k 2,k 3 依次可以取 . 三、解答题16.(本题满分13分)已知向量a =(sin 2x ,cos 2x),b =(sin 2x ,1), )(x f )=8a ·b .(1)求)(x f 的最小正周期、最大值和最小值.(2)函数y=)(x f 的图象能否经过平移后,得到函数y=sin4x 的图象,若能,求出平移向量m ;若不能,则说明理由.17.(本题满分12分)在ABC ∆中,内角A 、B 、C 的对边长分别为a 、b 、c .已知222a c b -=,且sin 4cos sin B A C =,求b .18.(本题满分13分)如图,在矩形ABCD 中,,,22==BC AB 点E 为BC 的中点,点F 在边CD 上,若,2=⋅AF AB 求BF AE ⋅的值.19. (本题满分12分)已知向量OA→ =3i -4j ,OB → =6i -3j ,OC → =(5-m )i -(4+m )j ,其中i 、j 分别是直角坐标系内x 轴与y 轴正方向上的单位向量.(1)若A 、B 、C 能构成三角形,求实数m 应满足的条件; (2)若ΔABC 为直角三角形,且∠A 为直角,求实数m 的值.20.(本题满分12分)已知向量.1,43),1,1(-=⋅=n m m n m 且的夹角为与向量向量π(1)求向量n ; (2)设向量)sin ,,(cos ),0,1(x x b a ==向量,其中R x ∈,若0=⋅a n ,试求||b n +的取值范围.21. (本题满分13分)已知向量a 、b 、c 、d ,及实数x 、y ,且|a |=1,|b |=1,c =a +(x 2-3)b ,d =-y a +x b ,如果a ⊥b ,c ⊥d ,且|c |≤10 .(1)求x 、y 的函数关系式y =f (x )及定义域;(2)判断f (x )的单调性,指出单调区间,并求出函数的最大值、最小值.ECA BDF答案一、选择题1.B2.C3.B4.B5.A6.C7.C8.B9. B 10. D 二、填空题11.),),((22-2-22,2 12.23 13.0 14.- 65515.-4,2,1 . 16.解:(1)f(x)=8a ·b =8(sin 2x ,cos 2x)·(sin 2x ,1) = 8(sin 4x +cos 2x)= 2(1-cos2x)2+4(1+cos2x) =2(1-2cos2x +cos 22x)+4+4cos2x =6+2cos 22x=7+cos4x .∴f(x)的最小正周期为最大值为8,最小值为6.(2)假设它的图象可以按向量m =(h,k)平移后得到y=sin4x 的图象.故按向量平移后便得到y=sin4x 的图象.17.3818.略19. (1)AB → =(3,1) ,AC → =(2-m ,-m ),AB → 与AC →不平行则m ≠1 .(2)AB → · AC → =0 m =2320.解:(1)令⎩⎨⎧-==⎩⎨⎧=-=⇒⎪⎩⎪⎨⎧-=+⋅-=+=1001143cos 21),(22y x y x y x y x y x n 或则π )1,0()0,1(-=-=∴n n 或 3分(2))1,0(0),0,1(-=∴=⋅=n a n a 4分)1sin ,,(cos -=+x x b n 6分b n +=222)1(sin cos -+x x =x sin 22-=)sin 1(2x -; 8分∵ ―1≤sinx ≤1, ∴ 0≤b n +≤2, 10分21. 提示:(1) 由 |c |≤10 ,及a ·b = 0得 -6≤ x ≤6 又由c ⊥d 得 y =x 3-3x(2)单调增区间为[-6,-1]、[1,6],单调减区间为[-1,1] 最大值为f (6)=36,最小值为f (-6)=-36 .。
高一数学单元测试题平面向量一、选择题1.设点P(3,-6),Q(-5,2),R的纵坐标为-9,且P、Q、R三点共线,则R点的横坐标为()。
A、-9B、-6C、9D、62.已知=(2,3), b=(-4,7),则在b上的投影为()。
A、B、C、D、3.设点A(1,2),B(3,5),将向量按向量=(-1,-1)平移后得向量为()。
A、(2,3)B、(1,2)C、(3,4)D、(4,7)4.若(a+b+c)(b+c-a)=3bc,且sinA=sinBcosC,那么ΔABC是()。
A、直角三角形B、等边三角形C、等腰三角形D、等腰直角三角形5.已知||=4, |b|=3, 与b的夹角为60°,则|+b|等于()。
A、B、C、D、6.已知O、A、B为平面上三点,点C分有向线段所成的比为2,则()。
A、B、C、D、7.O是ΔABC所在平面上一点,且满足条件,则点O是ΔABC的()。
A、重心B、垂心C、内心D、外心8.设、b、均为平面内任意非零向量且互不共线,则下列4个命题:(1)(·b)2=2·b2;(2)|+b|≥|-b|;(3)|+b|2=(+b)2;(4)(b)-(a)b与不一定垂直。
其中真命题的个数是()。
A、1B、2C、3D、49.在ΔABC中,A=60°,b=1,,则等于()。
A、B、C、D、10.向量和b的夹角平分线上的单位向量是()。
A、+bB、C、D、11.台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,B城市处于危险区内的时间为()。
A、0.5小时B、1小时C、1.5小时D、2小时12.设、b不共线,则关于x的方程x2+b x+=0的解的情况是()。
A、至少有一个实数解B、至多只有一个实数解C、至多有两个实数解D、可能有无数个实数解二、填空题13.把函数y=4x的图象按平移到F′, F′的函数解析式为y=4x-2-2, 则等于_____。
高一数学《平面向量》单元测试题(一)姓名: 班级: 学号一、选择题:1.下列四个命题中,正确命题的个数是( )①共线向量是在同一条直线上的向量 ②若两个向量不相等,则它们的终点不可能是同一点 ③与已知非零向量共线的单位向量是唯一的 ④四边形ABCD 是平行四边形的充要条件是CD AB 与、AD BC 与分别共线 A.1 B.2 C.3 D.42.平面上有A 、B 、C 三点,设m =+,n =-,若m 与n 的长度恰好相等,则有( )A.A 、B 、C 三点必在一条直线上B.△ABC 必为等腰三角形,且∠B 为顶角C.△ABC 必为直角三角形,且∠B =90°D.△ABC 必为等腰直角三角形3.若1a b ==,a ⊥b ,且2a +3b 与k a -4b 也互相垂直,则k 的值为( ) A.-6B.6C.3D.-34.已知1e 、2e 是夹角为60°的两个单位向量,则a =21e +2e 与b =-31e +22e 的夹角是( )A.30°B.60°C.120°D.150°5.设两个非零向量,不共线,且k k ++与共线,则k 的值为( ) A .1B .1-C .1±D .06.已知(2,1),(,1)a b λ=--=.若a 与b 的夹角为钝角,则λ的取值范围是( )A .),2(2,21+∞⎪⎭⎫ ⎝⎛-B .),2(+∞C .⎪⎭⎫ ⎝⎛+∞-,21D .⎪⎭⎫ ⎝⎛-∞-21,7.设命题p :向量b 与a 共线;命题q :有且只有一个实数λ,使得b =λa .则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.设),6,2(),3,4(21--P P 且P 在21P P =则点P 的坐标是( ) A 、)15,8(- B 、 (0,3) C 、)415,21(- D 、)23,1(9.将函数y =log 2(2x )的图象F ,按a =(2,-1)平移到F ′,则F ′的解析式为( )A.y =log 2[2(x -2)]-1B.y =log 2[2(x +2)]-1C.y =log 2[2(x +2)]+1D.y =log 2[2(x -2)]+110.已知向量(cos ,sin ),(3,4)a b θθ==,其中(0,)2πθ∈,则a b ⋅的最大值为( )A 3B 4C 5D 不确定11.