鸡兔同笼知识点归纳
- 格式:docx
- 大小:37.15 KB
- 文档页数:3
鸡兔同笼解题技巧汇总鸡兔同笼问题是中国古代著名的数学趣题之一,也是小学数学中常见的一类应用题。
它不仅有趣,还能锻炼我们的逻辑思维和数学运算能力。
下面就为大家汇总一些常见的解题技巧。
一、假设法假设法是解决鸡兔同笼问题最常用的方法之一。
我们可以先假设笼子里全是鸡或者全是兔,然后根据实际的脚数与假设情况下的脚数差异来计算鸡和兔的数量。
假设全是鸡:如果笼子里全是鸡,那么每只鸡有 2 只脚。
假设笼子里一共有 n 个头,那么脚的总数就是 2n 只。
但实际的脚数比这个假设的脚数要多,多出来的部分就是因为把兔当成鸡来计算造成的。
每只兔有 4 只脚,而每只鸡只有 2 只脚,每把一只兔当成鸡,就少算了 2 只脚。
所以用实际脚数与假设脚数的差值除以 2,就可以得到兔的数量。
假设全是兔:同理,如果假设笼子里全是兔,那么每只兔有 4 只脚,脚的总数就是 4n 只。
但实际脚数比这个假设的脚数要少,少的部分就是因为把鸡当成兔来计算造成的。
每把一只鸡当成兔,就多算了 2 只脚。
所以用假设脚数与实际脚数的差值除以 2,就可以得到鸡的数量。
例如:笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有94 只脚。
假设全是鸡,脚的总数为:35×2 = 70(只)实际脚数比假设多:94 70 = 24(只)每只兔比鸡多的脚数:4 2 = 2(只)兔的数量:24÷2 = 12(只)鸡的数量:35 12 = 23(只)二、方程法方程法是一种比较直接和通用的方法。
我们可以设鸡的数量为x 只,兔的数量为 y 只,然后根据头的总数和脚的总数列出方程组来求解。
根据头的总数:x + y =总头数根据脚的总数:2x + 4y =总脚数例如:还是上面的例子,设鸡有 x 只,兔有 y 只。
x + y = 35 (1)2x + 4y = 94 (2)由(1)式得:x = 35 y (3)将(3)式代入(2)式:2×(35 y) + 4y = 9470 2y + 4y = 942y = 24y = 12将 y = 12 代入(1)式:x + 12 = 35,x = 23所以鸡有 23 只,兔有 12 只。
鸡兔同笼(含答案)一、知识点1、由来大约在1500年前,《孙子算经》中就记载了这个有趣的问题。
书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?2、方法回顾画图法列表法砍足法3、假设法鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到。
如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍二、学习目标1、熟悉鸡兔同笼的“砍足法”和“假设法”。
2、利用鸡兔同笼的方法解决一些实际问题。
三、典型例题例题1鸡兔同笼,头共46只,足共128只,鸡兔各几只?练习1修远家养了一些鸡和兔子,同时养在一个笼子里,修远数了数,它们共有35个头,94只脚。
问:修远家养的鸡和兔各有多少只?例题2动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只?练习2一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只?例题3在一个停车场上,现有车辆41辆,其中汽车有4个轮子,摩托车有3个轮子,这些车共有127个轮子,那么三轮摩托车有多少辆?练习3体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元、裤子每件19元,问老师买上衣和裤子各多少件?例题4一百个和尚刚好喝一百碗粥,一个大和尚喝三碗粥,三个小和尚喝一碗粥,那么大和尚有多少个,小和尚有多少个?练习4100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?选讲题工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元。
运完这批花瓶后,工人共得4400元,则损坏了多少个?练习乐宝百货商店委托搬运站运送100只花瓶。
鸡兔同笼问题学生/课程年级学科授课教师日期时段核心内容鸡兔同类问题课型一对一教学目标1.理解鸡兔同笼问题的数量关系2.会根据题目所给条件,选择假设法,分组法等方法解题;3.理解鸡兔同笼中各数量间的关系,并能够灵活运用解决实际生活问题重、难点重点:教学目标2,3 难点:教学目标3知识导图导学一:鸡兔同笼——基本题型知识点讲解 1:列表法解鸡兔同笼当题中数字比较小时,可以用列表法解决鸡兔同笼问题例 1. 笼子里有若干只鸡和兔。
从上面数,有8个头,从下面数,有26只脚。
鸡和兔各有几只?我爱展示1.笼子里有若干只鸡和兔。
从上面数,有8个头,从下面数,有26只脚。
鸡和兔各有几只?知识点讲解 2:假设法解鸡兔同笼(1)使用假设法的前提:已知鸡与兔头的和,腿的和,求鸡和兔的只数。
(2)解题步骤(3)公式解法1:假设全部都是兔:设兔得鸡(兔的脚数×总只数-总脚数)÷鸡与兔的腿差=鸡的只数总只数-鸡的只数=兔的只数解法2:假设全部都是鸡:设鸡得兔(总脚数-鸡的脚数×总只数)÷鸡与兔的腿差=兔的只数总只数-兔的只数=鸡的只数例 1. 笼子里有若干只鸡和兔。
从上面数,有35个头,从下面数,有94只脚。
鸡和兔各有多少只?我爱展示1.鸡兔同笼,共有头100个,足316只,那么鸡有多少只?兔有多少只?知识点讲解 3:鸡兔同笼变形题对错得分题:腿差=得分+扣分赔偿型:腿差=运费+赔偿解题关键:学会找题中的鸡或兔,找头的和,腿的和例 1.乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。
问:搬运过程中共打破了几只花瓶?例 2. 小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张?例 3.开心辞典智力竞赛中,开心队抢答了10道题,如果以100分开始算分,答对一题加10分,答错一题减10分,最后开心队得了140分,开心队答错了几题?我爱展示1.运输2000只陶瓷碗,运费按到达时完好的数目计算,每只3角,如有破损,破损1个陶瓷碗还要倒赔7角,结果得到运费535元,问这次搬运中陶瓷碗损坏了( )只。
鸡兔同笼问题五种基本公式和例题讲解。
鸡兔同笼问题五种基本公式和例题讲解鸡兔问题是一种经典的数学问题,下面介绍五种基本公式及例题讲解。
公式1:已知总头数和总脚数,求鸡、兔各多少:兔数 = (总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)鸡数 = 总头数 - 兔数或者是鸡数 = (每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)兔数 = 总头数 - 鸡数例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”XXX:(100-2×36)÷(4-2)=14(只)兔,36-14=22(只)鸡。
解二:(4×36-100)÷(4-2)=22(只)鸡,36-22=14(只)兔。
公式2:已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式兔数 = (每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)鸡数 = 总头数 - 兔数或者是鸡数 = (每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)兔数 = 总头数 - 鸡数公式3:已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
兔数 = (每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)鸡数 = 总头数 - 兔数或者是鸡数 = (每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)兔数 = 总头数 - 鸡数公式4:得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:不合格品数= (1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)或者是不合格品数 = 总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。
鸡兔同笼问题全汇总“鸡兔同笼”是一个古老而有趣的数学问题,常常出现在小学奥数和数学教材中。
它看似简单,却蕴含着丰富的数学思维和解题方法。
接下来,让我们对鸡兔同笼问题来个全面的汇总。
一、鸡兔同笼问题的基本形式通常,鸡兔同笼问题会这样描述:在一个笼子里,有若干只鸡和兔。
从上面数,有若干个头;从下面数,有若干只脚。
问鸡和兔各有多少只?例如:笼子里有若干只鸡和兔,从上面数有 8 个头,从下面数有 26 只脚。
问鸡和兔各有几只?二、常见的解题方法1、假设法假设全是鸡,那么脚的总数就应该是头的数量乘以 2。
如果总脚数比这个假设的脚数多,多出来的就是兔子比鸡多的脚数。
因为每只兔子比每只鸡多2 只脚,所以用多出来的脚数除以2 就得到兔子的数量,再用总数减去兔子的数量就是鸡的数量。
以刚才的例子来说,假设 8 个头全是鸡,那么脚应该有 8×2 = 16 只。
但实际有 26 只脚,多出来 26 16 = 10 只脚。
这 10 只脚就是兔子多出来的,每只兔子比鸡多 2 只脚,所以兔子有 10÷2 = 5 只,鸡就有8 5 = 3 只。
假设全是兔的方法也是类似的,先算出假设全是兔时的脚数,与实际脚数比较,少的部分除以 2 就是鸡的数量。
2、方程法设鸡的数量为 x 只,兔的数量为 y 只。
根据头的数量和脚的数量可以列出两个方程:x + y = 8 (头的总数)2x + 4y = 26 (脚的总数)通过解方程组,可以求出 x 和 y 的值,从而得到鸡和兔的数量。
3、列表法依次列举鸡和兔可能的数量组合,计算对应的脚数,直到找到符合条件的组合。
这种方法比较繁琐,但对于数量较小的情况还是可行的。
三、鸡兔同笼问题的变形1、已知头和脚的数量差比如:笼子里鸡和兔共有 30 个头,鸡脚比兔脚少 20 只,问鸡和兔各有多少只?这种情况下,可以先假设鸡和兔的脚数一样多,然后根据脚数差逐步调整鸡和兔的数量。
2、已知脚和头的数量比例如:笼子里鸡和兔的脚数比是 2:3,头共有 20 个,问鸡和兔各有多少只?可以根据脚数比得出鸡和兔数量的关系,再结合头的数量求解。
必备的初二上册数学知识点之鸡兔同笼的
问题
鸡兔问题:已知鸡兔的总头数和总腿数。
求鸡和兔各多少只的一类应用题。
通常称为鸡兔问题又称鸡兔同笼问题解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是鸡或全是兔,然后根据出现的腿数差,可推算出某一种的头数。
解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数
兔子只数=(总腿数-2×总头数)÷2
如果假设全是兔子,可以有下面的式子:
鸡的只数=(4×总头数-总腿数)÷2
兔的头数=总头数-鸡的只数
例鸡兔同笼共 50 个头, 170 条腿。
问鸡兔各有多少只?
