线性代数1.5 (1)矩阵的初等变换
- 格式:pptx
- 大小:328.60 KB
- 文档页数:19
线性代数-矩阵的初等变换
矩阵的初等变换是线性代数中的基本运算,初等变换包括三种初等⾏变换与三种初等列变换。
分别为:
对换变换,即i ⾏与j ⾏进⾏交换,记作r i <->r j ;数乘变换,⾮零常数k 乘以矩阵的第i ⾏,记作kr i ;倍加交换,矩阵第i ⾏的k 倍加到第j ⾏上,记作r j + kr i
对应关系换成列,即为三种初等列变换。
矩阵变换可以化简矩阵、解线性⽅程组、求矩阵的逆矩阵。
⾏阶梯形的定义:
1、对于⾏⽽⾔,若有零⾏,则零⾏均在⾮零⾏的下⽅;
2、从第⼀⾏开始,每⾏第⼀个⾮零元素前⾯的零逐⾏增加。
对于矩阵A,很显然符合⾏阶梯形的定义:
1234502456000070
对第⼀⾏作 r1 - r2 变换得到矩阵:
10−1−1−10245600007
继续作 0.5 r2 变换
10−1−1−10125/23000070
r2 - 3/7 r3; r1 + 1/7r3 变换10−1−100125/200000700000
1/7 r3 变换
10−1−100125/20000010
对于矩阵A mxn ,通过有限次初等变换可以转换成⾏阶梯形的形式。
A的最简形:⾮零⾏的第⼀个⾮零元素是1,且1所在的列,⾮零元素均为零。
显然最后⼀个⾏阶梯形矩阵符合A的⾏最简形定义。
A的标准型:左上⾓是⼀个r阶的单位矩阵,其余元素为零。
[
]
[
][
]
[][
]
Processing math: 100%。
矩阵的初等变换及应用内容摘要:矩阵是线性代数的重要研究对象。
矩阵初等变换是线性代数中一种重要的计算工具,利用矩阵初等变换,可以求行列式的值,求解线性方程组,求矩阵的秩,确定向量组向量间的线性关系。
一矩阵的概念定义:由于m×n个数aij(i=1,2,….,m;j=1,2,….,n)排成的m行n列的数表,称为m行n列,简称m×n矩阵二矩阵初等变换的概念定义:矩阵的初等行变换与初等列变换,统称为初等变换1.初等行变换矩阵的下列三种变换称为矩阵的初等行变换:(1) 交换矩阵的两行(交换两行,记作);(2) 以一个非零的数乘矩阵的某一行(第行乘数,记作);(3) 把矩阵的某一行的倍加到另一行(第行乘加到行,记为).1.初等列变换把上述中“行”变为“列”即得矩阵的初等列变换3 ,如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A 与矩阵B等价,记作A~B矩阵之间的等价关系具有下列基本性质:(1) 反身性;(2) 对称性若,则;(3) 传递性若,,则.三矩阵初等变换的应用1.利用初等变换化矩阵为标准形定理:任意一个m×n矩阵A,总可以经过初等变换把它化为标准形2.利用初等变换求逆矩阵求n阶方阵的逆矩阵:即对n×2n矩阵(A¦E)施行初等行变换,当把左边的方阵A变成单位矩阵E的同时,右边的单位矩阵也就变成了方阵A的逆矩阵A^(-1)即(A|E)经过初等变换得到(E|A^(-1))这种计算格式也可以用来判断A是否可逆,当我们将A化为行阶梯形矩阵时,若其中的非零行的个数等于n时,则A可逆,否则A不可逆。