在边长为1的正三角形ABC 中,设,,BC a AB c AC b ===,则abbc ca ⋅+⋅+⋅的值是( )A 1.5B -1.5C 0.5D -0.512.已知,,OA a OB b ==C 为线段AB 上距A 较近的一个三等分点,D 为线段CB 上距C 较近的一个三等分点,则用,a b 表示OD 的表达式为( )A 1(45)a b +B 1(97)a b +C 1(2)a b +D 1(3)a b +13.已知113a (,2sin ),b (cos ,),a 322=α=α且∥b ,则锐角α的值为 ;14.m,n a 2m a n,|a |=⊥=设是两个单位向量,向量-n , 则 ; 15.若对n 个向量12,,,n a a a ,存在n 个不全为零的实数k 1,k 2,…,k n ,使得1122n n k a k a k a +++=0成立,则称向量12,,,n a a a 为“线性相关”.依次规定,请你求出一组实数k 1,k 2,k 3的值,它能说明1a =(1,0), 2a =(1,-1), 3a =(2,2) “线性相关”: k 1,k 2,k 3的值分别是 , , .16.已知P 为△ABC 内一点,且3+4+5=.延长AP 交BC 于点D , 若=,=,用、表示向量=______________、=________________. 17.若把函数5422+-=x x y 的图象按a 平移,得到22x y =的图象,且a ⊥b ,c =(1,-1),b ·c =4,则b 的坐标为______________. 三.解答题18.在△ABC 中,点M 是BC 的中点,点N 在边AC 上,且AN=2NC ,AM 与BN 相交于点P ,求AP ∶PM 的值.19、设平面内两向量b a,互相垂直,且1,2==b a ,又t k 与是两个不同时为零的实数。
完整版)平面向量单元测试卷及答案平面向量单元测试卷一、选择题:(本题共10小题,每小题4分,共40分)1.下列命题中的假命题是()A、AB与BA的长度相等;B、零向量与任何向量都共线;C、只有零向量的模等于零;D、共线的单位向量都相等。
2.若a是任一非零向量,b是单位向量;①|a|。
|b|;②a∥b;③|a|。
|b|;④|b|= ±1;⑤a=|a|b,其中正确的有()A、①④⑤B、③C、①②③⑤D、②③⑤3.设a,b,c是任意三个平面向量,命题甲:a+b+c=0;命题乙:把a,b,c首尾相接能围成一个三角形。
则命题甲是命题乙的()A、充分不必要条件B、必要不充分条件C、充要条件D、非充分也非必要条件4.下列四式中不能化简为AD的是(A、(AB+CD)+BCB、(AM+MB)+(BC+CD)C、(AC+AB)+(AD-CB)D、OC-OA+CD5.设a=(-2,4),b=(1,-2),则(A、a与b共线且方向相反B、a与b共线且方向相同C、a与b不平行D、a与b是相反向量6.如图1,△ABC中,D、E、F分别是边BC、CA和AB 的中点,G是△ABC中的重心,则下列各等式中不成立的是()A、BG=2BE/3B、DG=AG/2C、CG=-2FGD、DA+FC=BC7.设a=(-2,1-cosθ),b=(1+cosθ,-4),且a∥b,则锐角θ=( )A、π/4B、π/6C、π/3D、5π/6 或7π/68.若C分AB所成比为-3,则A分CB所成的比是(A、-3/2B、3/2C、-2/3D、-29.XXX<0,则a与b的夹角θ的范围是()A、[π/2,π)B、[0,π/2)C、(π/2,π)D、(0,π/2]10.设a与b都是非零向量,若a在b方向的投影为3,b 在a方向的投影为4,则a的模与b的模之比值为()A、3/4B、4/3C、3/7D、4/7cos(-)a·b=cos(-)=1/2sin(-)=±√3/2又∵∈(,),=,且sin(-)>0sin(-)=√3/2π/3sin cos-cos sin=1/2sin(+)=√3/22π/3sin=√3/217.(1)|a+b|=|e1+e2|=√2a+b|2=2a|2+|b|2+2a·b=2a·b=-1/2又kab·(a-3b)=0ka·a-3kb·b=0k=9/52)ka·b+3kb·b=0k=-3/5四、19.(1)设所求向量为c,则c·a=0,c·b=0 c·(a+b)=0又∵a+b=(1,1,1),∴c·(1,1,1)=0c与(1,1,1)垂直又∵c·(a-b)=0c·(1,-1,0)=0c与(1,-1,0)垂直c∥(0,0,1)c=k(0,0,1)又∵c·a=0k=-1/3所求向量为(0,0,1/3)2)设所求向量为c,则c∥a×b又∵a×b=(1,1,1)c∥(1,1,1)c=k(1,1,1)又∵c·a=0k=-1/3所求向量为(-1/3,-1/3,-1/3)165∴cos(α-β)=cosαcosβ+sinαsinβcosαcosβ+sinαsinβcos(α-β)∵α∈(-π/2,π/2)sin(α-β)=-sinα=-(-cos(α-β)sinβ/cosβ)=cos(α-β)sinβ/cosβ5/4*sinβ+3/5*cosβ17.解:1) |a+b|²=|-2e₁+4e₂|²=4e₁²+16e₂²-8e₁e₂又e₁⊥e₂,e₁·e₂=0,e₁²+e₂²=1a+b|²=20a+b|=√20=2√5又|e₁|=|e₂|=1a|=|b|=√22) (ka+b)·(a-3b)=k|a|²-2k(a·b)+b·a-3|b|²又|a|=|b|=√2ka+b)·(a-3b)=2k-6+2=2k-4又(a+b)·(a-3b)=-4k=1918.解:1)a·b=cosx·cosx-sinx·sinx=cos2xa+→b|=√(4cos²x+4)=2√(cos²x+1)2)f(x)=a·b-2λ|a+b|=cos2x-4λcosx2cos²x-1-4λcosx2(cosx-λ)²-2λ²-1当λ<0时,f(x)无最小值当0≤λ≤1时,f(x)在cosx=λ时取得最小值-2λ²-1当λ>1时,f(x)在cosx=1时取得最小值1-4λ要使f(x)取得最小值-3,需解方程-2λ²-1=-3,解得λ=√2/2。
《平面向量》单元测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图1所示,D 是△ABC 的边AB 上的中点, 则向量=CD ( )A .BA BC 21+- B .BA BC 21--C .BA BC 21-D .BA BC 21+2.与向量a ==⎪⎭⎫ ⎝⎛b ,21,27⎪⎭⎫ ⎝⎛27,21的夹解相等,且模为1的向量是( )A .⎪⎭⎫- ⎝⎛53,54B .⎪⎭⎫- ⎝⎛53,54或⎪⎭⎫ ⎝⎛-53,54 C .⎪⎭⎫- ⎝⎛31,322 D .⎪⎭⎫-⎝⎛31,322或⎪⎭⎫⎝⎛-31,322 3.设a r 与b r 是两个不共线向量,且向量a b λ+r r 与()2b a --r r共线,则λ=( )A .0B .-1C .-2D .0.54.已知向量()1,3=a ,b 是不平行于x 轴的单位向量,且3=⋅b a ,则b =( )A .⎪⎪⎭⎫ ⎝⎛21,23 B .⎪⎪⎭⎫ ⎝⎛23,21 C .⎪⎪⎭⎫ ⎝⎛433,41 D .(1,0)5.如图,已知正六边形P 1P 2P 3P 4P 5P 6,下列向量 的数量积中最大的是( )A .3121P P P P ⋅B .4121P P P P ⋅C .5121P P P P ⋅D .6121P P P P ⋅ 6.在OAB ∆中,OA a =u u u r ,OB b =u u u r ,OD 是AB 边上的高,若AD AB λ=u u u r u u u r,则实数λ等 于 ( )A .2()a b a a b⋅-- B .2()a a b a b⋅--C .()a b a a b⋅--D .()a a b a b⋅--7.设1(1,)2OM =u u u u r ,(0,1)ON =u u u r ,则满足条件01OP OM ≤⋅≤u u u r u u u u r ,01OP ON ≤⋅≤u u u r u u u r 的动点P 的 变化范围(图中阴影部分含边界)是( )A .B .C .D . 