兔子只数 ( 170-2 × 50 )÷ 2 =35 (只)
鸡的只数 50-35=15 (只)
以上就是为大家整理的必备的初二上册数学知识点之鸡兔同笼的问题,怎么样,大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利!。
应用题-经典应用题-鸡兔同笼问题基本知识-4星题课程目标知识提要鸡兔同笼问题基本知识•鸡兔同笼的由来大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚.问笼中各有几只鸡和兔?•假设法解鸡兔同笼(1)假设全是兔子鸡数=(每只兔子脚数×鸡兔总数−实际脚数)÷(每只兔子脚数−每只鸡的脚数)鸡数=鸡兔总数−鸡数(2)假设全是鸡兔数=(实际脚数−每只鸡脚数×鸡兔总数)÷(每只兔子脚数−每只鸡的脚数)鸡数=鸡兔总数−兔数•分组法解鸡兔同笼腿数相同,2鸡1兔为一组;头数相同,1鸡1兔为一组。
精选例题鸡兔同笼问题基本知识1. 甲乙二人相距30米面对面站好.两人玩“石头、剪子、布”.胜者向前走3米,负者向后退2米.平局两人各向前走1米.玩了15局后,甲距出发点17米,乙距出发点2米.甲胜了次.【答案】7【分析】有胜有负的局,两人距离缩短1米;平局两人距离缩短2米.15局后两人之间的距离缩短15~30米.(1)如果两人最后的效果都是后退,两人之间的距离会变大,与上述结论矛盾.(2)如果两人最后的效果是“一人前进,另一人后退”,如果乙前进,甲后退,两人距离增大,这与(1)矛盾.则一定是甲前进,乙后退,两人距离会缩短15米.但如果两人距离缩短15米,只能是15局都是“胜负局”.假设甲15局都是胜者,他会前进45米,每把一次“胜者”换成一次“负者”,他会少前进5米.45减去多少个5都不可能等于17,这种情况不成立.(3)如果两人最后的效果是都向前进,两人的距离缩短19米.假设15局都是“胜负局”,两人之间距离缩短15米,每把一局“胜负局”换成平局,两人之间距离多缩短1米.由“鸡兔同笼”法求出,“胜负局”共11局,平局4局.4局平局中甲前进了4米.假设甲其余11局都是胜者,他一共前进33+4=37(米).每把一局胜局改为败局,他会退5米,要想前进17米,则改(37−17)÷5=4(局).验算:甲7胜4平4败,前进21+4−8=17(米);乙4胜7败4平,前进12+4−14=2(米).2. 一张试卷共有21道题,答对一道得8分,答错一道扣6分.小明答完了所有的题目,却得了零分,他答对道题.【答案】9【分析】若全部答对,则小明应得21×8=168(分).在这168分中,小明若用1道答对题目换1道答错题目,则损失了8分(应得的)+6分(扣掉的)=14分,而此时小明得了0分,说明小明的168分全部损失掉了,即错了168÷14=12(道),则答对的题数为21−12=9(道).3. 某班学生在运动会上,进入前三名的有10人次,已知获第一名可得9分,获第二名可得5分,获第三名可得2分,其他名次不记分,该班共计得64分,其中获第一名的至多有人次.【答案】5【分析】假设获得第一名的有10人次,那么共计应该得10×9=90(分),而实际上得了64分相差了90−64=26(分).每把一个第一名变成第二名会少得4分,每把一个第一名变成第三名会少得7分.要求获得第一名的要尽可能多,那么把第一名变成第三名的就要尽可能多,26=7×2+4×3,所以第二名有3人次,第三名有2人次,第一名有5人次.4. 张明、李华两人进行射击比赛,规定每射中一发得20分,脱靶一发扣12分,两人各射了10发,共得208分,其中张明比李华多64分,则张明射中发.【答案】8【分析】张明得分(208+64)÷2=136(分),假设张明10发全中,应得20×10=200(分),多了200−136=64(分),因此张明脱靶64÷(20+12)=2(发),射中8发.5. 一次英语考试只有20道题,做对一题加5分,做错一题倒扣3分(不做算错).皮皮这次没考及格,不过他发现,只要他少错一题就能刚好及格.他做对了道题.【答案】14【分析】根据题意可知皮皮这次得了60−5−3=52(分),假设皮皮20道题全做对,应得20×5=100(分),少了100−52=48(分),因此皮皮错了48÷(5+3)=6(道),做对了20−6=14(道).6. 一个奥特曼与一群小怪兽战斗.已知奥特曼有一个头、两条腿,开始时每只小怪兽有两个头、五条腿.在战斗过程中有一部分小怪兽分身了,一只小怪兽分成了两只,分身后的每只小怪兽有一个头、六条腿(不能再次分身),某个时刻战场上一共有21个头,73条腿,那么这时共有只小怪兽.【答案】13【分析】可知小怪兽共有20个头和71条腿.1个头、6条腿的小怪兽肯定为偶数,把它们两个一对捆在一起,则每组有2个头和12条腿.用假设法易得2个头、12条腿的小怪兽有(71−10×5)÷(12−5)=3(组),2个头5条腿的小怪兽有10−3=7(只),共2×3+7= 13(只).7. 有一场球赛,售出50元、80元、100元的门票共800张,收入56000元.其中80元的门票和100元的门票售出的张数相同.请回答:售出50元的门票张;售出80元的门票张;售出100元的门票张.【答案】400;200;200【分析】假设这800张门票都是50元,应得收入800×50=40000(元),少了56000−40000=16000(元),因此80、100元门票各有16000÷(80+100−50−50)=200(张),50元门票800−200−200=400(张).8. 40只脚的蜈蚣与9个头的龙在同一个笼子中,共有50个头和220只脚,如果每只蜈蚣有1个头,那么每条龙有只脚.【答案】4【分析】蜈蚣有40只脚,总脚数为220,所以蜈蚣的头数不大于5;总头数为50,且龙的头数是9的倍数,所以蜈蚣只能有5只,龙有5条.则每条龙有(220−40×5)÷5=4(只)脚.9. 张阿姨给幼儿园两个班的孩子分水果,大班每人分得5个橘子和2个苹果,小班每人分得3个橘子和2个苹果.张阿姨一共分出了135个橘子和70个苹果,那么小班有个孩子.【答案】20【分析】两班共有70÷2=35(人),假设每个孩子都分到5个橘子和2个苹果,则可以得到小班的人数为(35×5−135)÷(5−3)=20(人).10. 王伯伯养了一些鸡、兔和鹤.其中鹤白天双足站立,夜间则单足站立;鸡晚上睡觉时则把头藏起来.细心的悦悦发现:不论白天还是晚上,足数和头数的差都一样,那么,如果白天悦悦可以数出56条腿,晚上会数出个头.【答案】14【分析】白天比晚上多了一个鸡头,还多了一只鹤脚;由不论晚上还是白天,足数和头数的差都一样,所以,鹤的数量和鸡的数量是一样的.将鸡和鹤打一个包,则在白天这个包和兔子腿数一样为4,在晚上这个包和兔子头数一样为1;则可以得出晚上的头数为56÷4=14(个).11. 一些奇异的动物在草坪上聚会.有独脚兽(1个头、1只脚)、双头龙(2个头、4只脚)、三脚猫(1个头、3只脚)和四脚蛇(1个头、4只脚).如果草坪上的动物共有58个头、160只脚,且四脚蛇的数量恰好是双头龙的2倍,那么其中独脚兽有只.【答案】7【分析】2只四脚蛇和1只双头龙共有4个头和12只脚,相当于4只三脚猫.按照鸡兔同笼问题的解法有(58×3−160)÷(3−1)=7(只).所以共有7只独脚兽.12. 围棋24元一副,象棋18元一副,用300元恰好可以购买两种棋共14副,其中象棋有副.【答案】6【分析】假设全是围棋24×14=336(元),则象棋有(336−300)÷(24−18)=6(副).13. 小兔与蜘蛛共50名学员参加踢踏舞训练营,一段时间后,小兔学员走了一半,蜘蛛学员增加了一倍,但老师发现学员的脚既没有增加也没有减少,那么原有小兔只.(注:蜘蛛有8只脚)【答案】40【分析】一只蜘蛛的脚数是一只小兔脚数的2倍,而原来所有小兔一半的脚数等于原来所有蜘蛛1倍的脚数,所以原来小兔只数是原来蜘蛛只数的4倍,所以原有小兔50÷(4+1)×4=40只.14. 甲乙二人相距30米面对面站好.两人玩“石头剪刀布”.胜者向前走8米,负者向后退5米.平局两人各向前走1米.玩了10局后,两人相距7米.那么两人平了局.【答案】7【分析】因为每赛完一局,胜者向前走8米,负者向后退5米.而平局两人各向前走1米.相当于,如果分出胜负两人的距离减少3米,平局两人的距离减少2米.玩了10局后,两人的距离减少了30−7=23(米).所以利用假设法可以求得两人平了(3×10−23)÷(3−2)=7(局).15. 迷宫里的灯有两种:一种是上吊3个大灯,下缀6个小灯的九星连环灯;一种是上吊3个大灯,下缀15个小灯的十八星连环灯.已知大灯有408个,小灯有1437个,那么,九星连环灯有个,十八星连环灯有个.【答案】67;69【分析】根据题意两种类型的灯共有408÷3=136(盏),假设这136盏都是上吊3个大灯,下缀6个小灯的九星连环灯,共有小灯136×6=816(个),少了1437−816=621(个).因此十八星连环灯有621÷(15−6)=69(个),九星连环灯有136−69=67(个).16. 甲种农药每千克兑水20千克,乙种农药每千克兑水40千克,现为了提高药效,根据农科所意见,甲乙两种农药混合使用,已知两种农药共5千克,要兑水140千克,则其中甲种农药有千克.【答案】3【分析】假设这5千克都是乙种农药,应兑水40×5=200(千克),少了200−140=60(千克),因此甲种农药有60÷(40−20)=3(千克).17. 1千克大豆可以制成3千克豆腐,制成1千克豆油则需要6千克大豆.大豆2元1千克,豆腐3元1千克,豆油15元1千克.一批大豆进价920元,制成豆腐或豆油销售后得到1800元,这批大豆中有千克被制成了豆油.