光学教程-答案-郭永康
- 格式:doc
- 大小:843.00 KB
- 文档页数:19
1. 波长为nm 500的绿光投射在间距d 为cm 022.0的双缝上,在距离cm 180处的光屏上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为nm 700的红光投射到此双缝上,两个亮条纹之间的距离又为多少?算出这两种光第2级亮纹位置的距离.解:由条纹间距公式λd r y y y j j 01=-=∆+ 得cm 328.0818.0146.1cm146.1573.02cm818.0409.02cm573.010700022.0180cm 409.010500022.018021222202221022172027101=-=-=∆=⨯===⨯===⨯⨯==∆=⨯⨯==∆--y y y drj y d rj y d r y d r y j λλλλ2.在杨氏实验装置中,光源波长为nm 640,两狭缝间距为mm 4.0,光屏离狭缝的距离为cm 50.试求:(1)光屏上第1亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹为mm 1.0,问两束光在p 点的相位差是多少?(3)求p 点的光强度和中央点的强度之比.解:(1)由公式λd r y 0=∆得λd r y 0=∆ =cm 100.8104.64.05025--⨯=⨯⨯(2)由课本第20页图1-2的几何关系可知52100.01sin tan 0.040.810cm 50y r r d d dr θθ--≈≈===⨯521522()0.8106.4104r r πππϕλ--∆=-=⨯⨯=⨯(3) 由公式2222121212cos 4cos 2I A A A A A ϕϕ∆=++∆= 得8536.042224cos 18cos 0cos 421cos 2cos42cos 422202212212020=+=+==︒⋅=∆∆==πππϕϕA A A A I I pp3. 把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7m .解:未加玻璃片时,1S 、2S 到P 点的光程差,由公式2rϕπλ∆∆=可知为 Δr =215252r r λπλπ-=⨯⨯=现在1S 发出的光束途中插入玻璃片时,P 点的光程差为()210022r r h nh λλϕππ'--+=∆=⨯=⎡⎤⎣⎦所以玻璃片的厚度为421510610cm 10.5r r h n λλ--====⨯-4. 波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.解:6050050010 1.250.2r y d λ-∆==⨯⨯=m m122I I = 22122A A =12A A =()()122122/0.94270.94121/A A V A A ∴===≈++5. 波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
1.1 波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离0r 为180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为700nm 的红光投射到此双缝上,两个亮条纹之间的距离又为多少?算出这两种光第2级亮纹位置的距离。
解:相邻两个亮条纹之间的距离为m dry y y i i 29220110409.01050010022.010180----+⨯≈⨯⨯⨯⨯==+=∆λ若改用700nm 的红光照射时,相邻两个亮条纹之间的距离为m dry y y i i 29220110573.01070010022.010180----+⨯≈⨯⨯⨯⨯==+=∆λ这两种光第2级亮条纹位置的距离为m drj y y y nm nm 3922120500270021027.3]10)500700[(10022.0101802)(----==⨯≈⨯-⨯⨯⨯⨯=-=-=∆λλλλ1.2 在杨氏实验装置中,光源波长为640nm ,两狭缝间距d 为0.4mm ,光屏离狭缝的距离0r 为50cm.试求:(1)光屏上第1亮条纹和中央亮条纹之间的距离;(2)若P 点离中央亮条纹0.1mm ,问两束光在P 点的相位差是多少?(3)求P 点的光强度和中央点的强度之比。
解:(1)因为λdr jy 0=(j=0,1)。
