2011年数学建模C题答案
- 格式:pdf
- 大小:277.07 KB
- 文档页数:17
2011数学建模考试题(开卷)1.某饮料公司拥有甲、乙两家饮料厂,都能生产A、B两种牌号的饮料。
甲饮料厂生产A饮料的效率为8吨/小时,生产B饮料的效率为10吨/小时;乙饮料厂生产A饮料的效率为10吨/小时,生产B饮料的效率为4吨/小时。
甲饮料厂生产A饮料和B饮料的成本分别为1000元/吨和1100元/吨;乙饮料厂生产A饮料和B饮料的成本分别为850元/吨和1000元/吨。
现该公司接到一生产订单,要求生产A饮料1000吨,B饮料1600吨。
假设甲饮料厂的可用生产能力为200小时,乙饮料厂的生产能力为120小时。
(1)请你为该公司制定一个完成该生产订单的生产计划,使总的成本最小(要求建立相应的线性规划模型,并给出计算结果)。
(2)由于设备的限制,乙饮料厂如果生产某种牌号的饮料,则至少要生产该种牌号的饮料300吨。
此时上述生产计划应如何调整(给出简要计算步骤)?2.讨价还价中的数学。
在当前市场经济条件下,在商店,尤其是私营个体商店中的商品,所标价格a与其实际价值b之间,存在着相当大的差距。
对购物的消费者来说,总希望这个差距越小越好,即希望比值λ接近于1,而商家则希望λ>1。
这样,就存在两个问题:第一,商家应如何根据商品的实际价值(或保本价)b来确定其价格a才较为合理?第二,购物者根据商品定价,应如何与商家"讨价还价"?第一个问题,国家关于零售商品定价有相关规定,但在个体商家实际定价中,常用"黄金数"方法,即按实际价b定出的价格a,使b:a≈0.618。
虽然商品价值b位于商品价格a 的黄金分割点上,考虑到消费者讨价还价,应该说,这样定价还是较为合理的。
对消费者来说,如何"讨价还价"才算合理呢?一种常见的方法是"对半还价法":消费者第一次减去定价的一半,商家第一次讨价则加上二者差价的一半;消费者第二次还价要减去二者差价的一半;如此等等。
全国2011年数学建模题目
A 题 疾病的诊断
现要你给出疾病诊断的一种方法。
胃癌患者容易被误诊为萎缩性胃炎患者或非胃病者。
从胃癌患者中抽取5人(编号为1-5),从萎缩性胃炎患者中抽取5人(编号为6-10),以及非胃病者 中抽取5人(编号为11-15),每人化验4项生化指标:血清铜蓝蛋白(1X )、 蓝色反应(2X )、尿吲哚乙酸(3X )、中性硫化物(4X )、测得数据如表1所示:
表1. 从人体中化验出的生化指标
根据数据,试给出鉴别胃病的方法。
2011年数学建模B 题:科研项目评审中的数学问题
随着国家对科技工作的日益重视,对科技工作的资金投入力度逐步加大,科研项目数量也日益增加,申请科研项目也是广大科技工作者的迫切要求。
当然作为科研项目管理部门的项目评审任务愈加繁重。
现请考虑以下问题:
1、科研项目管理部门往往根据评审专家的意见和历年经验凭借项目申请书的以下内容来判定项目申请书的质量:项目相关研究基础、研究团队、申请内容
的创新性、申请内容的研究难度、研究思路与方法或技术方案的可行性、年度任务计划安排、申请资金预算合理性等等指标。
请你用数学建模的方法,利用上述指标(不限于上述指标,只要是合理指标)建立申请项目质量的评价标准。
2、现在科研项目管理部门一般采取专家评审办法,实现公平、公正一直是孜孜以求的目标,如何安排项目的评审也是科研管理重点关注的。
请你帮助解决以下项目安排:
a、100个项目,20个专家,要求每个项目要有3个专家评审,请给出合理的安排方案,并给出你认为合理的定义或说明;
b、10000个项目,要求每个项目要有3个专家评审,每个专家评审项目不超过20项,在a 的合理性要求下,请估计需要的专家数量。
摘要:本文对第一个问题做出了合理的假设,建立了阻滞增长模型预测2011后的工资增长,在确定工资的最大值时m x ,采用了经验估计的方法,根据我国经济发展战略目标和目前我国工资的实际水平,利用目前中等发达国家的工资来代替m x 。