【答案】360【分析】共买920÷2=460(千克),6千克大豆可以制作18千克豆腐,18千克豆腐共54元,6千克大豆可以制作1千克豆油,1千克豆油15元,假设大豆都制成了豆腐,则买460÷6×54=4140(元)因为其中(4140−1800)÷(54−15)=60(份)制成了豆油,则制成豆油的有60×6=360(千克).18. 传说中的九头鸟每只有9个头,1条尾巴;而九尾鸟每只有9条尾巴,1个头.有一些九头鸟和九尾鸟在一起,数它们的头共有580个,数它们的尾共有900条.那么九头鸟和九尾鸟共有只.【答案】148【分析】 将所有的九头鸟和九尾鸟的头数和尾巴数加起来,应该是它们总数的总和的 10 倍,所以九头鸟和九尾鸟共有 (580+900)÷10=148(只).19. 某班共 36 人买了铅笔,共买了 50 支,有人买了 1 支,有人买了 2 支,有人买了 3 支.如果买 1 支的人数是其余人数的 2 倍,则买 2 支铅笔的人数是 .【答案】 10【分析】 设买 1 支铅笔的人数为 x ,其余人数则为 x 2,则有 x =72÷3=24,买 2 支和 3 支铅笔的总人数为 36−24=12(人),他们共买铅笔数为 50−24=26(支).为求出买 2 支铅笔的学生数,假设买 2 支、3 支的学生每人都买 3 支,则可求出买 2 支的学生数是:(12×3−26)÷(3−2)=10(人).说明:也可以设买 2 支和 3 支铅笔的人数分别为 y 和 z ,则可列出方程:{y +z =122y +3z =26即可得出 y =12×3−26=10.20. 动物园里有鸵鸟和梅花鹿若干,共有腿 122 条.如果将鸵鸟与梅花鹿的数目互换,则应有腿 106 条,那么鸵鸟有 只,梅花鹿有 头.【答案】 15;23【分析】 将一个梅花鹿“变”成鸵鸟,腿减少 2 条;腿一共减少 122−106=16 条,所以一共有 16÷2=8 头梅花鹿“变”成鸵鸟,即,原先梅花鹿比鸵鸟多 8 头.补上这 8 只鸵鸟,鸵鸟的数量和梅花鹿一样多,但腿增加了 2×8=16 条腿,共有腿 122+16=138 条;一只鸵鸟加一头梅花鹿有 6 条腿,所以共有 138÷6=23 只鸵鸟加梅花鹿.所以梅花鹿有 23 头,鸵鸟有 23−8=15 只.21. 一百个和尚刚好喝一百碗粥,一个大和尚喝三碗粥,三个小和尚喝一碗粥,那么大和尚有多少个,小和尚有多少个?【答案】 大和尚 25、小和尚 75【分析】 我们把大碗换小碗,换小碗盛粥,把一大碗粥分成三小碗粥,则原题变为一百个和尚喝三百碗粥,一个大和尚喝九碗粥,一个小和尚喝一碗粥.然后仍然用假设法:假设都是小和尚,只能喝1×100=100(碗),有一个大和尚被当成小和尚会少喝9−1=8(碗),一共少了300−100=200(碗).所以大和尚有200÷8=25(个);小和尚有100−25=75(个).22. 男生手里拿2个红气球、13个蓝气球,女生手里拿1个红气球、12个蓝气球,一共有62个红气球,且蓝气球的范围在495∼510之间,请问男生多少人?女生多少人?【答案】男生有22人;女生有18人.【分析】不管男生还是女生,每个人手中的蓝气球比红气球多11个,那么总的蓝气球比红气球多的必须是11的倍数,即▫−62是11的倍数,且▫的范围在495−510之间,则▫= 502才行,这样502−62=440才是11的倍数,那么总人数为440÷11=40人;假设这40人全是男生,那么会有红气球40×2=80个,比较:80−62=18个,将一个男生变成一个女生会少拿1个红气球,则有18÷1=18个女生,那么男生有22人.23. 犀牛、羚羊、孔雀三种动物共有头26个,脚80只,犄角20只.已知犀牛有4只脚、1只犄角,羚羊有4只脚,2只犄角,孔雀有2只脚,没有犄角.那么,犀牛、羚羊、孔雀各有几只呢?【答案】孔雀:12只;羚羊:6只;犀牛:8只.【分析】这道题有三种不同的动物混合在一起,这样假设起来会比较麻烦,我们可以观察一下:虽然有三种不同的动物,但是犀牛和羚羊都是4只脚,这样,只看脚数,就可以把孔雀与这两种动物分开,转化成我们熟悉的“鸡兔同笼”问题,然后再通过犄角的不同,把犀牛和羚羊分开,也就是说我们需要做两次“鸡兔同笼”.假设26只都是孔雀,那么就有脚:26×2=52(只),比实际的少:80−52=28(只),这说明孔雀多了,需要增加犀牛和羚羊.每增加一只犀牛或羚羊,减少一只孔雀,就会增加脚数:4−2=2(只).所以,孔雀有26−28÷2=12(只),犀牛和羚羊总共有26−12=14(只).假设14只都是犀牛,那么就有犄角:14×1=14(只),比实际的少:20−14=6(只),这说明犀牛多了羚羊少了,需要减少犀牛增加羚羊.每增加一只羚羊,减少一只犀牛,犄角数就会增加:2−1=1(只),所以,羚羊的只数:6÷1=6(只),犀牛的只数:14−6=8(只).24. 彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。
鸡兔同笼知识点:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?1.画图法:给每只动物先画上2条腿(也就是都看成鸡),这样一共用16条腿,还剩下10条腿。
一次增加2条腿,一只鸡就变成了一只兔,要把10条画完,要把5只鸡变成兔。
总结:画图的方法非常便于观察、非常容易理解。
2. 列表法:先假设有8只鸡这样一共就有16条腿,显然不对,再减去一只鸡,加上3. 假设法:观察上面的表格我们发现。
如果8只都是鸡,则一共只有16条腿,这样就比26条腿少10条腿,这是因为实际每只兔子比每只鸡多2条腿。
一共多了10条腿,于是兔就有10÷2=5(只),所以我们还可以这样去想:方法一:假设8只都是鸡那么兔有:(26-8×2)÷(4-2)=5(只)鸡有8-5=3(只)方法二:假设8只都是兔那么鸡有:(4×8-26)÷(4-2)=3(只)兔有8-3=5(只)公式1:(总脚数﹣鸡的脚数×总只数)÷(兔的脚数﹣鸡的脚数)=兔的只数;总只数﹣兔的只数=鸡的只数公式2:(兔的脚数×总只数﹣总脚数)÷(兔的脚数﹣鸡的脚数)=鸡的只数;总只数﹣鸡的只数=兔的只数1. 鸡兔同笼,共有6个头,20条腿,那么鸡有多少只?(画图法)2. 鸡兔一共有10颗头,32条腿,那么鸡有多少只?兔子有多少只?(列表法)3. 鸡兔同笼,有26个头,64条腿,鸡、兔各有几只?(假设法)4. 一个笼子里关了一些鸡和兔,从上面数头有100个,从下面数脚共有220只,笼子中有鸡,兔各多少只?(假设法)5. 乌龟和仙鹤同在一个池塘里,共有8个头,22只脚.请问:池塘里各有乌龟和仙鹤多少只?6. 一只蜘蛛有8条腿,一只蝉有6条腿,现在有蜘蛛和蝉共43只,共有292条腿,蜘蛛和蝉各有多少只?7. 停车场上停着三轮车和小轿车共10辆,总共37个轮子,三轮车和小轿车各有多少辆?8. 新星小学“环保卫士”小分队12人参加植树活动.男同学每人栽3棵树,女同学每人栽了2棵树,一共栽了28棵树.男女同学各几人?9. 2元一张的人民币和5元一张的人民币共63张,共计171元.2元一张和5元一张的人民币各有多少张?10.章老师收藏了8角的邮票和1元5角的邮票共80枚,总面值85元.他收藏的这两种邮票各有多少枚?11. 一名篮球运动员在一场比赛中一共投中10次,有2分球,也有3分球.已知这名运动员一共得了23分,他投中2分和3分球各多少个?12. 坪市中心小学有42位同学参加18桌乒乓球决赛,请问参加单打和双打决赛的各有几桌?13. 四(1)班同学去赤壁公园划船,全班43人,共租了11条船,大船、小船正好都坐满.大、小船各租了几条?(大船限坐5人,小船限坐3人)14.60个和尚吃了60个馒头,大和尚一人吃2个,小和尚2人吃一个,大和尚和小和尚各有多少人?15.某小学举行数学竞赛,每做对一题得9分,做错一题倒扣3分,共12道题,小华全做了,得了84分,他做对了多少道题?参考答案1.【答案】2【解析】2.【答案】4只鸡、6只兔。
应用题-经典应用题-鸡兔同笼问题基本知识-1星题课程目标知识提要鸡兔同笼问题基本知识•鸡兔同笼的由来大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚.问笼中各有几只鸡和兔?•假设法解鸡兔同笼(1)假设全是兔子鸡数=(每只兔子脚数×鸡兔总数−实际脚数)÷(每只兔子脚数−每只鸡的脚数)鸡数=鸡兔总数−鸡数(2)假设全是鸡兔数=(实际脚数−每只鸡脚数×鸡兔总数)÷(每只兔子脚数−每只鸡的脚数)鸡数=鸡兔总数−兔数•分组法解鸡兔同笼腿数相同,2鸡1兔为一组;头数相同,1鸡1兔为一组。