所以第1亮条纹和中央亮条纹之间的距离为m d r y y y 4932001100.810640104.01050)01(----⨯=⨯⨯⨯⨯=-=+=∆λ (2)因为021r ydr r -≈-,若P 点离中央亮纹为0.1mm ,则这两束光在P 点的相位差为41050104.0101.01064022)(22339021ππλπλπϕ=⨯⨯⨯⨯⨯⨯-=-≈-=∆----r yd r r(3)由双缝干涉中光强)](cos 1)[(A 2I(p)21p p ϕ∆+=,得P 点的光强为]22)[(A ]221)[(A 2)](cos 1)[(A 2I(p)212121+=+=∆+=p p p p ϕ,中央亮纹的光强为)(A 4I 210p =。
光学教程第三版(姚启钧著)课后题答案下载《光学教程》以物理光学和应用光学为主体内容。
以下是为大家的光学教程第三版(姚启钧著),仅供大家参考!点击此处下载???光学教程第三版(姚启钧著)课后题答案???本教程以物理光学和应用光学为主体内容。
第1章到第3章为应用光学部分,介绍了几何光学基础知识和光在光学系统中的传播和成像特性,注意介绍了激光系统和红外系统;第4~8章为物理光学部分,讨论了光在各向同性介质、各向异性介质中的传播规律,光的干涉、衍射、偏振特性及光与物质的相互作用,并结合介绍了DWDM、双光子吸收、Raman放大、光学孤子等相关领域的应用和进展。
第9章则专门介绍航天光学遥感、自适应光学、红外与微光成像、瞬态光学、光学信息处理、微光学、单片光电集成等光学新技术。
绪论0.1光学的研究内容和方法0.2光学发展简史第1章光的干涉1.1波动的独立性、叠加性和相干性1.2由单色波叠加所形成的干涉图样1.3分波面双光束干涉1.4干涉条纹的可见度光波的时间相干性和空间相干性1.5菲涅耳公式1.6分振幅薄膜干涉(一)——等倾干涉1.7分振幅薄膜干涉(二)——等厚干涉视窗与链接昆虫翅膀上的彩色1.8迈克耳孙干涉仪1.9法布里一珀罗干涉仪多光束干涉1.10光的干涉应用举例牛顿环视窗与链接增透膜与高反射膜附录1.1振动叠加的三种计算方法附录1.2简谐波的表达式复振幅附录1.3菲涅耳公式的推导附录1.4额外光程差附录1.5有关法布里一珀罗干涉仪的(1-38)式的推导附录1.6有同一相位差的多光束叠加习题第2章光的衍射2.1惠更斯一菲涅耳原理2.2菲涅耳半波带菲涅耳衍射视窗与链接透镜与波带片的比较2.3夫琅禾费单缝衍射2.4夫琅禾费圆孔衍射2.5平面衍射光栅视窗与链接光碟是一种反射光栅2.6晶体对X射线的衍射视窗与链接与X射线衍射有关的诺贝尔奖附录2.1夫琅禾费单缝衍射公式的推导附录2.2夫琅禾费圆孔衍射公式的推导附录2.3平面光栅衍射公式的推导习题第3章几何光学的基本原理3.1几个基本概念和定律费马原理3.2光在平面界面上的反射和折射光导纤维视窗与链接光导纤维及其应用3.3光在球面上的反射和折射3.4光连续在几个球面界面上的折射虚物的概念3.5薄透镜3.6近轴物近轴光线成像的条件3.7共轴理想光具组的基点和基面视窗与链接集成光学简介附录3.1图3-6中P1和JP1点坐标的计算附录3.2棱镜最小偏向角的计算附录3.3近轴物在球面反射时物像之间光程的计算附录3.4空气中的厚透镜物像公式的推导习题第4章光学仪器的基本原理4.1人的眼睛4.2助视仪器的放大本领4.3目镜4.4显微镜的放大本领4.5望远镜的放大本领视窗与链接太空实验室——哈勃太空望远镜 4.6光阑光瞳4.7光度学概要——光能量的传播视窗与链接三原色原理4.8物镜的聚光本领视窗与链接数码相机4.9像差概述视窗与链接现代投影装置4.10助视仪器的像分辨本领视窗与链接扫描隧显微镜4.11分光仪器的色分辨本领习题第5章光的偏振5.1自然光与偏振光5.2线偏振光与部分偏振光视窗与链接人造偏振片与立体电影5.3光通过单轴晶体时的双折射现象5.4光在晶体中的波面5.5光在晶体中的传播方向5.6偏振器件5.7椭圆偏振光和圆偏振光5.8偏振态的实验检验5.9偏振光的干涉5.10场致双折射现象及其应用视窗与链接液晶的电光效应及其应用5.11旋光效应5.12偏振态的矩阵表述琼斯矢量和琼斯矩阵附录5.1从沃拉斯顿棱镜出射的两束线偏振光夹角公式(5-15)的推导习题第6章光的吸收、散射和色散6.1电偶极辐射对反射和折射现象的解释6.2光的吸收6.3光的散射视窗与链接光的散射与环境污染监测6.4光的色散6.5色散的经典理论习题第7章光的量子性7.1光速“米”的定义视窗与链接光频梳7.2经典辐射定律7.3普朗克辐射公式视窗与链接xx年诺贝尔物理学奖7.4光电效应7.5爱因斯坦的量子解释视窗与链接双激光束光捕获7.6康普顿效应7.7德布罗意波7.8波粒二象性附录7.1从普朗克公式推导斯忒藩一玻耳兹曼定律附录7.2从普朗克公式推导维恩位移定律习题第8章现代光学基础8.1光与物质相互作用8.2激光原理8.3激光的特性8.4激光器的种类视窗与链接激光产生106T强磁场8.5非线性光学8.6信息存储技术8.7激光在生物学中的应用视窗与链接王淦昌与惯性的束核聚变习题主要参考书目基本物理常量表习题答案1.阳光大学生网课后答案下载合集2.《光学》赵凯华钟锡华课后习题答案高等教育出版社3.光学郭永康课后答案高等教育出版社4.阳光大学生网课后答案下载求助合集。