8.将函数f (x )=tan(2x +3π)+1按向量a 平移得到奇函数g(x ),要使|a |最小,则a =( )A .(,16π-)B .(,16π-)C .(,112π)D .(,112π--)9.已知向量a r 、b r 、c r 且0a b c ++=r r r r ,||3a =r ,||4b =r ,||5c =r .设a r 与b r 的夹角为1θ,b r与c r 的夹角为2θ,a r 与c r的夹角为3θ,则它们的大小关系是( )A .123θθθ<<B .132θθθ<<C .231θθθ<<D .321θθθ<<10.已知向量),(n m a =,)sin ,(cos θθ=b ,其中R n m ∈θ,,.若||4||b a =,则当2λ<⋅b a 恒成立时实数λ的取值范围是( )A .2>λ或2-<λB .2>λ或2-<λC .22<<-λD .22<<-λ11.已知1OA =u u u r,OB =u u u r ,0OA OB ⋅=u u u r u u u r ,点C 在AOB ∠内,且30oAOC ∠=,设OC mOA nOB =+u u u r u u u r u u u r (,)m n R ∈,则mn等于( )A .13B .3 C.3D12.对于直角坐标平面内的任意两点11(,)A x y ,22(,)B x y ,定义它们之间的一种“距离”:2121.AB x x y y =-+-给出下列三个命题:①若点C 在线段AB 上,则;AC CB AB += ②在ABC ∆中,若90,o C ∠=则222;AC CB AB +=③在ABC ∆中,.AC CB AB +> 其中真命题的个数为( )A .0B .1C .2D .3二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13.在中,,,3AB a AD b AN NC ===u u u r r u u u r r u u u r u u u r,M 为BC 的中点,则MN =u u u u r _______.(用a b r r 、表示)14.已知()()2,1,1,1,A B O --为坐标原点,动点M 满足OM mOA nOB =+u u u u r u u u r u u u r,其中,m n R ∈且2222m n -=,则M 的轨迹方程为 .15.在ΔABC 中,O 为中线AM 上的一个动点,若AM=2,则)(+⋅的最小值为 .16.已知向量)3,5(),3,6(),4,3(m m ---=-=-=,若点A 、B 、C 能构成三角形,则实数m 满足的条件是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量)sin 1,sin 1(x x -=,)2cos ,2(x =.(1)若]2,0(π∈x ,试判断与能否平行?(2)若]3,0(π∈x ,求函数x f ⋅=)(的最小值.18.(本小题满分12分)(2006年湖北卷)设函数()()c b a x f +⋅=,其中向量()()x x b x x a cos 3,sin ,cos ,sin -=-=,()R x x x c ∈-=,sin ,cos .(1)求函数()x f 的最大值和最小正周期;(2)将函数()x f y =的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d .19.(本小题满分12分)(2006年全国卷II )已知向量a =(sin θ,1),b =(1,cos θ),-π2<θ<π2.(1)若a⊥b,求θ;(2)求|a+b|的最大值.20.(本小题满分12分)在ABC △中,2AB AC AB AC ⋅=-=u u u r u u u r u u u r u u u r. (1)求22AB AC +u u u r u u u r 的值;(2)当ABC △的面积最大时,求A ∠的大小.21.(本小题满分12分)(2006陕西卷)如图,三定点A (2,1),B (0,-1),C (-2,1); 三动点D ,E ,M 满足]1,0[,,,∈===t t t t (1)求动直线DE 斜率的变化范围; (2)求动点M 的轨迹方程.22.(本小题满分14分)已知点P 是圆221x y +=上的一个动点,过点P 作PQ x ⊥轴于点Q ,设OM OP OQ =+u u u u r u u u r u u u r .(1)求点M 的轨迹方程;(2)求向量OP uuu r 和OM u u u u r夹角的最大值,并求此时P 点的坐标参考答案1.21+-=+=,故选A . 2.B 设所求向量e r=(cos θ,sin θ),则由于该向量与,a b r r 的夹角都相等,故e b e a e b e a ⋅=⋅⇔=⋅||||||||7117cos sin cos sin 2222θθθθ⇔+=-⇔3cos θ=-4sin θ,为减少计算量,可将选项代入验证,可知B 选项成立,故选B .3.D 依题意知向量a b λ+r r 与-2共线,设a b λ+r rk =(-2),则有)()21(=++-k k λ,所以⎩⎨⎧=+=-0021λk k ,解得5.0=k ,选D . 4.解选B .设(),()b x y x y =≠,则依题意有1,y =+=1,22x y ⎧=⎪⎪⎨⎪=⎪⎩ 5.解析:利用向量数量积121(1,2,3,4,5,6)i PP PP i =u u u u r u u u rg 的几何意义:数量积121i PP PP u u u u r u u u rg 等于12P P u u u u r的长度12PP u u u u r 与1i PP u u u r 在12P P u u u u r 的方向上的投影1121cos ,i iPP PP PP <>u u u r u u u u r u u u r的乘积.显然由图可知13P P u u u u r 在12P P u u u u r 方向上的投影最大.所以应选(A).6.B (),,AD AB OD OA OB OA λλ=∴-=-u u u r u u u r u u u r u u u r Q 即得()()11,OD OA OB a b λλλλ=-+=-+u u u r u u u r u u u r又OD Q 是AB 边上的高,0OD AB ∴⋅=u u u r u u u r即()()()0,10OD OB OA a b b a λλ⋅-=∴-+⋅-=⎡⎤⎣⎦u u u r u u u r u u u r ,整理可得()2(),b a a a b λ-=⋅-即得()2a ab a bλ⋅-=-,故选B . 7.A 设P 点坐标为),(y x ,则),(y x =.由01OP OM ≤⋅≤u u u r u u u u r ,01OP ON ≤⋅≤u u u r u u u r得⎩⎨⎧≤≤≤+≤10220y y x ,在平面直角坐标系中画出该二元一次不等式组表示的平面区域即可,选A .8.A 要经过平移得到奇函数g(x),应将函数f(x)=tan(2x+3π)+1的图象向下平移1个单位,再向右平移)(62Z k k ∈+-ππ个单位.即应按照向量))(1,62(Z k k a ∈-+-=ππ进行平移.要使|a|最小,应取a=(,16π-),故选A .9.B 由0a b c ++=r r r r得)(+-=,两边平方得1222cos ||||2||||||θ++=,将||3a =r ,||4b =r ,||5c =r 代入得0cos 1=θ,所以0190=θ;同理,由0a b c ++=r r r r得)(b c a +-=,可得54cos 2-=θ,53cos 3-=θ,所以132θθθ<<.10. B 由已知得1||=b ,所以4||22=+=n m a ,因此)sin(sin cos 22ϕθθθ++=+=⋅n m n m b a 4)sin(4≤+=ϕθ,由于2λ<⋅恒成立,所以42>λ,解得2>λ或2-<λ.11.