精选例题鸡兔同笼问题基本知识1. 2角和5角硬币共30枚,总钱数是102角,2角硬币有枚,5角硬币有枚.【答案】16;14【分析】假设全是5角硬币,那么应有5×30=150(角),实际有102(角),那么2角硬币有(150−102)÷(5−2)=16(枚),5角硬币有30−16=14(枚).2. 在一次去动物园时,丁丁看到了许多鸟和四足兽共36只,数一数它们共有100只脚,那么丁丁见到了只鸟和只四足兽.【答案】22;14【分析】假设36只都是四足兽,因此共有36×4=144(只)脚,比现在多了144−100=44(只)脚,原因是没有鸟,用一只鸟换一只四足兽,会少两只脚,因此需要换44÷(4−2)= 22(只)鸟,因此丁丁看到了22只鸟,36−22=14(只)四足兽.3. 2008年春,我国南方遭受到重大雪灾,实验小学三年级一班的42名同学给南方的灾区捐款450元,其中有12名同学每人捐5元,其他同学捐10元或20元,则捐10元的有名,捐20元的有名.【答案】21;9【分析】由题意,42−12=30(名)同学捐10元或20元,一共捐了450−12×5=390(元),假设30名同学全部捐10元,少了390−300=90(元),那么捐20元的同学有:90÷(20−10)=9(人),捐10元的有:30−9=21(人).4. 鸡兔同笼,共有40个头,兔脚的数目比鸡脚的数目的10倍少8只,那么兔有只.【答案】33【分析】(1)加2只兔子后,等于加了8只兔脚,那么兔脚的数目是鸡脚的数目的10倍,每只兔脚是每只鸡脚的2倍,所以兔的只数是鸡的只数的5倍.(2)转化成和倍问题:共42只,兔是鸡的5倍.兔:40−42÷(5+1)=33(只).5. 马戏团里有独轮车和三轮车一共30辆,其中每辆独轮车有1个轮子,每辆三轮车有3个轮子.所有车辆一共有66个轮子,那么有多少辆三轮车?【答案】18辆.【分析】假设全是独轮车,可得三轮车有(66−30×1)÷(3−1)=18辆.6. 有一些鸡和兔在同一个笼子里,从上面看有21个头,从下面看有48条腿.请求出笼中的鸡和兔各有几只?【答案】鸡有18只;兔有3只.【分析】假设全是鸡:21×2=42条腿;比较:48−42=6条;调整:兔:6÷(4−2)=3只,鸡:21−3=18只.7. 有一些鸡和兔子被关在同一个笼子里,一共有10个头和26条腿,那么笼子中兔子和鸡各有几只?【答案】兔子有3只;鸡有7只.【分析】假设全是鸡,可得兔子有(26−2×10)÷(4−2)=3只,于是鸡有10−3=7只.8. 有一些独脚鸡和三脚猫从上面看有12个头,从下面看有28条腿.请求出笼中的独脚鸡和三脚猫各有几只?【答案】独脚鸡有4只;三脚猫有8只.【分析】假设全是独脚鸡:12×1=12条腿;比较:28−12=16条;调整:三脚猫:16÷(3−1)=8只,独脚鸡:12−8=4只.9. 有鸡、鸭、兔一共34只,总共有76条腿.其中鸭的数量比鸡的2倍多3只.请问三种动物各有几只?【答案】兔4只,鸡9只,鸭21只.【分析】假设这34只动物全是兔子,则共有34×4=136条腿,比较:136−76=60条,那么鸡鸭共有60÷(4−2)=30只,则鸡有(30−3)÷(1+2)=9只,鸭有9×2+3=21只,这时兔有4只.10. 动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只?【答案】梅花鹿28只,鸵鸟48只【分析】假设梅花鹿和鸵鸟的只数相同,则从总脚数中减去鸵鸟多的20只的脚数得:208−20×2=168(只).这168只脚是梅花鹿的脚数和鸵鸟的脚数(注意此时梅花鹿和鸵鸟的只数相同)脚数的和,一只梅花鹿和一只鸵鸟的脚数和是:2+4=6(只),所以梅花鹿的只数是:168÷6=28(只),从而鸵鸟的只数是:28+20=48(只).11. 鸡兔同笼,上有14头,下有40足,求笼中鸡兔各几只?【答案】鸡8只,兔6只【分析】有兔(40−14×2)÷(4−2)=6(只),有鸡14−6=8(只).12. 公园里的23条长凳上坐了50个人,每条长凳上可以坐2个大人或者3个小孩,那么这50个人中,有多少个小孩?【答案】12个.【分析】假设23条长凳做的全是大人,则有23×2=46个人,比较:50−46=4人,将一条大人凳变成一条小孩凳会多1人,调整:4÷(3−2)=4次,每次调整出现1条小孩凳,那么有4条小孩凳,有4×3=12个小孩.13. 甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10发,共得208分,最后甲比乙多得64分,乙打中几发?【答案】6【分析】乙得分为(208−64)÷2=72(分),如果乙每发都打中可以得20×10=200(分),脱靶一发少20+12=32(分);乙脱靶(200−72)÷32=4(发),所以乙打中10−4=6(发).14. 鸡和兔共有55只,合计脚数共160条,求鸡和兔各有多少只?【答案】鸡30,兔25【分析】假设55只都是兔子,那么就有脚55×4=220(只),比160只脚多了220−160=60(只).每只鸡比兔子少2只脚,那么共有鸡60÷2=30(只),兔子55−30=25(只).15. 有鸡、鸭、兔一共22只,总共有46条腿.其中鸭的数量是鸡的2倍.请问三种动物各有几只?【答案】兔1只,鸡7只,鸭14只.【分析】假设这22只动物全是2条腿的动物,则共有22×2=44条腿,比较:46−44=2条,那么兔有2÷(4−2)=1只,则鸡鸭有21只,鸡有21÷(1+2)=7只,鸭有14只.16. 某学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍?【答案】24【分析】如果30间都是小宿舍,那么只能住4×30=120(人),而实际上住了168人.又大宿舍比小宿舍每间多住6−4=2(人),所以大宿舍有(168−120)÷2=24(间).17. 植树节种树,种一棵柳树需要9分钟,种一棵杨树需要18分钟,种一棵桃树需要20分钟.小明花了228分钟,一共种了15棵树,其中柳树的棵树是杨树的2倍.那么小明种了多少棵柳树?【答案】6.【分析】由于柳树的棵树是杨树的2倍,则看为“杨柳”,且种每棵“杨柳”用时(18+2×9)÷3=12分,假设这15棵全是“杨柳”,则需12×15=180分,而实际用了228分,比较:228−180=48分,则桃树有48÷(20−12)=6棵.杨树有9÷(1+2)=3棵.柳树有9−3=6棵.18. 鸡兔同笼,鸡比兔子多6只,一共有96条腿.鸡和兔子各有几只?【答案】鸡有20只;兔有14只.【分析】1只鸡和1只兔看成一组,多出6只鸡,共有(96−2×6)÷(2+4)=14组,故有14只兔,14+6=20只鸡.19. 有鸡、鸭、狗一共17只,总共有44条腿.其中鸭的数量是鸡的3倍.那么狗有多少只?【答案】5只.【分析】假设全是两条腿的动物,腿有17×2=34条,狗有(44−34)÷(4−2)=5只.20. 一群三脚猫和狗在开会,三脚猫的数量是狗的2倍,一共有200条腿.那么三脚猫有几只?【答案】40只.【分析】2只三脚猫和1只狗看成一组,每组有2×3+4=10条腿.因此共200÷10=20组,三脚猫有20×2=40只.21. 鸡兔同笼,鸡和兔子一样多,一共有96条腿.鸡和兔子各有几只?【答案】鸡有16只;兔有16只..【分析】1只鸡和1只兔看成一组,共有96÷(2+4)=16组.故鸡兔各16只.22. 鸡兔同笼,兔子的数量是鸡的2倍,两种动物一共有80条腿.请问:兔子有几只?【答案】兔有16只.【分析】这里可根据倍数关系分组,每组里放2只兔子1只鸡,那么每组内的腿数和是4×2+1×2=10条,共有腿数和80条,共分了80÷10=8组.那么鸡有8×1=8只,兔子有8×2=16只.23. 香蕉、苹果和梨三种水果共26千克,其中苹果和梨的重量相等.如果香蕉每千克8元,苹果每千克4元,梨每千克6元,这些水果共花了160元.问:三种水果各有多少千克?【答案】香蕉10千克,梨8千克,苹果8千克.【分析】由于苹果和梨的重量相等,则看为“苹果梨”.且“苹果梨”每千克为5元,假设这26千克全是香蕉,则需26×8=208元,而实际有160元,比较:208−160=48元,则“苹果梨”有48÷(8−5)=16千克.香蕉有26−16=10千克.苹果有8千克,梨有8千克.24. 三脚猫数量比五脚蛇的3倍多2只,且三脚猫脚数比五脚蛇脚数多94只.求三脚猫有几只?【答案】三脚猫有68只.【分析】把3只三脚猫1只五脚蛇分成1组.现在三脚猫比五脚蛇的3倍多2只,所以如果去掉2只三脚猫,那么正好能够分成若干组后三脚猫和五脚蛇都没有多余.现在三脚猫比五脚蛇的脚数多94只,去掉2只三脚猫后三脚猫比五脚蛇的腿数多94−6=88只,每组三脚猫比五脚蛇的脚数多3×3−1×5=4只,所以共有88÷4=22组,那么有五脚蛇22×1= 22只,三脚猫22×3+2=68只.25. 幼儿园里小朋友和老师共40人在一起喝汤,每个老师单独用1个碗喝,而2个小朋友合用1个碗喝,最后共用了27个碗.请问:有多少小朋友?【答案】26人.【分析】如果所有碗都是老师用的,那么会有27个人,则(40−27)÷(2−1)=13个小朋友碗,则小朋友有26人,大人有14人.26. 班主任黄老师和班上的50名同学举行中秋晚会.黄老师吃了5块月饼,男生每人吃了4块,女生每人吃了2块,最后一共吃了135块月饼.请问班上有几名男生,有几名女生?【答案】男生有15名;女生有35名.【分析】男生女生共吃了135−5=130块月饼.假设全是女生,共吃了50×2=100块月饼,比较发现比实际的少130−100=30块月饼,接下来进行调整,增加1名男生,吃的月饼会增加2块,共需要增加30÷(4−2)=15名男生,那么女生有50−15=35名.27. 鸡兔同笼,鸡比兔的3倍多3只,一共有96条腿.鸡和兔子各有几只?【答案】鸡有30只;兔有9只.【分析】3只鸡和1只兔看成一组,还多3只鸡,共有(96−2×3)÷(2×3+4)=9组.故有9只兔,9×3+3=30只鸡.28. 香蕉、苹果和梨三种水果共42千克,其中苹果的重量是梨的3倍.如果香蕉每千克10元,苹果每千克4元,梨每千克8元,这些水果共花了260元.问:三种水果各有多少千克?【答案】香蕉10千克,梨8千克,苹果24千克.【分析】由于苹果的重量是梨的3倍,则看为“苹果梨”,且“苹果梨”每千克为5元,假设这42千克全是香蕉,则需42×10=420元,而实际有260元,比较:420−260=160元,则“苹果梨”有160÷(10−5)=32千克.香蕉有42−32=10千克.梨有32÷(1+3)=8千克,苹果有8×3=24千克.29. 有一些三脚猫和五脚猪在同一个笼子里,从上面看有12个头,从下面看有50条腿.请求出笼中的三脚猫和五脚猪各有几只?【答案】三脚猫有5只;五脚猪有7只.