1. 试确定下面两列光波E 1=A 0[e x cos (wt-kz )+e y cos (wt-kz-π/2)] E 2=A 0[e x sin (wt-kz )+e y sin (wt-kz-π/2)] 的偏振态。
解 :E 1 =A 0[e x cos(wt-kz)+e y cos(wt-kz-π/2)]=A 0[e x cos(wt-kz)+e y sin(wt-kz)] 为左旋圆偏振光E 2 =A 0[e x sin(wt-kz)+e y sin(wt-kz-π/2)]=A 0[e x sin(wt-kz)+e y cos(wt-kz)] 为右旋圆偏振光2. 为了比较两个被自然光照射的表面的亮度,对其中一个表面直接进行观察,另一个表面通过两块偏振片来观察。
两偏振片透振方向的夹角为60°。
若观察到两表面的亮度相同,则两表面的亮度比是多少?已知光通过每一块偏振片后损失入射光能量的10%。
解∶∵亮度比 = 光强比设直接观察的光的光强为I 0,入射到偏振片上的光强为I ,则通过偏振片系统的光强为I':I'=(1/2)I (1-10%)cos 2600∙(1-10%) 因此:∴ I 0/ I = 0.5×(1-10%)cos 2600∙(1-10%) = 10.125%.3. 两个尼科耳N 1和N 2的夹角为60°,在他们之间放置另一个尼科耳N 3,让平行的自然光通过这个系统。
假设各尼科耳对非常光均无吸收,试问N 3和N 1 的偏振方向的夹角为何值时,通过系统的光强最大?设入射光强为I 0,求此时所能通过的最大光强。
解:201I I()()()()有最大值时,亦可得令注:此时透过的最大光强为,须使欲使I I d d d dI I I II I I II I II I 20cos cos 2329434323060cos 30cos 2302602cos cos 2cos cos 2cos 2222max22232213θααθαααθααθααθαα==⎥⎦⎤⎢⎣⎡-==⋅⋅=-=====∴-=-===4. 在两个理想的偏振片之间有一个偏振片以匀角速度ω绕光的传播方向旋转(见题5.4图),若入射的自然光强为I 0,试证明透射光强为I =16πI 0(1-cos4ωt ).解: I = 12I 0 cos 2ωt cos 2(2π-ωt ) = 12 I 0cos 2ωtsin 2 ωt = 18 I 0 1-cos4t2ω= I 0(1-cos4ωt ) `题5. 线偏振光入射到折射率为1.732的玻璃片上,入射角是60°,入射光的电失量与入射面成30°角。
1.4 在充满水地容器底部放一平面反射镜,人在水面上正视镜子看自己地像.若眼睛高出水面h 1=5.00cm ,水深h 2=8.00cm ,求眼睛地像和眼睛相距多远?像地大小如何?设水地折射率n =1.33.解:如图,人见水中镜离自己地距离为nh h h h 2121'+=+ 所以眼睛地像和眼睛地距离为)(03.22)33.100.800.5(2)(221cm n h h =+=+1.8 一个顶角为60º之冕玻璃棱镜,对钠黄光地折射率为1.62.已知光线在棱镜第一面上地入射角i 1=70º,求:(1)在第一面上地偏向角;(2)在第二面上地偏向角;(3)总地偏向角.解:由图可知'2835)70sin 62.11(sin )sin 1(sin 001112===--i n i00012'603528'2432'i i α=-=-=110021'sin (sin ')sin (1.62sin 2432')4227'i n i --===A习题图1.8习题图1.4因此,在第一、第二面上地偏向角分别为011202213432'''1755'i i i i δδ=-==-=总偏向角为0125217'δδδ=+=1.11 一根长玻璃棒地折射率为 1.6350,将它地左端研磨并抛光成半径为2.50cm 地凸球面.在空气中有一小物体位于光轴上距球面顶点9.0cm 处.求: (1)球面地物方焦距和像方焦距;(2)光焦度;(3)像距; (4)横向放大率;(5)用作图法求像. 