设矩阵可逆,则求解矩阵方程等价于求矩阵,为此,可采用类似初等行变换求矩阵的逆的方法,构造矩阵,对其施以初等行变换将矩阵化为单位矩阵,则上述初等行变换同时也将其中的单位矩阵化为,即.这样就给出了用初等行变换求解矩阵方程的方法.同理, 求解矩阵方程等价于计算矩阵亦可利用初等列变换求矩阵. 即.3.利用矩阵初等变换求矩阵的秩矩阵的秩的概念是讨论向量组的线性相关性、深入研究线性方程组等问题的重要工具. 从上节已看到,矩阵可经初等行变换化为行阶梯形矩阵,且行阶梯形矩阵所含非零行的行数是唯一确定的, 这个数实质上就是矩阵的“秩”,鉴于这个数的唯一性尚未证明,在本节中,我们首先利用行列式来定义矩阵的秩,然后给出利用初等变换求矩阵的秩的方法.定理:矩阵的初等变换不改变矩阵的秩,即若A~B则R(A)=R(B)为求矩阵的秩,只要把矩阵用初等行变换变成阶梯矩阵解体矩阵中非零行的行数即是该矩阵的秩利用矩阵值得概念,能够讨论线性方程组有解的条件,然后通过研究向量组的线性相关性,向量组的秩等重要概念,讨论线性方程组的结构。
线性代数第五讲矩阵的初等变换及其性质一、初等矩阵及其性质在前面的讲义中,我们已经学习到了矩阵的基本概念,包括矩阵的定义、矩阵的运算、矩阵的秩等基本知识点。
本章我们将学习一些矩阵的“变换”的概念,主要介绍矩阵的初等变换及其性质。
矩阵的初等变换指的是将一个矩阵通过某种方式变化成另外一个矩阵的运算。
初等变换可以分为三种:交换矩阵的某两行或某两列;用一个非零数乘以矩阵的某一行或某一列;用一个非零数乘以矩阵的某一行或某一列,再加到另一行或另一列上。
这三种变换分别称为矩阵的第一类、第二类和第三类变换。
对于任意一个矩阵A,我们可以进行一系列的初等变换,从而将A变换成标准形。
标准形主要有三种:行简化阶梯形矩阵、列简化阶梯形矩阵和对角矩阵。
从定义可以看出,行简化阶梯形矩阵和列简化阶梯形矩阵都是初等矩阵形式,是矩阵的标准形。
初等矩阵的定义:如果矩阵B是A通过一次初等变换得到的,则称矩阵B为矩阵A的初等矩阵。
我们前面已经学习过,矩阵的逆是一个重要的概念。
下面我们就来发现一个有趣的性质:一个矩阵是可逆矩阵,当且仅当它可以表示为一系列初等矩阵的乘积。
定理1:矩阵可逆的充分必要条件是它可以表示为一系列初等矩阵的乘积。
以上两个定理的证明可以参考矩阵论相关的课程。
二、矩阵的等价关系在学习矩阵的初等变换时,我们介绍了三类变换,也就是矩阵的第一类、第二类和第三类变换。
我们可以使用这三类变换将一个矩阵变换成另一个矩阵。
如果对于任意的矩阵A、B,B可以通过一系列的初等变换变成A,那么我们就称A和B是等价的。
性质1:等价关系具有反身性、对称性和传递性。
性质2:如果一个矩阵可以通过初等变换化为一个标准形,则标准形是唯一的。
性质3:如果一个矩阵可逆,则它和单位矩阵等价。
性质4:如果A、B等价,则r(A)=r(B)。
三、矩阵的秩和特殊矩阵在前面的讲义中,我们已经学习到了矩阵的秩的定义和性质。
矩阵的秩是矩阵实际所包含的信息量,因此秩是矩阵的一个重要特征。
在线性代数中,矩阵的初等变换是指以下三种变换类型:
(1) 交换矩阵的两行(列);
(2) 以一个非零数k乘矩阵的某一行(列);
(3) 把矩阵的某一行(列)的z倍加于另一行(列)上。
容易看出,这三种初等变换都不会改变一个方阵A的行列式的非零性,所以如果一个矩阵是方阵,我们可以通过看出
等变换后的矩阵是否可逆,来判断原矩阵是否可逆。
当然,这只是矩阵初等变换的一个小小的应用,它在线性代数中的更
重要的应用主要体现在以下几点:求矩阵的秩,求向量组的极大无关组、秩,求解线性方程组,求多项式的最大公因式等。
求矩阵初等变换化为行最简行形的技巧T.T
用初等行变换化行最简形的技巧 1. 一般是从左到右,一列一列处理 2. 尽量避免分数的运算具体操作:
1. 看本列中非零行的首非零元
若有数a是其余数的公因子, 则用这个数把第本列其余的数消成零. 2. 否则, 化出一个公因子。