【分析】假设全是三脚猫,12只三脚猫共有腿12×3=36条,比较一下发现比实际腿少50−36=14条,接下来进行调整,拿1只五脚猪换1只三脚猫,腿会增加2条,共需要增加14÷(5−3)=7只五脚猪,那么三脚猫有12−7=5只.30. 豆豆家养了一些鸡和兔子,同时养在一个笼子里,豆豆数了数,它们共有22个头,64条腿.问:豆豆家养的鸡和兔各有多少只?【答案】鸡12;兔子10【分析】假设22只都是兔子,那么就有腿22×4=88(条)比64条腿多了88−64=24(条).每只鸡比兔子少2条腿,那么共有鸡24÷2=12(只),兔子22−12=10(只).31. 中国古代的数学著作《孙子算经》中记载了这样的一道题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有一些鸡和兔在同一个笼子里,从上面看有35个头,从下面看有94条腿.请求出笼中的鸡和兔各有几只?【答案】鸡有23只;兔有12只.【分析】假设全是鸡,35只鸡共有腿35×2=70条,比较一下发现比实际少94−70=24条,接下来进行调整,拿1只兔子换1只鸡,腿会增加2条,共需要增加24÷(4−2)=12只兔子,那么鸡有35−12=23只.也可以在开始时假设全是兔,35只兔共有腿35×4= 140条,比较一下发现比实际腿多140−94=46条,接下来进行调整,拿1只鸡换1只兔,腿会减少2条,共需要增加46÷(4−2)=23只鸡,那么兔子有35−23=12只.32. 鸡兔同笼,兔子的数量是鸡的2倍,且兔腿数比鸡腿数多84条.求鸡和兔子各有几只?【答案】鸡有14只;兔有28只.【分析】把2只兔子1只鸡分成1组.现兔腿比鸡腿多84条,每组兔腿比鸡腿多4×2−2=6条,所以共有84÷6=14组,那么有鸡14×1=14只,兔子14×2=28只.33. 鸡兔同笼,鸡的数量是兔的2倍,一共有96条腿.鸡和兔子各有几只?【答案】鸡有24只;兔有12只.【分析】2只鸡和1只兔看成一组,共有96÷(2×2+4)=12组.故有12只兔,12×2=24只鸡.34. 幼儿园买来20张小桌和30张小凳共用去1860元,已知每张小桌比小凳贵8元,问小桌多少元,小凳多少元?【答案】42;34【分析】由已知,20张小桌要比20张小凳贵8×20=160(元).从1860元里减去160元后,我们可以把20张小桌转换成20张小凳,这样1860−160=1700(元)就是20+30=50(张)小凳的总价钱.每张小凳的价格是1700÷50=34(元).每张小桌的价格是34+8=42(元).35. 鸡兔同笼,鸡的腿数和兔子的腿数一样多,而鸡比兔子多了20只,那么一共有多少只鸡?【答案】40只.【分析】鸡和兔子的腿数一样多,就按照腿数一样多分组,2只鸡和1只兔子的腿数一样多,所以每2只鸡和1只兔子分成一组,每组鸡比兔子多了:2−1=1只,所以共有20÷1=20组,鸡20×2=40只.36. 鸡兔同笼,上有18头,下有52足,求笼中鸡兔各几只?【答案】鸡10,兔8【分析】有兔(52−18×2)÷(4−2)=8(只),有鸡18−8=10(只).37. 圣诞节前夕,圣诞老人发小礼品.男生每人得到3张玩具券和3张礼品券,女生每人得到3张玩具券和4张礼品券.已知男生得到的玩具券比女生得到的玩具券多15张,一共发了155张礼品券.问男生和女生各有多少人?【答案】男生有25人;女生有20人.【分析】对于男生和女生而言,发现都有3张玩具券,且男生的玩具券比女生的玩具券多15张,则男生比女生多15÷3=5人,这是可以将一男一女放在一组,最后还多出5个男生,每组的礼品券共有3+4=7张,先将多出5人刨掉,则会刨掉5×3=15张礼品券,那么共有155−15=140张礼品券,则一共有140÷7=20组,那么男生有20+5=25人,女生有20人.38. 某班男生一顿可以吃10个包子,女生一顿可以吃7个包子.全班男生是女生的2倍,一顿一共可以吃297个包子,那么全班一共有多少名学生?【答案】33人.【分析】2男1女为一组,有11组,学生共33人.39. 鸡兔同笼,鸡和兔子一样多,一共有90条腿.鸡和兔子各有几只?【答案】鸡有15只;兔有15只.【分析】1只鸡和1只兔子分一组,每组内的腿数和是6,那么共有90÷6=15组,鸡有15只,兔子也有15只.40. 鸡兔同笼,鸡是兔数量的5倍,且鸡腿比兔腿多96条.请问有多少只鸡?【答案】80只.【分析】5鸡1兔为一组,每组中鸡腿比兔腿多6条,共多96条,则共有16组,有80只鸡.41. 王东东老师买包子,肉包子8角一个,菜包子6角一个,结果花了8元买了12个包子.请问:他买了几个肉包子?【答案】4.【分析】假设买的全是菜包子:6×12=72角;比较:80−72=8角;调整:肉包子:8÷(8−6)=4个.42. 3个小孩坐一个红凳子,2个大人坐一个绿凳子,红凳子比绿凳子的2倍多14个,且小孩比大人多126人.请问有多少个红凳子?【答案】56个.【分析】去掉14个红凳子,则小孩会少3×14=42人,则小孩比大人多126−42=84人,现在2红1绿为一组,那么相当于6小孩2大人为一组,则一组中小孩比大人多4人,这时共有84÷4=21组,那么有21个绿凳子,有21×2+14=56个红凳子.43. 鸡兔同笼,头共35,足共94,鸡兔各几只?【答案】鸡23;兔12【分析】假设35只都是兔,一共应有脚4×35=140(只),这和已知的94只脚相比多了140−94=46(只),这是因为我们把鸡当成了兔子,如果把1只鸡当成1只兔,就要比实际多4−2=2(只),那么46只脚是我们把46÷2=23(只)鸡当成了兔子,所以鸡有23只,兔的只数是35−23=12(只).44. 鸡兔同笼,鸡的数量是兔子的3倍,兔子和鸡的腿数总和为110.请问:鸡和兔子各有几只?【答案】鸡有33只;兔有11只.【分析】这里可根据倍数关系分组,每组里放3只鸡1只兔子,那么每组内的腿数和是3×2+1×4=10条,共有腿数和110条,共分了110÷10=11组,那么兔子有11×1= 11只,鸡有11×3=33只.45. 体育课上,三年一班的46名同学都在操场上玩球.每个篮球有6名同学玩,每个排球有8名同学玩,篮球和排球共有7个.问:玩排球的同学有多少人?【答案】16人.【分析】假设7个球都是篮球,那么应该有同学:6×7=42个,现在有46名同学,多了4个,每个排球比每个篮球玩的同学多8−6=2人,所以有排球:4÷2=2个,玩排球的同学有:8×2=16人.46. 独角兽数量比九角怪的3倍多5只,且九角怪比独角兽的角数多91个.求九角怪有几只?【答案】九角怪有16只;独角兽有53只.【分析】把3只独角兽1只九角怪分成1组.现在独角兽比九角怪的3倍多5只,所以如果去掉5只独角兽,那么正好能够分成若干组独角兽和九角怪都没有多余.现九角怪比独角兽的角数多91个,去掉5只独角兽后九角怪比独角兽的角数多91+5=96个,每组九角怪比独角兽的角数多9−1×3=6个,所以共有96÷6=16组,那么有九角怪16×1=16只,独角兽16×3+5=53只.47. 鸡兔共有46只,关在同一个笼子中.每只鸡有两条腿,每只兔子有四条腿,笼中共有128条腿.试计算,笼中有鸡多少只?兔子多少只?【答案】鸡28;兔子18【分析】假设46只都是兔子,那么就有46×4=184(条),比128条腿多了184−128=56(条).每只鸡比兔子少4−2=2(条)腿,那么共有鸡56÷2=28(只),兔子46−28=18(只).48. 中秋节前夕,公司给员工发购物券.市场部每人得到2张月饼券和3张水果券,技术部每人得到2张月饼券和4张水果券.已知技术部得到的月饼券比市场部得到的多10张,且技术部得到的水果券比市场部得到的多64张.问:市场部和技术部各有多少人?【答案】市场部有44人;技术部有49人.【分析】发现不管是技术部还是市场部每人都是2张月饼券,且技术部比市场部多10张,则技术部人多,且比市场部多10÷2=5人,这时进行分组,相当于一个市场部和一个技术部为一组,会多出5个技术部的人,也是就多出5×4=20张水果券,将这20张水果券去掉,就会变成技术部的到的水果券比市场部多64−20=44张,每组技术部比市场部多1张水果券,则会有44÷(3−2)=44组,则有44个市场部的人,49个技术部的人.49. 兔的腿数是鸡的腿数的2倍,且鸡兔共有30只.请问有多少只鸡?【答案】15只.【分析】因为兔腿是鸡腿的2倍,则一组中1兔子配上1只鸡,所以兔子和鸡的数量一样多,且鸡兔共有30只,则鸡有30÷2=15只.50. 大卡车一次能运7吨土,小卡车一次能运4吨土.现在有大、小卡车8辆,一次恰好能运土38吨.那么大卡车有多少辆?【答案】2辆.【分析】假设全是小卡车,可得大卡车有(38−4×8)÷(7−4)=2辆.51. 鸡兔同笼,共有头100个,足316只,求鸡兔各有多少只?【答案】鸡:42只;兔:58只.【分析】我们可以这样想,鸡兔共有头100个,意思是鸡和兔共有100只.它们一共有脚316只,鸡有2只脚,兔有4只脚.方法一:假定100只全部是鸡,那么应该只有200只脚,现有316只脚,说明有不少的兔,因为每只兔比鸡多2只脚.而现在共多316-200=116(只)脚,因此应有兔子为(316-200)÷(4-2)=116÷2=58(只).当然鸡就有100-58=42(只).方法二:假定100只全部是兔子,那么应当有400只脚,现有316只脚,少了400-316=84(只)脚,说明有一部分是鸡.每只鸡比兔少2只脚,所以应有鸡为(400-316)÷(4-2)=84÷2=42(只).当然兔就有100-42=58(只).52. 鸡、龟、兔一共有24只,它们总共有92条腿,龟比兔的2倍多1只.那么兔有多少只?【答案】7只.【分析】假设全是4条腿的动物,腿有24×4=96条,鸡有(96−92)÷(4−2)=2只.龟兔共22只,兔有(22−1)÷(2+1)=7只.53. 