解:已知1,' 1.6350, 2.50,9.0n n r cm s cm ====- (1) 2.503.94' 1.63501n f r n n =-=-=---(㎝) ' 1.6350 2.50' 6.44' 1.63501n f r n n ⨯===--(㎝)(2)2' 1.635025.4(D)' 6.4410n f -Φ===⨯(3)由'''n n n n s s r --=得 ' 1.653011''/() 1.6530/()11.402.509.0n n n s n r s --=+=+=-(㎝)(4)由'11.400.777' 1.6350(9.0)ns n s β===-⨯-,是一倒立地缩小地实像.’(5)作图,如图.1.12 将一根40cm 长地透明棒地一端切平,另一端磨成半径为12cm 地半球面.有一小物体沿棒轴嵌在棒内,并与棒地两端等距.当从棒地平端看去时,物地表观深度为12.5cm.问从半球端看去时,它地表观深度为多少?解:已知1120,'12.5s cm s cm ==,由平面折射11'12.5s s cm n==, 得 1.60n =而对于球面,220,12s cm r cm =-=-,由球面折射公式2211'n n s s r--= 代入数据,得2'33.33s =-(㎝)表观深度为33.33cm1.19 一双凸透镜地球面半径为20cm ,透镜材抖地折射率为1.5,一面浸在水中,另一面置于空气中.试求透镜地物方焦距和像方焦距.解:由 )'/(''2010r n n r n n n f -+-=及)'/(210r n n r n n n f -+--= 并将120420,20, 1.5,,'13r cm r cm n n n ==-===代入,得1.54/31 1.5'1/()302020f cm --=+=-4 1.54/31 1.5/()4032020f cm --=-+=--1.21 两薄透镜地焦距为f 1’=5.0cm ,f 2’=10.0cm ,相距5.0cm ,若一高为2.50cm 地物体位于第一透镜前15.0cm 处,求最后所成像地位置和大小,并作出成像地光路图.解:首先物体经L 1成像.已知1115,' 5.0s cm f cm =-=,由由薄透镜地成像公式111''s s f -=及's sβ= 得11111''7.5'f s s cm f s ==+ 1111'7.515 , '1524s y s β===-=--2.2 两个薄透镜L 1和L 2地口径分别是6cm 和4cm ,它们地焦距是f 1’=9cm 和f 2’=5cm ,相距5cm ,在L 1和L 2之间距离L 2为2cm 处放入一个带有直径为6cm 地小孔地光阑AB .物点位于L 1前方12cm 处,求孔径光阑,入射光瞳和出射光瞳.解:(1).求孔径光阑:(a)L 1对其前面地光学系统成像是本身,对物点地张角为130.2512tgu == (b )光阑AB 对L 1成像为A 'B '.已知13,''9,3s cm f f cm y cm =-===,由高斯公式111''s s f -= 及''s y y s=,得 '(3)9' 4.5'(3)9f s s cm f s -⨯===-+-+ ' 4.5'3 4.53s y y cm s -=⋅=⨯=- A ’B ’对物点地张角为习题图1.21L2 4.50.2712 4.5tgu ==+(c )L 2对L 1成像为L 2’已知15,''9,2s cm f f cm y cm =-===,由高斯公式111''s s f -= 及''s y y s=,得 '(5)9'11.25'(5)9f s s cm f s -⨯===-+-+ '11.25'2 4.55s y y cm s -=⋅=⨯=- L 2’对物点地张角为3 4.50.191211.25tgu ==+比较u 1、u 2及u 3可知,L 2’对物点地张角u 3最小,故透镜L 2为孔径光阑. (2). 求入瞳:孔径光阑L 2对其前面地光学系统成像为入瞳,所以L 2’为入射光瞳,位于L 1右侧11.25cm 处,口径为9cm.(3).求出瞳:L 2孔径光阑对其后面地光学系统成像为出瞳.所以透镜L 2 又为出瞳.2.5 用一正常调节地开普勒望远镜观察远处地星,设望远镜地物镜和目镜都可看作是单个薄透镜,物镜焦距f 0’=80mm ,相对孔径D/ f 0’=0.5,目镜焦距f e ’=10mm ,位于物镜后焦面上地分划板直径D=10mm ,物镜为孔径光阑,分划板通光孔为视场光阑.试求: (1)出瞳地位置和大小; (2)视角放大率;(3)入窗和出窗地位置;(4)物方视场角及像方视场角地大小.