在spss 中拟合出了以后每年的工资数据,与我国实际基本吻合。
问题二由于个人工资变化情况比较复杂,在具体计算过程中,为了将问题简化,引入平均工资增长率这一概念。
影响平均工资增长率的因素有两个:社会平均工资增长和企业平均工资增长。
利用题中的假设和附件给出的计算公式进行计算,算出本人指数化月平均缴费工资,进而算出基础养老金。
计算出职工退休前个人账户总额,进而算出个人账户养老金。
得出各种情况的替代率,并用表格进行了总结。
问题三在问题二的基础进行计算,对于职工个人账户余额所产生的利息进行了简化计算,不考虑复利的情况。
得出了个人缴存的养老金总额,利用问题二中算出的职工养老金额建立方程,可以解出收支平衡的月份,进而算出养老金的缺口。
但该方程编写程序比较,在具体计算时,查阅一个简单公式: (1/12)log 1/12r P l P Z r +=-⨯来计算收支平衡的月份。
进而算出各种情况下养老金的缺口。
问题四,在问题二和问题三的基础上,大致分析了影响替代率的因素,和影响收支平衡的因素。
建立了一个收支的不等式,讨论了既要维持收支平衡又要提高替代率所采取的措施:根据缴费月数12*m 来调整计划发养老金月数n ,使二者近似相等达到收支平衡,同时通过提高个人缴费比划C 和个人平均缴费指数R 来提高替代率。
最后对模型的优缺点进行了讨论。
关键词:替代率 SPSS 养老保险金缺口 收支平衡 阻滞模型1 问题重述养老金也称退休金,用于保障职工退休后的基本生活需要。
我国企业职工基本养老保险实行“社会统筹”与“个人账户”相结合的模式,即企业把职工工资总额按一定比例(20%)缴纳到社会统筹基金账户,再把职工个人工资按一定比例(8%)缴纳到个人账户。
2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。
对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查。
为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。
应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。
另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。
现要求你们通过数学建模来完成以下任务:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。
(2) 通过数据分析,说明重金属污染的主要原因。
(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?题目A题城市表层土壤重金属污染分析摘要:本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。
在设计整个区域配置最少巡逻车辆时,本文设计了算法1:先将道路离散化成近似均匀分布的节点,相邻两个节点之间的距离约等于一分钟巡逻路程。
2011年厦门理工学院数学建模竞赛题目(请先阅读“论文封面及格式要求”)A题 推土机生产计划厦门市某重型机械厂通过对历史资料进行回归分析(即数据拟合),并给合今年上半年可能出现的影响推土机销售的因素,预测该厂2011年上半年的销售情况如下表所示:月份 1 2 3 4 5 6 销售量(台)42 32 41 67 25 29该厂的推土机2010年12月的销售均价为48万元/台,今年上半年的售价保持不变。
2010年12月末尚有49台未售出。
推土机从计划生产到售出会发生下列费用:(1)生产成本,包括固定成本(主要是指厂房、机器设备的折旧)和可变成本(钢材、其他材料和人工成本等,其中人工成本在可变成本中占到大约40%),按照2010年12月份的建材价格计算,可变成本(万元)与推土机生产台数的平方成正比,比例系数为0.5。
且可变成本与建材价格上涨幅度有关,例如建材价格上涨10%,则可变成本是按前面方法计算结果的1.1倍。