儿童节前夕,老师给学生们发礼品.男生每人得到1支铅笔和3张电影券,女生每人得到1支铅笔和4张电影券.已知男生得到的铅笔数量与女生得到的铅笔数量一样,一共发了56张电影券,问:男生和女生各有多少人?【答案】男生有8人;女生有8人.【分析】发现不管是男生还是女生每人都是1铅笔,且男生得到的铅笔数量和女生的铅笔数量一样,则男生和女生人数相同,一共有56张电影券,则一男一女分为一组,一组有3+4=7张电影券,则一共有56÷7=8,则男生有8人,女生有8人.54. 老师和学生一共44人去参加义务植树活动.老师每人植5棵,学生每人植2棵,正好一共植了100棵.参加植树的老师和学生各有多少?【答案】老师4人;学生40人.【分析】假设这44人都是学生,因此共植树44×2=88(棵),少了100−88=12(棵),因此有老师12÷(5−2)=4(人),有学生44−4=40(人).55. 鸡兔同笼,兔子数量是鸡的3倍,且兔子腿数比鸡腿数多90条.求鸡和兔子各有几只?【答案】鸡有9只;兔有27只.【分析】把3只兔子1只鸡分成1组.现兔腿比鸡腿多90条,每组兔腿比鸡腿多4×3−2=10条,所以共有90÷10=9组,那么有鸡9×1=9只,兔子9×3=27只.56. 高思地下停车库停了很多车,其中三轮车的轮子数是自行车轮子数的3倍,且三轮车比自行车多18辆.那么三轮车和自行车各有多少辆?(提示“三轮车有三个轮子,自行车有两个轮子”)【答案】三轮车有36辆;自行车有18辆.【分析】三轮车轮子数是自行车轮子数的3倍,则说明一组中应该有2辆三轮车和1辆自行车,这样就可以保证一组的轮子数是三倍关系,且三轮车比自行车多18辆,变成一道差倍问题,则自行车:18÷(2−1)=18辆,三轮车有36辆.57. 松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个.它一连几天采了112个松籽,平均每天采14个.请问:这些天里有几天是雨天?【答案】6天.【分析】松鼠妈妈一共采了112个松籽,平均每天采14个,那么一共采了112÷14=8天.假设这些天全是晴天,共采了8×20=160个松籽,比较发现比实际的多160−112= 48个松籽,接下来进行调整,1个晴天变雨天,松籽的总数会减少8个,雨天有48÷(20−12)=6天.58. 有独角兽、飞马和怪牛三种动物共20只.独角兽有4条腿和1只角,飞马有4条腿但没有角,怪牛有6条腿和2只角,三种动物一共有94条腿、19只角.请问:三种动物各有多少只?【答案】怪牛7只,独角兽5只,飞马8只.【分析】假设这20只动物全是4条腿的动物,则共有20×4=80条腿,比较:94−80= 14条,那么怪牛有14÷(6−4)=7只,则独角兽和飞马有13只.现在将怪牛的7×2=14只角去掉,则有5只角,说明有独角兽5÷1=5只,那么飞马有8只.59. 有蜘蛛、蜻蜓和蝉三种动物共23只.蜘蛛有8条腿但没有翅膀,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀,三种动物一共有160条腿、20对翅膀.请问:三种动物各有多少只?【答案】蜘蛛11只,蝉4只,蜻蜓8只.【分析】假设这23只动物全是6条腿的,则有23×6=138条腿,而实际有160条,比较:160−138=22条,则蜘蛛有22÷(8−6)=11只.那么蜻蜓和蝉共有23−11=12只,假设这12动物全是2对翅膀的,则有12×2=24对,而实际有20对,比较:24−20=4对,则1对翅膀的动物共有4÷(2−1)=4只,即蝉有4只,蜻蜓有8只.60. 动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿的脚多48只,梅花鹿和鸵鸟各有多少只?【答案】梅花鹿20,鸵鸟64【分析】梅花鹿腿:(208−48)÷2=80(只),所以梅花鹿有80÷4=20(只),鸵鸟腿:80+48=128(只),所以鸡有:128÷2=64(只).61. 同学们去游乐场游玩,老师用500元钱买了套票和普通票两种门票,普通票10元一张,套票20元一张,共买了35张.请问:两种门票各买了多少张?【答案】普通票有20张;套票有15张.【分析】假设老师买的全是普通票,35张普通票共35×10=350元,比较发现比实际花的钱少500−350=150元,接下来进行调整,增加1张套票,花的钱会增加10元,共需要增加150÷(20−10)=15张,那么普通票有35−15=20张.62. 有一群狗追一群鸭子,狗比鸭子的2倍多1只,总共124条腿.求狗和鸭子各有几只?【答案】鸭有12只;狗有25只.【分析】根据倍数关系分组,每组里放2只狗1只鸭,这时会剩下1只狗,多的这1只狗可先扔外面,那么组内腿和124−4×1=120条,每组内腿数和2×4+1×2=10条,共分了120×10=12组.那么鸭有12×1=12只,狗有12×2+1=25只.63. 小同有一个储蓄筒,存放的都是硬币,其中2分币比5分币多22个;按钱数算,5分币却比2分币多4角;另外,还有36个1分币.小同共存了多少钱?【答案】276分【分析】假设去掉22个2分币,那么按钱数算,5分币比2分币多8角4分,一个5分币比一个2分币多3分,所以5分币有84÷(5−2)=28(个),2分币有28+22=50(个),共存了5×28+2×50+1×36=276(分).64. 动物园里养了一些鸵鸟和大象,共有脚130只,大象比鸵鸟的脚多70只,问鸵鸟和大象各多少只?【答案】鸵鸟15,大象25【分析】鸵鸟的脚为:(130−70)÷2=30(只),所以鸵鸟有30÷2=15(只),大象腿有130−30=100(只),所以大象有100÷4=25(只).65. 植树节种树,种一棵柳树需要10分钟,种一棵杨树需要20分钟,种一棵桃树需要25分钟.小明花了300分钟,一共种了16棵树,其中柳树和杨树一样多.那么小明种了多少棵柳树?【答案】5.【分析】杨树柳树一样多,也就是30分钟种了2棵树,15分钟种一棵,所以他一共种了桃树:(300−16×15)÷(25−15)=6棵,柳树(16−6)÷2=5棵.66. 笼子里有鸡和兔子共37只,总共有脚94只,问有多少只鸡,多少只兔子?【答案】27只鸡,10只兔子.【分析】对于鸡兔同笼,我们有全鸡全兔法,假设法(砍足法,金鸡独立法)等等,其实最直白的,就是列方程,我们设鸡有x只,兔子就有(37−x)只,总共脚的数量为2x+4×(37−x)=94,解方程得x=27,。
鸡兔同笼的知识点总结大全一、问题的提出鸡兔同笼这个问题最早可以追溯到中国古代的《孙子算经》和《张丘建算经》两书,它们都记录了这个问题的相关内容。
鸡兔同笼问题的提出是这样的:假设一个笼子里面关着若干只鸡和若干只兔子,它们的总共有n只脚。
问笼中鸡和兔的数量各是多少?二、解决方法1. 代数解法鸡兔同笼问题可以用代数方程组来解决。
假设鸡的数量为x,兔的数量为y,根据题意,我们可以列出如下方程:x + y = 总数量2x + 4y = 总脚数通过解这个方程组,我们可以得到鸡和兔的具体数量。
2. 图形解法我们可以通过画图的方式来解决鸡兔同笼问题。
我们可以假设鸡的数量为x,兔的数量为y,然后画出对应数量脚的鸡和兔的图形。
通过观察图形,我们可以得出鸡和兔的具体数量。
3. 逻辑解法鸡兔同笼问题也可以通过逻辑推理来解决。
我们可以通过观察鸡和兔的共同特点和不同特点,来得出它们的具体数量。
三、相关数学原理1. 代数方程组解决鸡兔同笼问题的代数方法需要用到代数方程组的知识。
代数方程组是指由若干个代数方程组成的方程的集合,通过求解这个方程组,可以得到方程组的未知数的值。
2. 图形解法通过画图的方式来解决鸡兔同笼问题需要用到几何学的知识。
我们可以通过绘制对应数量脚的鸡和兔的图形,来得出鸡和兔的具体数量。
3. 逻辑推理通过逻辑推理来解决鸡兔同笼问题需要用到逻辑学的知识。
我们可以通过观察鸡和兔的共同特点和不同特点,来得出它们的具体数量。
四、相关例题1. 一个笼子里关着鸡和兔,一共有35个头,94只脚。
问笼中鸡和兔各有多少只?解:设鸡的数量为x,兔的数量为y,根据题意,我们可以列出方程组:x + y = 352x + 4y = 94通过求解这个方程组,可以得到鸡和兔的数量。
2. 一个笼子里关着鸡和兔,一共有20个头,50只脚。
问笼中鸡和兔各有多少只?解:同样地,我们可以设鸡的数量为x,兔的数量为y,根据题意,我们可以列出方程组:x + y = 202x + 4y = 50通过求解这个方程组,可以得到鸡和兔的数量。
小学数学鸡兔同笼知识点总结一、鸡兔同笼问题这是古典的算术问题。
已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
二、数量关系第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)三、解题思路解“鸡兔同笼问题”的常用方法是“替换法”、“转换法”、“置换法”等。
解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。
如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。
这类问题也叫置换问题。
通过先假设,再置换,使问题得到解决。
四、鸡兔同笼问题五种基本题型1、小学奥数应用题鸡兔同笼:已知总头数和总脚数(两数之和)已知总头数和总脚数(两数之和)(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
