第五章 光电子能谱分析
- 格式:ppt
- 大小:2.33 MB
- 文档页数:43
光电子能谱分析光电子能谱分析是一种基于光电效应原理的表征材料电子结构和性质的重要技术手段。
通过研究材料的光电子能谱,可以得到材料中的电子能带结构、费米能级、元素组成等信息,从而深入了解材料的性质和反应过程。
本文将介绍光电子能谱分析的原理、仪器设备以及应用领域等内容。
一、光电子能谱分析的原理光电子能谱分析是基于光电效应的原理进行的。
光电效应是指当光束照射到物质表面时,光子与物质中的电子相互作用,使得电子从物质中抽离出来,形成光电子。
当光子的能量大于或接近于材料中最外层电子的束缚能时,光电子就会被抽离出来,并在外加电场的作用下被加速,形成具有动能的光电子。
通过测量光电子的动能和强度,就可以得到光电子能谱图。
二、光电子能谱分析的仪器设备光电子能谱分析需要使用光电子能谱仪。
光电子能谱仪主要由光源、样品台、能谱分析器和探测器等部分组成。
光源通常采用气体放电光源或光阴极等发射强度较高的光源,用于产生高能量的光子。
样品台用于固定待测材料,通过样品台上的电子能量分析器,对光电子的能量进行分析,从而得到光电子能谱。
探测器接收并放大光电子信号,将信号传递至数据采集系统进行记录和分析。
三、光电子能谱分析的应用领域光电子能谱分析在材料科学、表面物理化学、固体电子学等领域具有广泛的应用。
以下列举几个典型的应用领域:1. 材料表征与表面分析:通过光电子能谱分析,可以获取材料中电子能带结构、元素组成、表面形貌等信息,用于表征和研究材料的物理性质和化学反应过程。
2. 半导体器件分析:光电子能谱分析可用于研究半导体材料中的载流子分布、能量态密度分布等,从而为半导体器件的设计和性能优化提供依据。
3. 催化剂研究:光电子能谱分析可用于研究催化剂表面活性位点的形成、电子结构及与反应物的相互作用,有助于优化催化剂的催化性能。
4. 电子能带结构研究:通过对不同材料的光电子能谱分析,可以揭示材料电子能带结构的演化规律,深入了解材料的导电性质和能带间的相互作用机制。
第五章光电子能谱分析一、教学目的理解掌握光电子能谱分析的基本原理,掌握光电子能谱实验技术,了解光电子能谱仪,了解俄歇电子能谱分析。
二、重点、难点重点:光电子能谱分析原理、光电子能谱实验技术及应用。
难点:光电子能谱分析原理。
三、教学手段多媒体教学四、学时分配4学时第一节概述电子能谱是近十多年才发展起来的一种研究物质表面的性质和状态的新型物理方法。
这里所谓的表面是指固体最外层的l~10个原子的表面层和吸附在它上面的原子、分子、离子或其他覆盖层,它的深度从小于1到几个nm,或者包括采取剥离技术将表面层沿纵向深度暴露出新的表面。
用特殊的手段对这类表面进行分析已形成一门新兴的测试方法,即表面分析法,它在理论上和实际应用上都有广泛的研究领域。
表面分析方法在无机非金属材料学科中的应用,例如:研究玻璃表面的刻蚀作用、水泥矿物硅酸钙的水化作用、陶瓷表面和界面、高温超导材料表面的作用等均有重要意义。
一、表面分析可以得到的信息表面分析是借助于各种表面分析仪,对物体10 nrn以内的表面层进行分析,可得到的信息有:(1)物质表面层(包括吸附层)的化学成分,除氢元素以外的元素都可以从表面分析法获得定性和定量的结果,而X射线能谱分析一般只能分析到原子序数为11以上的元素(最好的仪器可以分析原子序数为4的Be元素)。
定量分析也只能达到半定量程度。
(2)物质表面层元素所处的状态或与其他元素间的结合状态和结构,即元素所处的原子状态、价态、分子结构等信息。
(3)表面层物质的状态,如表面层的分子和吸附层分子状态、氧化态、腐蚀状态、表面反应生成物等。
(4)物质表面层的物理性质,这在一般表面分析中虽不是研究的主要内容,但可以得到与表面的元素、价态、结构等信息的关系。
在做表面分析工作时,不仅在制备样品时要求在高真空和超净条件下进行,而且在测试过程中也要注意仪器中的条件,以防止因污染而引起测试误差。
二、表面分析法的特点表面分析技术与普通光谱仪不同,它不是研究光与物质的相互作用后所产生的光的特性,而是研究光(或粒子)与物质相互作用后被激发出来的二次粒子(电子、离子)的能量,以达到所要获得的结果。