(2)销售费用,与当月的销售金额成正比。
(3)贮存费,生产出的推土机未售出的必须贮存,即该厂生产的推土机平均每台每月的贮存费为0.1万元。
2010年以来,央行和发改委出台了一系列措施平抑建材价格,但由于对建材需求结构而言,总体上求大于供的市场状况没有得到根本改善,预计今年上半年建材的价格仍会有一定的增长。
预计的增长速度(以2010年12月的价格为基准)见下表:月份 1 2 3 4 5 6 增长速度10% 10% 20% 20% 30% 30%该厂希望在上半年就把生产的推土机全部销售完,为使利润最大化,需要制定出从2011年1月到6月每月的生产计划(即每月完成多少台)。
(1)如果该厂的月生产能力没有限制,并且允许期货(即尚未下线的推土机)销售,但在6月底前要全部完成交货,如何制定月生产计划?(2)如果该厂每月的生产能力限于33台,并且允许期货(即尚未下线的推土机)销售,但在6月底前要全部完成交货,又该如何制定月生产计划?2011年厦门理工学院数学建模竞赛题目(请先阅读“论文封面及格式要求”)B题:放射性气体扩散的预测2011年3月11日, 日本近海发生9.0级地震并引发了大海啸,沿海的核电站受到破坏,开始释放出大量具有放射性的物质。
2011年全国研究生数学建模竞赛C题小麦发育后期茎秆抗倒性的数学模型小麦高产、超高产的研究始终是小麦育种家关注的热点问题。
随着产量的增加,小麦的单茎穗重不断增加。
但穗重的增加同时使茎秆的负荷增大,导致容易倒伏。
倒伏不但造成小麦减产,而且影响小麦的籽粒品质。
因此要实现小麦高产优质的跨越,就必须解决或尽量减少小麦的倒伏问题。
小麦倒伏从形式上可分为“根倒”和“茎倒”,一般都发生在小麦发育后期。
“根倒”主要与小麦种植区域的土壤品种与结构特性有关,本题不做讨论。
“茎倒”是高产小麦倒伏的主要形式,尤其是发生时间较早的“茎倒”,往往造成大幅度的减产。
“茎倒”的原因是茎秆与穗的自重和风载作用的迭加超过了小麦茎秆的承受能力。
解决倒伏问题的方法之一就是针对不同的产量,寻找小麦抗倒伏能力最佳的茎秆性状(包括株高、茎长、各节间长、各节茎外径、壁厚、茎秆自重、穗长、穗重等)。
各方面的专家通过分析影响小麦倒伏的各种因素,目前已经得到了一些结果,但是对抗倒伏能力最佳的茎秆性状还没有定论。
通过物理力学类比研究小麦抗倒伏性是一个新方向,已有一些工作。
值得我们进行探讨。
困难在于缺乏相关试验参考数据,我们只能在作较多假设下先进行粗略研究,为进一步试验提供根据。
题目的附件中收集了一批各个品种小麦的茎秆性状、产量、倒伏情况的数据。
显然还不够完整,各年参数选取不一致,也有数据缺漏。
但农业数据一年只有一次,短期内无法做到完整、全面、详尽,期望以后能逐渐完善。
请你们就已有数据解决以下几个问题:(1) 依据有些论文中判断茎秆抗倒性的抗倒伏指数公式:茎秆抗倒伏指数=茎秆鲜重×茎秆重心高度/茎秆机械强度对提供的数据,建立各品种小麦的茎秆抗倒指数公式。
对于缺乏有关参数的年份,可进行合理的假设,如通过已知数据求茎秆机械强度与茎秆粗厚的关系。
(2) 研究抗倒伏指数与茎秆外部形态特征之间的关系。
即给出抗倒伏指数与株高、穗长、各节间长、节间长度比、各节壁厚、穗重、鲜重等茎秆性状在最易引起倒伏期的相关性指标。
CUMCM - 2011问题C企业雇员退休制度改革退休金是一种保险待遇,这是对劳动者的社会和退休福利的资格的贡献的基础上,并以货币形式支付,以确保离退休职工的基本生活需要。
在中国,企业职工的基本退休养老金采取社会统筹与个人账户相结合的模式。
企业支付工人的总收入的比例(20%)社会统筹基金,个人账户支付个人收入的比例(8%)。
在这里,这两个基金已获得养老保险基金(EIF)的名称。
退休养老金由基础养老金和个人账户养老金两部分组成:。
根据每月(或)平均每年的社会收入和当时的个人缴费工资的比例(贡献指数),前者是从社会统筹基金分配,同时考虑到退休前上一年社会平均收入。