答案B ∵ 1OA =u u u r,OB =u u u r,0OA OB ⋅=u u u r u u u r∴△ABC 为直角三角形,其中1142AC AB ==∴11()44OC OA AC OA AB OA OB OA =+=+=+-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ∴31,44m n == 即3m n= 故本题的答案为B . 12.答案B 取特殊值、数形结合A BC在ABC ∆中, 90oC ∠=,不妨取A (0,1), C (0,0),B (0,1),则 ∵2121AB x x y y =-+- ∴ 1AC = 、1BC =、|10||01|2AB =-+-= 此时222AC CB +=、24AB = 、222AC CB AB +≠;AC CB AB +=即命题②、③是错误的.设如图所示共线三点11(,)A x y ,22(,)B x y ,33(,)C x y ,则1313||||||||||||AC x x y y AC CC ''-+-=+==||||||||AB B C C C C C ''''''''+++ =||||||||AB B B BC C C ''''''+++1212||||||||||||AB x x y y AB BB ''=-+-=+ 2323||||||||||||BC x x y y BC C C ''''=-+-=+∴ AC CB AB += 即命题①是正确的. 综上所述,真命题的个数1个,故本题的答案为B .13.解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12AM a b =+u u u u r r r,所以3111()()4244MN a b a b a b =+-+=-+u u u u r r r r r r r .14.2222=-y x 设),(y x M ,则),(y x =,又)1,1(),1,2(-=-=,所以由OM mOA nOB =+u u u u r u u u r u u u r 得),(),2(),(n n m m y x -+-=,于是⎩⎨⎧+-=-=nm y n m x 2,由2222m n -=消去m, n 得M 的轨迹方程为:2222=-y x . 15.2- 如图,设x AO =,则x OM -=2,所以)(+⋅OM OA OM OA ⋅⋅-=⋅=222)1(242)2(222--=-=--x x x x x ,故当1=x 时,OM mOA nOB =+u u u u r u u u r u u u r取最小值-2.AC 'CBB 'C ''16.21≠m 因为)3,5(),3,6(),4,3(m m ---=-=-=,所以),1(),1,3(m m ---==.由于点A 、B 、C 能构成三角形,所以与不共线,而当AB 与BC 共线时,有m m -=--113,解得21=m ,故当点A 、B 、C 能构成三角形时实数m 满足的条件是21≠m .17.解析:(1)若与平行,则有2sin 12cos sin 1⋅-=⋅x x x ,因为]2,0(π∈x ,0sin ≠x ,所以得22cos -=x ,这与1|2cos |≤x 相矛盾,故a 与b 不能平行.(2)由于x f ⋅=)(xx x x x x x x x sin 1sin 2sin sin 21sin 2cos 2sin 2cos sin 22+=+=-=-+=,又因为]3,0(π∈x ,所以]23,0(sin ∈x , 于是22sin 1sin 22sin 1sin 2=⋅≥+x x x x ,当xx sin 1sin 2=,即22sin =x 时取等号.故函数)(x f 的最小值等于22.18.解:(Ⅰ)由题意得,f(x)=a·(b+c)=(sinx,-cosx)·(sinx -cosx,sinx -3cosx)=sin 2x -2sinxcosx+3cos 2x =2+cos2x -sin2x =2+2sin(2x+43π). 所以,f(x)的最大值为2+2,最小正周期是22π=π. (Ⅱ)由sin(2x+43π)=0得2x+43π=k.π,即x =832ππ-k ,k ∈Z , 于是d =(832ππ-k ,-2),,4)832(2+-=ππk d k ∈Z. 因为k 为整数,要使d 最小,则只有k =1,此时d =(―8π,―2)即为所求. 19.解析:解:(Ⅰ)若a ⊥b ,则sin θ+cos θ=0,由此得 tan θ=-1(-π2<θ<π2),所以 θ=-π4;(Ⅱ)由a =(sin θ,1),b =(1,cos θ)得|a +b |=(sin θ+1)2+(1+cos θ)2=3+2(sin θ+cos θ)=3+22sin(θ+π4),当sin(θ+π4)=1时,|a +b |取得最大值,即当θ=π4时,|a +b |最大值为2+1.20.解:(Ⅰ)由已知得:222,2 4.AB AC AB AB AC AC ⎧⋅=⎪⎨-⋅+=⎪⎩u u u r u u u r u u u r u u u r u u u r u u u r 因此,228AB AC +=u u u r u u u r . (Ⅱ)2cos AB AC A AB AC AB AC⋅==⋅⋅u u u r u u u ru u u r u u u r u u u r u u ur , 1sin 2ABC S AB AC A =⋅u u ur u u u r △12AB =⋅u u ur u u=≤=.(当且仅当2AB AC ==u u u r u u u r 时,取等号),当ABC △1cos 2AB AC A AB AC⋅==⋅u u u r u u u ru u u r u u u r,所以3π=∠A . 解:(I )由条件知: 0a b =≠r r 且2222(2)444a b a b a b b +=++=r r r r r r r g42-=⋅, 设a b r r 和夹角为θ,则41||||cos -==b a θ, ∴1cos 4arc θπ=-,故a b r r 和的夹角为1cos 4arc π-,(Ⅱ)令)a a b -r r r和(的夹角为βQ a b a -===r r r, ∴41021cos 222=+===β∴ )a a b -r r r和(的夹角为21.解析:如图,(Ⅰ)设D(x 0,y 0),E(x E ,y E ),M(x ,y).由AD →=tAB →, BE → = t BC →,知(x D -2,y D -1)=t(-2,-2). ∴⎩⎨⎧x D =-2t+2y D =-2t+1 同理 ⎩⎨⎧x E =-2ty E =2t -1.∴k DE = y E -y D x E -x D = 2t -1-(-2t+1)-2t -(-2t+2)= 1-2t. ∴t ∈[0,1] , ∴k DE ∈[-1,1].(Ⅱ) 如图, OD →=OA →+AD → = OA →+ tAB →= OA →+ t(OB →-OA →) = (1-t) OA →+tOB →,OE →=OB →+BE → = OB →+tBC → = OB →+t(OC →-OB →) =(1-t) OB →+tOC →,OM → = OD →+DM →= OD →+ tDE →= OD →+t(OE →-OD →)=(1-t) OD →+ tOE →= (1-t 2) OA → + 2(1-t)tOB →+t 2OC →.设M 点的坐标为(x ,y),由OA →=(2,1), OB →=(0,-1), OC →=(-2,1)得 ⎩⎨⎧x=(1-t 2)·2+2(1-t)t ·0+t 2·(-2)=2(1-2t)y=(1-t)2·1+2(1-t)t ·(-1)+t 2·1=(1-2t)2 消去t 得x 2=4y, ∵t ∈[0,1], x ∈[-2,2]. 故所求轨迹方程为: x 2=4y, x ∈[-2,2]22.解析:(1)设(,)P x y o o ,(,)M x y ,则(,)OP x y =o o u u u r ,(,0)OQ x =o u u u r,(2,)OM OP OQ x y =+=o o u u u u r u u u r u u u r222212,1,124x x x x x x y y y y y y⎧==⎧⎪∴⇒+=∴+=⎨⎨=⎩⎪=⎩o o o o o o Q .(2)设向量OP uuu r 与OM u u u u r的夹角为α,则22cos ||||OP OMOP OM α⋅===⋅u u u r u u u u r u u u r u u u u r 令231t x =+o,则cos α==≥当且仅当2t =时,即P点坐标为(时,等号成立.第21题解法图OP u u u r 与OM u u u u r夹角的最大值是.。