【例1】一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?【解】我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打30÷6=5(份),乙每小时打30÷10=3(份).现在把甲打字的时间看成"兔"头数,乙打字的时间看成"鸡"头数,总头数是7."兔"的脚数是5,"鸡"的脚数是3,总脚数是30,就把问题转化成"鸡兔同笼"问题了.根据前面的公式:"兔"数=(30-3×7)÷(5-3)=4.5,"鸡"数=7-4.5=2.5,也就是甲打字用了4.5小时,乙打字用了2.5小时.答:甲打字用了4小时30分.【例2 】今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?【解】:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作"鸡"头数,弟的年龄看作"兔"头数.25是"总头数".86是"总脚数".根据公式,兄的年龄是(25×4-86)÷(4-3)=14(岁).1998年,兄年龄是14-4=10(岁).父年龄是(25-14)×4-4=40(岁).因此,当父的年龄是兄的年龄的3倍时,兄的年龄是(40-10)÷(3-1)=15(岁).这是2003年.答:公元2003年时,父年龄是兄年龄的3倍.2、小学奥数应用题鸡兔同笼:已知总头数和鸡兔脚数的差数首先,请先弄明白上面三个算式的由来,然后与"鸡兔同笼"公式比较,这三个算式只是有一处"-"成了"+".其奥妙何在呢?当你进入初中,有了负数的概念,并会列二元一次方程组,就会明白,从数学上说,这一讲前两节列举的所有例子都是同一件事.(1)当鸡的总脚数比兔的总脚数多时:(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
鸡兔同笼方程解法归纳,看看鸡兔同笼可以怎么做极客数学帮鸡兔同笼方程解法归纳,看看鸡兔同笼的解法都有哪些,常用的基本关系式有哪些,再通过练习题来巩固自己掌握的知识点。
一起来看看今天的鸡兔同笼方程解法归纳吧。
一、重点知识归纳及讲解1、鸡兔同笼问题的特点鸡兔同笼问题一般是已知两个总量(如前面提到的数鸡头和兔头共35个,数鸡脚和兔脚共94只),求出两个部分量各是多少(如前面提到的鸡和兔各有多少只)。
2、鸡兔同笼问题的解题方法鸡兔同笼问题一般用假设法求解。
如前面的问题中,先假设它们全是鸡,于是根据鸡、兔的总数,就可以先算出在假设条件下共有几只脚,再与原有的脚数相比较,看看差多少。
从差中求出兔的数量。
也可以先假设成全是兔子,在差的变化中求鸡的数量。
再求另一个数量是多少。
3、鸡兔同笼问题的基本关系式(1)鸡数=(每只兔子脚数×鸡兔总数-实际脚数) ÷(每只兔子脚数-每只鸡脚数);兔数=鸡兔总数-鸡数;(2)兔数=(实际脚数-每只鸡脚数×鸡兔总数) ÷(每只兔子脚数-每只鸡脚数);鸡数=鸡兔总数-兔数。
二、难点知识剖析例1、一个农户有若干只鸡和兔,它们共有50个头和140只脚,问鸡、兔各有多少?分析:解鸡兔同笼问题适用的基本方法是假设法。
假设这笼里全是鸡,那么鸡脚的总数应为(50×2=)100只,与实际相比较,脚减少的数为(140-100=)40只。
脚减少的原因是每把一只兔当作一只鸡时,要少(4-2=)2只脚。
所以实际的兔数是(40÷(4-2)=)20只,若先假设的全是鸡,则先求出的是兔数。
解法一:设农户养的全是鸡,那么相应的鸡脚数50×2=100(只)与实际相比,脚减少的数140-100=40(只)每只兔脚与鸡脚的差4-2=2(只)。
实际兔数为40÷2=20(只),那么实际的鸡数50-20=30(只),答:有鸡30只,有兔20只。
鸡兔同笼知识点一:“鸡兔同笼”问题的特点例题:笼子里有若干只鸡和兔。
从上面数,有35个头,从下面数,有94只脚。
鸡和兔各有多少只?题型特点:鸡兔同笼是已知鸡、兔的总头数和总脚数,求其中鸡和兔务有多少只的问题。
请你用“﹋”画出下面题中相当于总头数的数据,用“——”画出下面题中相当于总脚数的数据。
1、大油瓶每瓶装4千克,小油瓶2瓶装1千克,现有100千克油装了共60个瓶子。
问大小油瓶各多少个?2、动物园里里饲养一群丹顶鹤和一群猴子,数眼睛共46只,数脚72只,丹顶鹤和猴子各多少只?知识点二:“鸡兔同笼”问题的解题方法例题:笼子里有若干只鸡和兔。
从上面数,有8个头,从下面数,有26只脚。
鸡和兔各有多少只?方法一:列表法。
(先从鸡是8只,兔是0只开始,鸡的只数逐渐减少,兔的只数逐渐增加,直通过列表,得出鸡有3只,兔有5只。
温馨提示:用列表法可以解决问题,但当数据较大时,过程就很繁琐。
请你试一试:通过列表,得出鸡有()只,兔有()只。
2、鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有多少只?通过列表,得出龟有()只,鹤有()只。
3、在知识竞赛中,有10道判断题,评分规定:每答对一题得2分,答错一题要倒扣一分。
小明同学虽然答了全部的题目,但最后只得了14分,请问,他答错通过列表,可知道小明答错了()题。
方法二:假设法。
(可以假设笼子里全是鸡,或者假设笼子里全是兔)例题:笼子里有若干只鸡和兔。
从上面数,有8个头,从下面数,有26只脚。
鸡和兔各有多少只?假设笼子里全是鸡:(假设全是鸡时可得出兔的只数)兔的只数:(26-2×8)÷(4-22×鸡兔总数)÷(4-2) =(26-16)÷2=10÷2=5(只)鸡的只数:8-5=3(只)(总只数-兔的只数)假设笼子里全是兔:(假设全是兔时可得出鸡的只数)鸡的只数:(4×8-26)÷(4-24×鸡兔总数-总脚数)÷(4-2)=(32-26)÷2=6÷2=3(只)兔的只数:8-3=5(只)(总只数-鸡的只数)你能行!1、鸡兔同笼,鸡兔共35个头,94条腿,问鸡兔各多少只?2、小华买了2元和5元纪念邮票一共34张,用去98元钱。
鸡兔同笼知识点1. 问题描述鸡兔同笼是一个经典的数学问题,它描述了一个笼子里有若干只鸡和兔子,总共有一定数量的头和脚。
问题的目标是确定笼子里分别有多少只鸡和兔子。
2. 问题分析在鸡兔同笼问题中,我们需要根据已知的头和脚的数量来求解鸡和兔子的数量。
设鸡的数量为x,兔子的数量为y,则有以下关系:•头的数量:x + y•脚的数量:2x + 4y我们可以根据这两个关系式来建立一个方程组,从而求解鸡和兔子的数量。
3. 解题思路鸡兔同笼问题可以通过代数方法来解决。
具体的解题思路如下:1.建立方程组:根据头和脚的数量关系,可以建立以下方程组:–x + y = 头的数量–2x + 4y = 脚的数量2.求解方程组:通过解方程组可以得到鸡和兔子的数量。
可以使用代入法、消元法等方法求解方程组。
3.验证解的合法性:得到鸡和兔子的数量后,需要验证解的合法性。
合法的解应满足以下条件:–鸡和兔子的数量必须为正整数–鸡和兔子的数量之和等于头的数量–鸡和兔子的脚的数量之和等于脚的数量4. 解题示例下面通过一个具体的例子来演示鸡兔同笼问题的解题过程。
假设笼子里的头的数量为10,脚的数量为26。
我们需要求解鸡和兔子的数量。
1.建立方程组:–x + y = 10–2x + 4y = 262.求解方程组:可以使用代入法求解方程组。
将第一个方程的x表示为y的函数,代入第二个方程中,得到:–2(10 - y) + 4y = 26–20 - 2y + 4y = 26–2y = 6–y = 3将y的值代入第一个方程,得到:–x + 3 = 10–x = 7所以,鸡的数量为7,兔子的数量为3。
3.验证解的合法性:验证鸡和兔子的数量是否满足条件。
–鸡和兔子的数量为正整数,满足条件。
–鸡和兔子的数量之和等于头的数量:7 + 3 = 10,满足条件。
–鸡和兔子的脚的数量之和等于脚的数量:27 + 43 = 26,满足条件。
所以,解(7, 3)是合法的解。
鸡兔同笼知识点1、鸡兔同笼属于假设问题,假设的和最后结果相反。
2、“鸡兔同笼”问题的解题方法假设法:①假如都是兔②假如都是鸡③古人“抬脚法”:解答思路:假如每只鸡、每只兔各抬起一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。
这样,鸡和兔的脚的总数就少了一半。
这种思维方法叫化归法。
3、公式:鸡兔总脚数÷2-鸡兔总数=兔的只数;鸡兔总数-兔的只数=鸡的只数。
.(1)已知总头数和总脚数,求鸡、兔各多少;(总脚数-每只鸡的脚数总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数_总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数总头数+鸡兔脚数之差)÷(每只鸡的脚数+ 每只免的脚数)=鸡数; 总头数-鸡数=兔数。
(例略)(3)已知总数与鸡兔脚数的差数,当象的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数_总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数: 总头数-鸡数=兔数。
(例略)其他(1只合格品得分数产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数总产品数+实得总分数)一(每只合格品得分数+每只不合格品扣分数)=不合格品数。
人教版数学四年级春季第十四讲《数学广角-鸡兔同笼上》知识点1、画图法解鸡兔同笼两只鸡和一只兔子一共有8条腿。
思考:那如果把其中一只鸡换成一只兔子会多2条腿。
思考:笼子里有鸡和兔共5只,共有腿14天条,请求出笼中的鸡和兔子各有几只?步骤假设全是鸡。
一共有腿5×2=10条。