后者是特殊比例的个人账户基金。
退休养老金将调整与社会平均收入的提高。
如果雇员死亡,员工在社会统筹基金的基金不能报销,但留在个人账户养老金可以继承。
个人账户的储蓄利率与一年期存款利息率,由中国人民银行公布的。
为了简便起见,利率为3%。
退休金的数目与在个人工龄之间的个人工资和社会平均工资密切相关。
工资的提高关涉到经济的改善。
现在中国经济发展迅速,工资在最近数十年来大大提高。
根据经济发展的政策战略目标,人均国民生产总值(GNP)在21世纪中叶将达到一般中等发达国家的水平。
现在中国的养老保险制度改革是在过渡时期。
养老保险制度的一个重要对象是关于收入与支出EIF的均衡,这涉及到社会的稳定和有秩序地过渡到老龄化社会。
影响平衡的一个重要因素,是更新换代的速度,这是退休后的养老金和退休前的收入的比例。
根据全国基本养老养老保险制度的总体思路,预期目标基本养老保险的替代率是58.5%。
如果替代率较低,退休人员的生活标准就低,而养老保险基金的收入和支出之间的平衡将易于维护。
相反,退休人员如果具有一个高水准的生活,EIF的收入和开支之间的平衡将难以维持,并且会出现差距。
所谓的差距是EIF的收入低于支出的收入和支出之间的差额。
附录I给出了多年来在山东省的平均收入的数据。
题目B题交巡警服务平台的设置与调度摘要:本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。
在设计整个区域配置最少巡逻车辆时,本文设计了算法1:先将道路离散化成近似均匀分布的节点,相邻两个节点之间的距离约等于一分钟巡逻路程。
由警车的数目m,将全区划分成m个均匀的分区,从每个分区的中心点出发,找到最近的道路节点,作为警车的初始位置,由Floyd算法算出每辆警车3分钟或2分钟行驶路程范围内的节点。
考虑区域调整的概率大小和方向不同会影响调整结果,本文利用模拟退火算法构造出迁移几率函数,用迁移方向函数决定分区的调整方向。
计算能满足D1的最小车辆数,即为该区应该配置的最小警车数目,用MATLAB计算,得到局部最优解为13辆。
在选取巡逻显著性指标时,本文考虑了两个方面的指标:一是全面性,即所有警车走过的街道节点数占总街道节点数的比例,用两者之比来评价;二是均匀性,即所有警车经过每个节点数的次数偏离平均经过次数的程度,用方差值来大小评价。
问题三:为简化问题,假设所有警车在同一时刻,大致向同一方向巡逻,运动状态分为四种:向左,向右,向上,向下,记录每个时刻,警车经过的节点和能够赶去处理事故的点,最后汇总计算得相应的评价指标。
在考虑巡逻规律隐蔽性要求时,文本将巡逻路线进行随机处理,方向是不确定的,采用算法2进行计算,得出相应巡逻显著指标,当车辆数减少到10辆或巡逻速度变大时,用算法2计算巡逻方案和对应的参数,结果见附录所示。
本文最后还考虑到4个额外因素,给出每个影响因素的解决方案。
关键词:模拟退火算法;Floyd算法;离散化一问题的重述110警车在街道上巡逻,既能够对违法犯罪分子起到震慑作用,降低犯罪率,又能够增加市民的安全感,同时也加快了接处警时间,提高了反应时效,为社会和谐提供了有力的保障。
现给出某城市内一区域,其道路数据和地图数据已知,该区域内三个重点部位的坐标分别为:(5112,4806),(9126, 4266),(7434 ,1332)。
城市学院2010—2011学年第二学期《数学建模》课程考试试题(开卷)年级:09级 专业:机械1班 学号:20940501115 姓名:李明泽1. 游泳队员分配问题某游泳队拟选用 甲,乙,丙,丁四名游泳队员组成一个4*100m 混合泳接力队,参加今年的锦标赛。
他们的100m 自由泳,蛙泳,蝶泳,仰泳的成绩如下表所示。
问 甲,乙,丙,丁 四名队员各自游什么姿势,才最有可能取得最好成绩。
请建立数学模型,并写出用Lingo 软件的求解程序。