《平面向量》一、选择题1.在矩形ABCD 中,O 是对角线的交点,若OC e DC e BC 则213,5===( )A .)35(2121e e +B .)35(2121e e -C .)53(2112e e - D .)35(2112e e - 2.化简)]24()82(21[31b a b a --+的结果是( )A .b a -2B .a b -2C .a b -D .b a -3.对于菱形ABCD ,给出下列各式: ①BC AB =②||||BC AB =③||||BC AD CD AB +=- ④||4||||22AB BD AC =+ 2其中正确的个数为 ( )A .1个B .2个C .3个D .4个4 ABCD 中,设d BD c AC b AD a AB ====,,,,则下列等式中不正确的是( )A .c b a =+B .d b a =-C .d a b =-D .b a c =-5.已知向量b a 与反向,下列等式中成立的是( )A .||||||b a b a -=-B .||||b a b a -=+C .||||||b a b a -=+D .||||||b a b a +=+6.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个点的坐标为 ( ) A .(1,5)或(5,-5) B .(1,5)或(-3,-5) C .(5,-5)或(-3,-5) D .(1,5)或(-3,-5)或(5,-5) 7.下列各组向量中:①)2,1(1-=e )7,5(2=e ②)5,3(1=e )10,6(2=e ③)3,2(1-=e )43,21(2-=e 其中能作为表示它们所在平面内所有向量的基底的是 ( )A .①B .①③C .②③D .①②③ 8.与向量)5,12(=d 平行的单位向量为( )A .)5,1312(B .)135,1312(--C .)135,1312(或)135,1312(--D .)135,1312(±±9.若32041||-=-b a ,5||,4||==b a ,则b a 与的数量积为( )A .103B .-103C .102D .1010.若将向量)1,2(=a 围绕原点按逆时针旋转4π得到向量b ,则b 的坐标为( )A .)223,22(--B .)223,22(C .)22,223(-D .)22,223(-11.设k ∈R ,下列向量中,与向量)1,1(-=Q 一定不平行的向量是 ( )A .),(k k b =B .),(k k c --=C .)1,1(22++=k k dD .)1,1(22--=k k e12.已知12||,10||==b a ,且36)51)(3(-=b a ,则b a 与的夹角为( )A .60°B .120°C .135°D .150°二、填空题13.非零向量||||||,b a b a b a +==满足,则b a ,的夹角为 .14.在四边形ABCD 中,若||||,,b a b a b AD a AB -=+==且,则四边形ABCD 的形状是 15.已知)2,3(=a ,)1,2(-=b ,若b a b a λλ++与平行,则λ= .16.已知e 为单位向量,||a =4,e a 与的夹角为π32,则e a 在方向上的投影为 . 三、解答题17.已知非零向量b a ,满足||||b a b a -=+,求证: b a ⊥18.已知在△ABC 中,)3,2(=AB ,),,1(k AC =且△ABC 中∠C 为直角,求k 的值.19、设21,e e 是两个不共线的向量,2121212,3,2e e CD e e CB e k e AB -=+=+=,若A 、B 、D 三点共线,求k 的值.20.已知2||=a 3||=b ,b a 与的夹角为60o,b a c 35+=,b k a d +=3,当当实数k 为何值时,⑴c ∥dc⑵d21.如图,ABCD为正方形,P是对角线DB上一点,PECF为矩形,求证:①PA=EF;②PA⊥EF.22.如图,矩形ABCD内接于半径为r的圆O,点P是圆周上任意一点,求证:PA2+PB2+PC2+PD2=8r2.参考答案一.选择题:二、填空题:13. 120°; 14. 矩形 15、 1± 16. 2- 三、解答题: 17.证:()()22ba b a -=+⇒+=+⇒-=+0222222=⇒+-=++⇒b a b b a a b b a a为非零向量又b a ,b a ⊥∴18.解:)3,1()3,2(),1(--=-=-=k k AB AC BC0)3,1(),1(0=--⋅⇒=⋅⇒⊥⇒∠∠k k BC AC BC AC RT C 为 21330312±=⇒=-+-⇒k k k19.()212121432e e e e e e CB CD BD-=+--=-=若A ,B ,D 三点共线,则BD AB 与共线,BD AB λ=∴设即212142e e e k e λλ-=+由于不共线与21e e 可得:221142e e k e e λλ-==故8,2-==k λ20.⑴若c ∥d 得59=k ⑵若d c ⊥得1429-=k21.解以D 为原点DC 为x 轴正方向建立直角坐标系 则A(0,1), C:(1,0) B:(1,1))22,22(,r r P r DP 则设= )221,22(r r PA --=∴)0,22(:),22,1(r F r E 点为 )22,122(r r EF --=∴ 22)221()22(||r r PA -+-=∴ 22)22()221(||r r EF -+-=∴故EF PA =EF PA EF PA ⊥⇒=⋅0而22.证:PA PC AC PB PD BD-=-=,22222222||2||)(||||2||)(||PA PA PC PC PA PC AC PB PD PB PD PB PD BD +-=-=+-=-=∴0,,,=⋅=⋅⇒⊥⊥PC PA PB PD PC PA PB PD AC BD 故为直径 222222||||||||||||PD PC PB PA AC BD +++=+∴即2222222844r PD PC PB PA r r =+++=+。