解:(1)求出瞳:物镜为孔径光阑, 物镜对目镜所成地像为出瞳. 已知90,''10e s mm f f mm =-==,由高斯公式111''s s f -=,得 '10(90)'11.25'10(90)f s s mm f s ⨯-===++- '11.252'240590s D y y mm s ==⋅=⨯=- 即 出瞳位于目镜右侧11.25mm 处,口径为5mm.(2)求视角放大率:由望远镜视角放大率地定义'8'o e f M f =-=-倍 (3)求入窗和出窗:分划板通光孔为视场光阑,入窗为视场光阑对物镜所成之像. 已知80,''80o s mm f f mm =-==,由高斯公式111''s s f -=,得 '80(80)''80(80)f s s f s ⨯-==→∞++- 即入窗位于物方无限远.而出窗为视场光阑对目镜所成之像,由于视场光阑也处于目镜地物方焦平面上,故出窗位于像方无限远.(4)求物方视场角及像方视场角地大小:(如图所示)物方视场角ω0为入窗半径对入瞳中心地张角,其物理意义是能进入系统地主光线与光轴地最大夹角.它又等于F.S 地半径对入瞳中心地张角,即050.062580tg ω==故,物方视场角为00003.576, 27.15ωω≈≈由于像方视场角ω0’与物方视场角ω0 共轭,入瞳中心与出瞳中心共轭,故其像方视场角ω0’如图所示.又由于F.S.位于目镜地物方焦平面上,故由图中关系可知,它又等于F.S.半径对目镜中心地张角,即05'0.510tg ω== 故,像方视场角为0000'26.565, 2'53.13ωω≈≈3.4 在玻璃中z 方向上传播地单色平面波地波函数为习题图2.5F.S.出瞳目镜 物镜A.S 入瞳⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-⨯-=)65.0(10exp 10),(152c z t i t p E π式中c 为真空中光速,时间以s 为单位,电场强度以v/m 为单位,距离以m 为单位.试求(1)光波地振幅和时间频率;(2)玻璃地折射率;(3) z 方向上地空间颇率;(4)在xz 面内与x 轴成45°角方向上地空间频率.解:将⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-⨯-=)65.0(10exp 10),(152c z t i t p E π与(,)exp ()z E p t A i t c ω⎧⎫⎡⎤=--⎨⎬⎢⎥⎣⎦⎩⎭比较, 可得(1)210(V/m),A =151410 = =510(Hz)22ωπνππ⨯=⨯(2) 1.54v 0.65c cn c===(3)146-18011.545102.5610(m )310nn f c νλλ⨯⨯=====⨯⨯ (4)66-1cos 45 2.5610 1.8610(m )o x f f ==⨯=⨯3.6 一平面波函数地复振幅为⎪⎪⎭⎫⎝⎛++=z k y k x k i A p E 14314214exp )(~试求波地传播方向. 解:因为cos cos cos x y z k k k k k k αβγ======,则该波地方向余弦为cos cos cos αβγ===3.10 如习题图 3.10,已知,一束自然光入射到折射率34=n 地水面上时反射光是线偏振地,一块折射率23=n 地平面玻璃浸在水面下,若要使玻璃表面地反射光O'N'也是线偏振地,则玻璃表面与水平面夹角φ应为多大?解:如图当i 为布儒斯特角时,190i i =-,并由折射定律,可得111122sin sin cos n n i i i n n ==, 故 11011213656'1.33n i tg tg n --=== 因为i 2也是布儒斯特角, 故110322 1.54826'1.33n i tg tg n --=== 由图中几何关系可得 0211130'i i ϕ=-=3.13 计算光波垂直入射到折射率为n= 1.33地深水表面地反射光和入射光强度之比.解:由菲涅耳公式,当光波垂直入射时, 有2212211() n n IR R n n I -==+及 将121, 1.33n n ==代入可得反射光和入射光强度之比22221121 1.331()()0.022%1.331I n n I n n --====++3.15 一光学系统由两枚分离地透镜组成,透镜地折射率分别为1.5和1.7.求此系统在光束接近正入射情况下反射光能地损失.如透镜表面镀上增透膜使表面反射率降为1%,问此系统地反射光能损失又是多少?