解:引入0-1变量Xij ,若选择队员i 参加泳姿j 的比赛,记Xij=1,否则记Xij=0根据组成接力队的要求,Xij 应该满足两个约束条件:第一, 每人最多且只能入选4种泳姿之一,即对于i=1234;应有Xij=1;第二, 每种泳姿必须有一人且只能有一人入选,即对于j=1234;应有Xij=1当队员i 入选泳姿j 是,CijXij 表示他的成绩,否则CijXij=0。
于是接力赛成绩可表示为Z=∑∑==4141j i CijXij ,这就是改问题的目标函数。
综上,这个问题的0-1规划模型可写作Min Z= Z=∑∑==4141j i CijXij ;S .t .∑=41j Xjy =1,i=1,2,3,4; ∑=41i Xjy =1,i=1,2,3,4将题目给数据代入这一模型,并输入LIGDO :Min =56*x11+74*x12+61*x13+63*x14+63*x21+69*x22+65*x23+71*x24+57*x31+77*x32+63*x33+67*x34+55*x41+76*x42+62*x43+62*x44;x11+x12+x13+x14=1;x21+x22+x23+x24=1;x31+x32+x33+x34=1;x41+x42+x43+x44=1;x11+x21+x31+x41=1;x12+x22+x32+x42=1;x13+x23+x33+x43=1;x14+x24+x34+x44=1;@bin(x11);@bin(x12);@bin(x13);@bin(x14);@bin(x21);@bin(x22);@bin(x23);@bin(x24);@bin(x31);@bin(x32);@bin(x33);@bin(x34);@bin(x41);@bin(x42);@bin(x43);@bin(x44);求解可以得到最优解如下:2.钢筋切割问题设某种规格的钢筋原材料每根长10m,求解如下优化问题:1) 现需要该种钢筋长度为4m的28根,长度为1.8m的33根,问至少需要购买原材料几根?如何切割?2)如需要该种钢筋长度为4m的28根,长度为1.8m的33根, 长度为3。
2011年数学建模B题参考答案摘要本论文主要研究合理设置与调度交巡警服务平台问题。
通过合理设置交巡警服务平台的位置、分配其管辖范围以及合理调度,使各交巡警服务平台最大程度的发挥其职能。
针对问题一:(1)对交巡警服务平台划分管辖区域实际上是利用最短路算法解决平台到其他任意节点的最短路问题。
考虑在以及警务资源有限两个条件,合理为交巡警服务平台分配管辖区域。
通过C++编程和WINQSB软件,用Dijkstra算法计算出任意两节点之间的最短路,将A区节点划分为20个区域,从而得到各个交巡警服务平台的管辖范围。
(见表2)(2)此问题是20个警务平台警力派往13个要道路口的最优分配问题,建立0-1规划模型,得到A区交巡警服务平台对十三条交通要道的快速全封锁的解决方案。
即在最短的时间内,可以全部封锁十三条交通要道。
假设一个交巡警服务平台可以封锁一个路口,将问题简化,转化为n-n的分配问题。
(3)交巡警服务平台工作量和出警时间可以由平台辖区内发案率作为标准,对问题进行定性与定量分析,运用分阶段决策思想利用Excel求出并比较添加交巡警服务平台前后发案率的方差得出分别在节点90、69、31处增加交巡警服务平台。
针对问题二:(4)交巡警平台设置合理与否,与各城区人口比例、各城区重要交通要道个数、各城区发案率都和其自己城区交巡警平台个数有着直接关系。
考虑一个市交警平台设置方案的合理性,可以以城区为单位,进行比较判断。
为了方便计算分析,定义了交巡警平台设置系数,于是建立了城区合理性判断模型:城区人口、城区要道个数、城区发案率总和以及交警平台设置系数的乘积为各城区交巡警平台个数,得出结果B、C城区交巡警设置不合理,分析原因后,对平台位置进行重新分配,对方案进行了优化。
(5)本题是求围堵犯罪嫌疑人的最优化问题,通过定性与定量分析,可用十二个节点10、14、560、561、581、177、202、203、317、264、248、251围堵将犯罪嫌疑人堵截在A、C两区。