高一数学必修二《平面向量》单元综合测试卷(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( )A .(-7,-4)B .(7,4)C .(-1,4)D .(1,4)【答案】 A2.设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值等于( )A .-32B .-53C .53D .32【答案】 A3.已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →=( )A .-32a 2B .-34a 2C .34a 2D .32a 2 【答案】 D4.对任意向量a ,b ,下列关系式中不恒成立....的是( ) A .|a·b |≤|a ||b | B .|a -b |≤||a |-|b || C .(a +b )2=|a +b |2 D .(a +b )·(a -b )=a 2-b 2【答案】 B5.已知非零向量a ,b 满足|b|=4|a|,且a ⊥(2a +b ),则a 与b 的夹角为( )A .π3B .π2C .2π3D .5π6【答案】 C6.△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( )A .|b |=1B .a ⊥bC .a ·b =1D .(4a +b )⊥BC →【答案】 D7.已知向量a =(2,1),a·b =10,|a +b|=50,则|b|=( )A .0B .2C .5D .25【答案】 C8.已知AD ,BE 分别为△ABC 的边BC ,AC 上的中线,设AD →=a ,BE →=b ,则BC →等于( )A .43a +23bB .23a +43bC .23a -43bD .-23a +43b 【答案】 B9.设非零向量a ,b ,c 满足|a|=|b|=|c|,a +b =c ,则向量a ,b 的夹角为( )A .150°B .120°C .60°D .30°【答案】 B10.在矩形ABCD 中,AB =3,BC =1,E 是CD 上一点,且AE →·AB →=1,则AE →·AC →的值为( )A .3B .2C .32D .33【答案】 B11.已知向量OA →=(2,2),OB →=(4,1),在x 轴上有一点P ,使AP →·BP →有最小值,则P 点坐标为( )A .(-3,0)B .(3,0)C .(2,0)D .(4,0)【答案】 B12.在△ABC 中,已知向量AB →与AC →满足⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0且AB →·AC →|AB →||AC →|=12,则△ABC 是( ) A .等边三角形 B .直角三角形 C .等腰非等边三角形 D .三边均不相等的三角形【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上)13.已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________.【答案】 -614.已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.【答案】 -315.已知向量a =(1,-1),b =(6,-4).若a ⊥(t a +b ),则实数t 的值为________.【答案】 -516.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________.【答案】 12 -16三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)不共线向量a ,b 的夹角为小于120°的角,且|a|=1,|b|=2,已知向量c =a +2b ,求|c|的取值范围.【解】 |c|2=|a +2b|2=|a|2+4a·b +4|b|2=17+8cos θ(其中θ为a 与b 的夹角).因为0°<θ<120°,所以-12<cos θ<1,所以13<|c|<5,所以|c |的取值范围为(13,5).18.(本小题满分12分)设OA →=(2,-1),OB →=(3,0),OC →=(m,3).(1)当m =8时,将OC →用OA →和OB →表示; (2)若A ,B ,C 三点能构成三角形,求实数m 应满足的条件.【解】 (1)m =8时,OC →=(8,3),设OC →=λ1OA →+λ2OB →,∴(8,3)=λ1(2,-1)+λ2(3,0)=(2λ1+3λ2,-λ1),∴⎩⎨⎧ 2λ1+3λ2=8,-λ1=3,解得⎩⎪⎨⎪⎧ λ1=-3,λ2=143,∴OC →=-3OA →+143OB →. (2)若A ,B ,C 三点能构成三角形,则有AB →与AC →不共线,又AB →=OB →-OA →=(3,0)-(2,-1)=(1,1),AC →=OC →-OA →=(m,3)-(2,-1)=(m -2,4),则有1×4-(m -2)×1≠0,∴m ≠6.19.(本小题满分12分)设i ,j 是平面直角坐标系中x 轴和y 轴正方向上的单位向量,AB →=4i -2j ,AC →=7i +4j ,AD →=3i +6j ,求四边形ABCD 的面积.【解】 因为AB →·AD →=(4i -2j )·(3i +6j )=3×4-2×6=0,所以AB →⊥AD →.又因为AC →=7i +4j =4i -2j +3i +6j =AB →+AD →,所以四边形ABCD 为平行四边形,又AB →⊥AD →,所以四边形ABCD 为矩形,所以S 四边形ABCD =|AB →|×|AD →|=16+4×9+36=30.20.(本小题满分12分)已知a ,b ,c 在同一平面内,且a =(1,2).(1)若|c |=25,且c ∥a ,求c ; (2)若|b |=52,且(a +2b )⊥(2a -b ),求a 与b 的夹角. 【解】 (1)∵c ∥a ,∴设c =λa ,则c =(λ,2λ).又|c |=25,∴λ=±2,∴c =(2,4)或(-2,-4).(2)∵(a +2b )⊥(2a -b ),∴(a +2b )·(2a -b )=0.∵|a |=5,|b |=52,∴a ·b =-52,∴cos θ=a ·b |a ||b |=-1,又θ∈[0°,180°],∴θ=180°.21.(本小题满分12分)已知a =(cos α,sin α),b =(cos β,sin β),0<β<α<π.(1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值.【解】 (1)证明:由题意得|a -b |2=2,即(a -b )2=a 2-2a ·b +b 2=2.又因为a 2=b 2=|a |2=|b |2=1,所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)因为a +b =(cos α+cos β,sin α+sin β)=(0,1),所以⎩⎨⎧cos α+cos β=0, ①sin α+sin β=1, ②由①得,cos α=cos(π-β),由0<β<π,得0<π-β<π.又0<α<π,故α=π-β.代入sin α+sin β=1,得sin α=sin β=12,而α>β,所以α=5π6,β=π6.22.(本小题满分12分)已知⊙O 的直径为10,AB 是⊙O 的一条直径,长为20的线段MN 的中点P 在⊙O 上运动(异于A ,B 两点).(1)求证:AM →·BN →与点P 在⊙O 上的位置无关;(2)当MN →与AB →的夹角θ取何值时,AM →·BN →有最大值?【解】 (1)证明:∵AB 为⊙O 的直径,P 为圆上一点,∴AP ⊥BP ,∴AP →⊥BP →,即AP →·BP →=0.∵P 为MN 的中点,且|MN →|=20,∴MP →=PN →,|MP →|=|PN →|=10,∴AM →·BN →=(AP →+PM →)·(BP →+PN →)=(AP →-PN →)·(BP →+PN →)=AP →·BP →+AP →·PN →-PN →·BP →-PN →·PN →=PN →·(AP →-BP →)-100=12MN →·AB →-100,∴AM →·BN →仅与MN →,AB →的夹角有关,而与点P 在⊙O 上的位置无关.(2)由(1)得,AM →·BN →=12MN →·AB →-100=100cos θ-100. ∵0≤θ≤π,∴当θ=0时,AM →·BN →取得最大值0.。