比较:与实际比较少了,14-10=4条腿调整:每只鸡可添两条腿,一共添,4÷2=2次兔子有两只,鸡有5-2=3只检验:2×4+3×2=14条腿总结:把一只鸡变成一只兔子,会多两条腿。
小练习:鸡、兔共有6只,共有16条腿,鸡和兔各有几只?答案:鸡4只,兔2只2.鸡,兔共7只,共有20条腿,鸡和兔各有几只?答案:鸡4只,兔3只3.鸡兔共有10只,共有28条腿,鸡和兔各有几只?答案:鸡6只,兔4只笔记部分:画图解鸡兔同笼用简易图表示鸡和兔子,假设全是鸡多出的腿数,再进行调整。
例题1、笼子里有一些鸡和兔,数一数鸡腿和兔腿一共有50条,请问。
1.如果从笼子里拿走三只鸡,这是腿和是多少?2.如果从笼子里拿走5只鸡,再放进去5只兔,这时腿和是多少?答案:44条,60条练习1、笼子里有一些鸡和兔,数一数鸡腿和兔腿一共有80条,现在卡莉亚用魔法把笼子里的10只鸡变成了10只兔子,请问这是笼子里的腿和是多少?答案:100条4-2=2条。
10×2=20条。
80+20=100条。
例题2、笼子里有鸡和兔共8只,共有腿24条,那么下图中应该把几只鸡换成兔子?答案:8×2=16条(24-16)÷2=4次把4只鸡。
换成了兔子,这是鸡有4只,兔子也有4只,腿和正好是:4×2+4×4=24条练习2、笼子里鸡和兔有10只共有腿32条,那么下图中应该把几只鸡换成兔子?答案:10×2=20条(32-20)÷2=6(次)也就是把6只鸡换成了兔子,这是鸡有4只,兔子有6只。
鸡兔同笼问题讲义一、基本知识点总结:解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数解法2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数总只数-兔的只数=鸡的只数解法3:用方程思想解决鸡兔同笼问题(重点掌握)二、例题讲解:【例1】(古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?【例2】鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚86只.问:鸡、兔各有几只?【例3】鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?【练习】鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?三、推广应用:【例4】某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?【例5】一只货船载重260吨,容积1000米3,现装运甲、乙两种货物,已知甲种货物每吨体积是8米3,乙种货物每吨体积2米3,要使这只船的载重量与容积得到充分利用,甲、乙两种货物应分别装多少吨?【例6】自行车越野赛全程220千米,全程被分为20个路段,其中一部分路段长14千米,其余的长9千米.问:长9千米的路段有多少个?三、学练结合:1. 甲乙两人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分,每人各射10发,共命中14发,结算分数时,甲比乙多10分,问甲、乙各中几发?2.有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379.6元,问这次搬运中玻璃损坏了几只?3.班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?4.刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?。
四年级数学下册期末总复习《9单元数学广角——鸡兔同笼》必记知识点一、鸡兔同笼问题的定义•问题描述:鸡兔同笼,上有若干头,下有若干足,问鸡兔各有多少只。
•历史背景:这个问题大约出现在1500年前,是《孙子算经》中的一个著名问题。
二、解题方法1.列表尝试法•逐一举例法:根据鸡与兔的总只数和总腿数,假设全是鸡,算出总腿数,然后逐一减少鸡的只数,增加兔的只数,直到找出答案。
•取中列举法:假设鸡、兔各占一半,算出总腿数,根据与实际腿数的差值确定列举方向。
2.画图凑数法•用“○”表示头,并在圆圈下面画上腿,最后把剩下的腿逐一添上,以发现它们各自的数量。
3.假设法•假设全是鸡或全是兔,通过计算腿的只数与实际相比较,根据剩余或超出腿的数量求出鸡、兔各自的数量。
••具体步骤:•1.假设全是鸡:如果全是鸡,则腿的总数应为头数乘以2,与实际腿数相比较,差值即为兔的腿数多出的部分。
2.计算兔的只数:差值除以每只兔比鸡多出的腿数(2只),即为兔的只数。
3.计算鸡的只数:总头数减去兔的只数,即为鸡的只数。
•另一种假设:•4.假设全是兔:如果全是兔,则腿的总数应为头数乘以4,与实际腿数相比较,差值即为鸡的腿数少的部分。
5.计算鸡的只数:差值除以每只鸡比兔少的腿数(2只),即为鸡的只数。
6.计算兔的只数:总头数减去鸡的只数,即为兔的只数。
4.方程法•适用于较高年级学生,设未知数求解。
三、应用与拓展•鸡兔同笼问题不仅是一个数学问题,也可以用来解决生活中的实际问题,如停车场中不同轮子数的车辆计数等。
四、注意事项•在解决鸡兔同笼问题时,注意理解问题的实质,选择合适的方法进行解答。
•对于假设法,理解假设过程中的等量关系是关键。
•对于方程法,理解方程的建立和求解过程,以及方程的解的实际意义。
通过掌握以上知识点,同学们可以更好地理解和解决鸡兔同笼问题,同时也能培养数学思维和解决问题的能力。
《鸡兔同笼问题》知识清单一、鸡兔同笼问题的定义鸡兔同笼问题是一个古老而有趣的数学问题,通常描述为在一个笼子里关着若干只鸡和兔子,已知鸡和兔子的总数以及它们脚的总数,求鸡和兔各有多少只。
二、鸡兔同笼问题的常见解法1、假设法假设全是鸡,那么脚的总数就会比实际的少。
因为每只兔子有 4 只脚,而每只鸡有 2 只脚,所以每把一只鸡换成一只兔子,脚的数量就会增加 2 只。
通过计算脚的数量差以及每换一次增加的脚的数量,就可以求出兔子的数量,进而求出鸡的数量。
假设全是兔子,那么脚的总数就会比实际的多。
每把一只兔子换成一只鸡,脚的数量就会减少 2 只。
同样通过计算脚的数量差以及每换一次减少的脚的数量,求出鸡的数量,再求出兔子的数量。
例如:笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有94 只脚。
假设全是鸡,那么脚的总数为 35×2 = 70 只,比实际的 94 只少了 94 70 = 24 只。
因为每把一只鸡换成一只兔子,脚会多 2 只,所以兔子的数量为 24÷2 = 12 只,鸡的数量为 35 12 = 23 只。
2、方程法设鸡的数量为 x 只,兔的数量为 y 只。
根据鸡和兔的总数以及脚的总数,可以列出两个方程:x + y =总数2x + 4y =脚的总数然后通过解方程组,求出 x 和 y 的值。
比如还是上面的例子,设鸡有 x 只,兔有 y 只,可列方程组:x + y = 352x + 4y = 94解这个方程组,由第一个方程得 x = 35 y,将其代入第二个方程:2(35 y) + 4y = 9470 2y + 4y = 942y = 24y = 12则 x = 35 12 = 23三、鸡兔同笼问题的变形1、已知头数差和脚数和例如:鸡兔同笼,鸡比兔多 10 只,共有 110 只脚。
这种情况下,可以设兔有 x 只,那么鸡就有 x + 10 只,然后根据脚的总数列出方程求解。
2、已知脚数差和头数和比如:鸡兔同笼,兔的脚比鸡的脚多 18 只,共有 30 个头。
鸡兔同笼知识点归纳
鸡兔同笼是一个经典问题,源于中国古代的算学家算经中的一个问题,随着时间的推移,这个问题成为了现代数学、思维训练以及逻辑思维的一个经典问题。
鸡兔同笼问题的基本形式是:在一只笼子里,有若干只鸡和兔子,头数上共有35个,脚的总数是94个,问笼中鸡和兔各有多少只?这篇文章会就鸡兔同笼问题的知识点进行归纳,帮助读者更好地理解这个问题。
1. 鸡兔同笼问题的基本概念
首先,我们需要了解鸡兔同笼问题的一些基本概念。
鸡兔同笼问题是一个有限制条件的不定方程问题,问题中涉及到未知数的个数和方程的个数不相等,因此这个问题是一个有多解的问题。
对于有多解的问题,我们需要有一些特殊的解法,例如列出二元一次方程组等。
2. 鸡兔同笼问题的解法
接着,我们需要了解鸡兔同笼问题的解法。
鸡兔同笼问题的解法有多种,其中比较常见的方法是利用数学的代数方程解法和图
像解法,也可以利用逻辑思维的方法进行求解。
代数方程解法主
要是通过列出若干个方程组,解出问题中的未知数。
图像解法主
要是通过画图,找到鸡和兔的个数之间的特殊关系。
逻辑思维的
解法主要是通过分析信息,进行逻辑推断,从而得出鸡和兔的个数。
3. 鸡兔同笼问题存在的注意事项
除此之外,鸡兔同笼问题还存在一些注意事项。
首先,在解题
过程中,需要关注限制条件,注意题目中给出的限制条件,这有
助于我们快速地解题。
其次,需要注意到这个问题有多解的特点,因此需要对结果进行检验确认。
最后,这个问题多种解法,需要
根据题目难度、自身能力和时间来选择合适的解法进行求解。
4. 鸡兔同笼问题的扩展
除了基本形式之外,鸡兔同笼问题还存在许多扩展。
一些经典
的扩展问题包括:用鸡翅和兔耳来替代原问题中的鸡和兔,用重
量来替代数目,用面积、周长等来替代脚的总数。
这些扩展问题,不仅能够加深我们对于鸡兔同笼问题的理解,也能够拓展我们的
思维方式,让我们富有创造性地解决问题。
总之,鸡兔同笼问题是一个经典的数学与逻辑思维问题,其解法有多种,并存在多解的特性,因此在学习、研究这个问题时需要更全面、深入、科学的策略,并应用于实际生活中。