第五章电子能谱分析1.概述2.X射线光电子能谱的基本原理3.X射线光电子能谱仪及实验技术4.X射线光电子能谱谱图解析5.X射线光电子能谱的应用武汉科技大学材料与冶金学院张海军教授一、概述表层元素组成与离子¾电子能谱分析是一种研究物质表层状态的表面分析技术。
基本原理是用单色射线照射样品,使样品中原子¾其基本原理或分子的电子受激发射,然后测量这些电子的能量分布。
¾通过与已知元素的原子或离子的不同壳层的电子的能量相比较,就可确定未知样品表层中原子或离子的组成和状态。
十个纳米左右。
¾表层的信息深度大约为十个纳米左右电子能谱分析种类根据激发源的不同和测量参数的差别,常用的电子能谱分析是:¾X射线光电子能谱分析(XPS)---X-ray photoelectron spectroscopy;¾俄歇电子能谱分析(AES)---Auger electron spectroscoy;¾紫外光电子能谱分析(UPS)---ultraviolet photoelectron spectrocopy;¾二次离子质谱法(SIMS)---secondary ion mass specrometry;¾激光微探针质谱法(LMMS)---laser microprobe mass spectrometry.二、X射线光电子能谱基本原理¾XPS是由诺贝尔物理奖获得者K. Siegbahn教授领导的研究小组创立的,并于1954年研制出了世界上第一台光电子能谱仪。
¾硫代硫酸钠的XPS谱图上出现两个完全分离的S2p峰,并且两峰的强度相等;而在硫酸钠的XPS谱图中只有一个S2p 峰。
硫代硫酸钠(Na2S2O3)中的两个硫原子(+6价和-2价)周围的化学环境不同,从而造成了二者内层电子结合能有显著的不同。
光电效应物质受光作用放出电子的现象称为e hv A A e +−+→+1 ljm+±==l1 ljm+±==l在电子能谱研究中,通常用主量子数n,角量子数l,和内量子数j来表征内层电子的运动状态。
光电子能谱法解析材料电子结构的实验操作步骤光电子能谱法(Photoemission Spectroscopy,简称PES)是一种通过照射材料表面的光子来研究材料电子结构的实验方法。
它可以提供关于材料中电子能级分布、价带结构以及表面态等重要信息。
本文将介绍光电子能谱法的实验操作步骤。
第一步:样品制备在进行光电子能谱实验之前,首先需要制备样品。
通常,样品应是单晶、多晶或薄膜形式的固体材料。
样品制备的过程包括样品的生长、切割、打磨和清洗等步骤。
确保样品表面的光洁度对于获得准确的谱线形状和峰值位置非常重要。
第二步:实验装置搭建搭建光电子能谱实验所需的装置是实验的关键步骤之一。
主要的装置包括光源、能量分析器和探测器等。
光源通常采用紫外光源或X射线源,能量分析器用于测量光电子的能量分布,而探测器则用于检测光电子的强度和能量。
第三步:真空系统建立在进行光电子能谱实验时,需要建立一个高真空环境,以避免气体分子对实验结果的干扰。
真空系统通常由抽气泵、气体进样系统和真空室组成。
在真空室中,样品被放置在能量分析器的入射光束中。
第四步:能谱测量在进行能谱测量之前,需要调整光源的能量和强度,以及能量分析器的参数。
然后,将样品放置在能量分析器的入射光束中,并通过改变光源的能量来照射样品表面。
光电子从样品表面发射出来后,经过能量分析器的分析,最终得到光电子能谱图。
第五步:数据分析得到光电子能谱图后,需要对数据进行分析。
首先,可以通过观察能谱图中的峰值位置和形状来确定材料的能带结构和表面态等信息。
其次,可以通过对光电子峰的能量和强度进行定量分析,计算出材料中的能级分布和占据态密度等参数。
第六步:结果解释最后一步是对实验结果进行解释。
根据能谱图中的峰值位置和形状,可以判断材料中的价带结构和表面态的特征。
此外,通过与理论计算或其他实验结果的对比,可以进一步验证实验结果的准确性和可靠性。
总结光电子能谱法是一种重要的材料表征方法,可以提供关于材料电子结构的重要信息。