第二章测试(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有下列四个表达式: ①|a +b |=|a |+|b |; ②|a -b |=±(|a |-|b |); ③a 2>|a |2; ④|a ·b |=|a |·|b |.其中正确的个数为( ) A .0 B .2 C .3 D .42.下列命题中,正确的是( ) A .a =(-2,5)与b =(4,-10)方向相同 B .a =(4,10)与b =(-2,-5)方向相反 C .a =(-3,1)与b =(-2,-5)方向相反 D .a =(2,4)与b =(-3,1)的夹角为锐角3.已知a ,b 均为单位向量,它们的夹角为60°,那么|a +3b |=( )A.7B.10C.13D .4 4.已知向量a =⎝ ⎛⎭⎪⎫8+12x ,x ,b =(x +1,2),其中x >0,若a ∥b ,则x 的值为( )A .8B .4C .2D .05.在△ABC 中,M 是BC 的中点,AM =1,点P 在AM 上且满足AP →=2PM →,则AP →·(PB →+PC →)等于( )A.49 B.43 C .-43D .-496.若向量a =(1,1),b =(2,5),c =(3,x ),满足条件(8a -b )·c =30,则x =( )A .6B .5C .4D .37.向量a =(-1,1),且a 与a +2b 方向相同,则a ·b 的取值范围是( )A .(-1,1)B .(-1,+∞)C .(1,+∞)D .(-∞,1)8.设单位向量e 1,e 2的夹角为60°,则向量3e 1+4e 2与向量e 1的夹角的余弦值为( )A.34B.537C.2537D.537379.在平行四边形ABCD 中,AC 与BD 交于点O ,E 为线段OD 的中点,AE 的延长线与CD 交于点F ,若AC →=a ,BD →=b ,则AF →=( )A.14a +12bB.23a +13bC.12a +14bD.13a +23b10.已知点B 为线段AC 的中点,且A 点坐标为(-3,1),B 点坐标为⎝ ⎛⎭⎪⎫12,32,则C 点坐标为( )A .(1,-3) B.⎝ ⎛⎭⎪⎫-54,54 C .(4,2)D .(-2,4)11.已知|a |=2|b |≠0,且关于x 的方程x 2+|a |x +a ·b =0有实根,则a 与b 夹角的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π6B.⎣⎢⎡⎦⎥⎤π3,π C.⎣⎢⎡⎦⎥⎤π3,2π3 D.⎣⎢⎡⎦⎥⎤π6,π 12.在△ABC 所在平面内有一点P ,如果P A →+PB →+PC →=AB →,则△P AB 与△ABC 的面积之比是( )A.13B.12C.23D.34二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上)13.已知a =(2cos θ,2sin θ),b =(3,3),且a 与b 共线,θ∈[0,2π),则θ=________.14.假设|a |=25,b =(-1,3),若a ⊥b ,则a =________. 15.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若AB →·AC →=BA →·BC →=2,那么c =__________.16.关于平面向量a ,b ,c ,有下列三个命题:①若a ·b =a ·c ,则b =c ;②若a =(1,k ),b =(-2,6),a ∥b ,则k =-3;③非零向量a 和b 满足|a |=|b |=|a -b |,则a 与a +b 的夹角为60°.其中真命题的序号为________.(写出所有真命题的序号) 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知|a |=3,|b |=2,a 与b 的夹角为60°,c =3a +5b ,d =m a -3b .(1)当m 为何值时,c 与d 垂直? (2)当m 为何值时,c 与d 共线?18.(12分)如图所示,在△ABC 中,∠C 为直角,CA =CB ,D 是CB 的中点,E 是AB 上的点,且AE =2EB ,求证:AD ⊥CE .19.(12分)已知在△ABC 中,A (2,-1),B (3,2),C (-3,-1),AD 为BC 边上的高,求|AD →|与点D 的坐标.20.(12分)在直角坐标系中,已知OA →=(4,-4),OB →=(5,1),OB →在OA →方向上的射影数量为|OM →|,求MB →的坐标.21.(12分)如图,在平面斜坐标系xOy 中.∠xOy =60°,平面上任一点P 关于斜坐标系的坐标是这样定义的;若OP →=x e 1+y e 2(其中e 1,e 2分别为与x 轴,y 轴同方向的单位向量),则点P 的斜坐标为(x ,y ).(1)若点P 的斜坐标为(2,-2),求点P 到O 的距离|OP |; (2)求以O 为圆心,以1为半径的圆在斜坐标系xOy 中的方程. 22.(12分)如图,在四边形ABCD 中,BC →=λAD →(λ∈R ),|AB →|=|AD →|=2,|CB →-CD →|=23,且△BCD 是以BC 为斜边的直角三角形.(1)求λ的值;(2)求CB →·BA →的值.1.解析 对于①仅当a 与b 同向时成立.对于②左边|a -b |≥0,而右边可能≤0,∴不成立.对于③∵a 2=|a |2,∴a 2>|a |2不成立.对于④当a ⊥b 时不成立,综上知,四个式子都是错误的.答案 A2.解析 在B 中,a =(4,10)=-2(-2,-5)=-2b , ∴a 与b 方向相反. 答案 B3.解析 ∵|a +3b |2=(a +3b )2=a 2+9b 2+6a·b =1+9+6|a ||b |cos60°=13,∴|a +3b |=13.答案 C4.解析 ∵a ∥b ,∴(8+12x )×2-x (x +1)=0,即x 2=16,又x >0,∴x =4.答案 B5.解析 M 为BC 的中点,得PB →+PC →=2PM →=AP →, ∴AP →·(PB →+PC →)=AP →2.又∵AP →=2PM →,∴|AP →|=23|AM →|=23. ∴AP →2=|AP →|2=49.答案 A6.解析8a -b =8(1,1)-(2,5)=(6,3),c =(3,x ),∴(8a -b )·c =(6,3)·(3,x )=18+3x . 又(8a -b )·c =30,∴18+3x =30,x =4. 答案 C7.解析 依题意可设a +2b =λa (λ>0), 则b =12(λ-1)a ,∴a ·b =12(λ-1)a 2=12(λ-1)×2=λ-1>-1. 答案 B8.解析 ∵(3e 1+4e 2)·e 1=3e 21+4e 1·e 2=3×12+4×1×1×cos60°=5,|3e 1+4e 2|2=9e 21+16e 22+24e 1·e 2=9×12+16×12+24×1×1×cos60°=37.∴|3e 1+4e 2|=37.设3e 1+4e 2与e 1的夹角为θ,则 cos θ=537×1=537.答案 D9.解析 如图所示,AF →=AD →+DF →,由题意知,DE :BE =DF :BA =1:3. ∴DF →=13AB →.∴AF →=12a +12b +13(12a -12b )=23a +13b . 答案 B10.解析 设a 与b 的夹角为θ, ∵Δ=|a |2-4a ·b ≥0,∴a ·b ≤|a |24,∴cos θ=a ·b |a ||b |≤|a |24|a ||b |=12.∵θ∈[0,π],∴θ∈⎣⎢⎡⎦⎥⎤π3,π.答案 B11.解析 设C (x ,y ),则由AB →=BC →,得 ⎝ ⎛⎭⎪⎫12-(-3),32-1=⎝ ⎛⎭⎪⎫x -12,y -32,∴⎩⎪⎨⎪⎧x -12=72,y -32=12,⇒⎩⎨⎧x =4,y =2,∴C (4,2).答案 C12.解析 因为P A →+PB →+PC →=AB →=PB →-P A →,所以2P A →+PC →=0,PC →=-2P A →=2AP →,所以点P 是线段AC 的三等分点(如图所示).所以△P AB 与△ABC 的面积之比是13.答案 A13.解析 由a ∥b ,得23cos θ=6sin θ,∵cos θ≠0, ∴tan θ=33,又θ∈[0,2π),∴θ=π6或7π6. 答案 π6或76π14.解析 设a =(x ,y ),则有x 2+y 2=20.① 又a ⊥b ,∴a ·b =0,∴-x +3y =0.② 由①②解得x =32,y =2,或x =-32, y =-2,∴a =(32,2),或a =(-32,-2). 答案 (32,2)或(-32,-2) 15.解析 由题知 AB →·AC →+BA →·BC →=2,即AB →·AC →-AB →·BC →=AB →·(AC →+CB →)=AB →2=2⇒c =|AB →|= 2. 答案216.解析当a =0时,①不成立;对于②,若a ∥b ,则-2k =6,∴k =-3,②成立;对于③,由于|a |=|b |=|a -b |,则以|a |,|b |为邻边的平行四边形为菱形,如图.∠BAD =60°,AC →=a +b ,由菱形的性质可知,a 与a +b 的夹角为∠BAC =30°.答案 ②17.解 (1)令c ·d =0,则(3a +5b )·(m a -3b )=0, 即3m |a |2-15|b |2+(5m -9)a ·b =0, 解得m =2914. 故当m =2914时,c ⊥d .(2)令c =λd ,则3a +5b =λ(m a -3b ) 即(3-λm )a +(5+3λ)b =0, ∵a ,b 不共线,∴⎩⎨⎧3-λm =0,5+3λ=0,解得⎩⎪⎨⎪⎧λ=-53,m =-95.故当m =-95时,c 与d 共线.18.证明 设此等腰直角三角形的直角边长为a ,则 AD →·CE →=(AC →+CD →)·(CA →+AE →)=AC →·CA →+CD →·CA →+AC →·AE →+CD →·AE →=-a 2+0+a ·223a ·22+a 2·223a ·22 =-a 2+23a 2+13a 2=0, ∴AD →⊥CE →,∴AD ⊥CE .19.解 设D 点坐标为(x ,y ),则AD →=(x -2,y +1), BC →=(-6,-3),BD →=(x -3,y -2),∵D 在直线BC 上,即BD →与BC →共线,∴存在实数λ,使BD →=λBC →,即(x -3,y -2)=λ(-6,-3).∴⎩⎨⎧ x -3=-6λ,y -2=-3λ,∴x -3=2(y -2),即x -2y +1=0.①又∵AD ⊥BC ,∴AD →·BC →=0,即(x -2,y +1)·(-6,-3)=0.∴-6(x -2)-3(y +1)=0.②由①②可得⎩⎨⎧ x =1,y =1.∴|AD →|= (1-2)2+22=5,即|AD →|=5,D (1,1).20.解 设点M 的坐标为M (x ,y ). ∵OB →在OA →方向上的射影数量为|OM →|, ∴OM →⊥MB →,∴OM →·MB →=0.又OM →=(x ,y ),MB →=(5-x,1-y ),∴x (5-x )+y (1-y )=0.又点O ,M ,A 三点共线,∴OM →∥OA →.∴x 4=y -4. ∴⎩⎪⎨⎪⎧ x (5-x )+y (1-y )=0,x 4=y -4,解得⎩⎨⎧ x =2,y =-2. ∴MB →=OB →-OM →=(5-2,1+2)=(3,3).21.解 (1)因为点P 的斜坐标为(2,-2),故OP →=2e 1-2e 2,|OP →|2=(2e 1-2e 2)2=8-8e 1·e 2=8-8cos60°=4,∴|OP →|=2,即|OP |=2.(2)设圆上动点M 的坐标为(x ,y ),则OM →=x e 1+y e 2, 又|OM →|=1.故(x e 1+y e 2)2=1.∴x 2+y 2+2xy e 1·e 2=1.即x 2+y 2+xy =1. 故所求方程为x 2+y 2+xy -1=0.22.解 (1)因为BC →=λAD →,所以BC ∥AD ,且|BC →|=λ|AD →|.因为|AB →|=|AD →|=2,所以|BC →|=2λ.又|CB →-CD →|=23,所以|BD →|=2 3.作AH ⊥BD 交BD 于H ,则H 为BD 的中点.在Rt △AHB 中,有cos ∠ABH =BH AB =32,于是∠ABH =30°,所以∠ADB =∠DBC =30°. 而∠BDC =90°,所以BD =BC ·cos30°,即23=2λ·32,解得λ=2.(2)由(1)知,∠ABC =60°,|CB →|=4,所以CB →与BA →的夹角为120°, 故CB →·BA →=|CB →|·|BA →|cos120°=-4.。
必修4第二章《平面向量》单元测试 姓名 班级
一、选择题(每小题5分,共50分)
1.在矩形ABCD 中,O 是对角线的交点,若e e 则213,5===
A .
)35(2
1
21e e + B .
)35(2121e e - C .)53(2
1
12e e - D .)35(2
1
12e e -( )
2.对于菱形ABCD ,给出下列各式: ①=
②||||BC AB =
③||||+=-
④||4||||22=+ 2
其中正确的个数为 ( )
A .1个
B .2个
C .3个
D .4个
3 ABCD 中,设d BD c AC b AD a AB ====,,,,则下列等式中不正确的是( )
A .c b a =+
B .d b a =-
C .d a b =-
D .b a c =-
4.已知向量b a 与反向,下列等式中成立的是 ( )
A .||||||b a b a -=-
B .||||b a b a -=+
C .||||||-=+
D .||||||+=+
5.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个点的坐标为 ( ) A .(1,5)或(5,-5) B .(1,5)或(-3,-5) C .(5,-5)或(-3,-5) D .(1,5)或(-3,-5)或(5,-5) 6.与向量)5,12(=平行的单位向量为 ( )
A .)5,13
12
(
B .)135,1312(--
C .)135,1312(
或 )135,1312(-- D .)13
5,1312(±± 7.若32041||-=-,5||,4||==,则b a 与的数量积为 ( )
A .103
B .-103
C .102
D .10
8.若将向量)1,2(=a 围绕原点按逆时针旋转
4
π
得到向量,则的坐标为 ( )
A . )2
23,22(-- B .)22
3,22( C .)22,223(-
D .)2
2,2
23(-
9.设k ∈R ,下列向量中,与向量)1,1(-=一定不平行的向量是 ( )
A .),(k k b =
B .),(k k c --=
C .)1,1(22++=k k
D .)1,1(22--=k k
10.已知12||,10||==,且36)5
1)(3(-=b a ,则b a 与的夹角为 ( ) A .60° B .120° C .135°
D .150°
二、填空题(每小题4分,共16分)
11.非零向量||||||,+==满足,则,的夹角为 .
12.在四边形ABCD 中,若||||,,-=+==且,则四边形ABCD 的形状是 13.已知)2,3(=a ,)1,2(-=,若λλ++与平行,则λ= .
14.已知e 为单位向量,||=4,e a 与的夹角为π3
2,则e a 在方向上的投影为 . 三、解答题(每题14分,共84分)
15.已知非零向量,满足||||-=+,求证: b a ⊥
16.已知在△ABC 中,)3,2(=,),,1(k =且△ABC 中∠C 为直角,求k 的值.
17、设21,e e 是两个不共线的向量,2121212,3,2e e e e e k e -=+=+=,若A 、B 、D 三点共线,求k 的值.
18.已知2||=a 3||=b ,b a
与的夹角为60o
,b a c 35+=,b k a d +=3,当当实数k 为何
值时,⑴c ∥d ⑵d c ⊥
19.如图,ABCD 为正方形,P 是对角线DB 上一点,PECF 为矩形, 求证:①PA=EF ;
②PA ⊥EF.
20.如图,矩形ABCD 内接于半径为r 的圆O ,点P 是圆周上任意一点,
求证:PA 2+PB 2+PC 2+PD 2=8r 2
.。