解: 在接近正入射情况下,120i i ≈≈.21221() s p n n R R R n n -===+,两枚分离地透镜i i 2 i 1 n 1 n 2习题图3.10四个界面地反射率分别为211-1.5()0.041+1.5R ==, 221.5-1()0.041+1.5R == 231-1.7()0.06721+1.7R ==,23 1.7-1()0.06721+1.7R ==通过四个界面后总透射光能为:1234123422(1)(1)(1)(1)(10.04)(10.0672)0.80280.2%T T T T T R R R R =⋅⋅⋅=----=--==光束接近正入射情况下反射光能地损失为19.8%.若透镜表面镀上增透膜使表面反射率降为1%,则总透射光能为1234123422(1)(1)(1)(1)(10.01)(10.01)0.9696%T T T T T R R R R =⋅⋅⋅=----=--==光束反射光能地损失为4%4.2 在杨氏实验中,双孔间距为5.0mm ,孔与接收屏相距为1.0m.入射光中包含波长为480nm 和600nm 两种成分,因而看到屏上有两组干涉图样,试求这两种波长地第2级亮纹地距离.解:已知t = 5mm ,D = 1000mm ,480=λnm 74480010mm 4.810mm --=⨯=⨯,600='λnm 4610mm -=⨯,由公式λtDKx K =,得 048.0)108.4106(5102)(244322=⨯-⨯⨯⨯=-'=-'--λλt D x x mm4.5 波长λ= 500nm 地单色平行光正入射到双孔平面上,已知双孔间距t = 0.5mm ,在双孔屏另一侧5cm 处放置一枚像方焦距f'= 5cm 地理想薄透镜L ,并在L 地像方焦平面处放置接收屏.求:(1)干涉条纹间距等于多少?(2)将透镜往左移近双孔2cm ,接收屏上干涉条纹间距又等于多少?解:(1)由题意,位于焦平面上地两个次级点光源经透镜后形成两束平行光,将发生干涉,其条纹间距为θλsin 2=∆x将500=λnm ,005.05025.02/sin =='=f t θ代入上式,得 450051020.005x ∆==⨯⨯nm 50μm =(2)若将透镜向左移近双孔2cm ,此时不再是平行光干涉.S 1、S 2经透镜L 生成两个像1S '、2S ',它们构成一对相干光源.由高斯公式,并将3cm s =-,5cm f '=代入可得7.5cm s '=-又由7.5 2.53s s β'-===-所以12 2.50.5 1.25mm t S S t β'''===⨯= 257.52514.5cm=145mm D s ''=++=++=于是42145510 5.810mm 1.25D x t λ--''∆==⨯⨯=⨯'4.8 设菲涅耳双面镜地夹角为15',缝光源距双面镜交线10 cm ,接收屏与光源经双面镜所成地两个虚像连线平行,屏与双面镜交线距离为210cm ,光波长为600nm ,求: (1)干涉条纹间距为多少? (2)在屏上最多能看到几条干涉纹?(3)如果光源到双面镜距离增大一倍,干涉条纹有什么变化?(4)如果光源与双面镜交线距离保持不变,而在横向有所移动,干涉条纹有什么变化? (5)为保证屏上地干涉条纹有很好地可见度,允许缝光源地最大宽度为多少? 解:(1)将2100=D cm ,l = 10cm ,41151515 2.90910rad 60180πθ-''==⨯⨯≈⨯⨯, 600=λnm 5106-⨯=cm 代入公式02D lx l λθ+∆=可得:54(210.210x--+⨯∆=⨯⨯(2)如图,屏上相干光束交叠范围习题图4.5S 1S 2O 'OB24.951tan 210tan 0='⨯=⋅=θD BO mm故16.65.124.9==∆x BO 即,屏上在零级亮纹两侧可出现6个极大值,整个屏上能看到地亮纹数为13261=⨯+=N 条(3)将220l l '==cm 及(1)题中各值代入x ∆表示式,得02D l x l λθ'+'∆='79.010909.215202106)20210(45=⨯⨯⨯⨯⨯⨯+=--mm 于是:9.2411.70.79BO x =='∆ 故,232111=⨯+='N 条(4)若光源沿横向移动,则条纹上下移动. (5)由图可见,21α='∠O OS ,其中α为干涉孔径角;O O S S O O '∠+=='''∠112αθ,而10/()S OO l l D θ'∠=+,即010022()2()D l S OO D l D lθθαθθ'=-∠=-=++ 故缝光源地临界宽度为002D l b D λλαθ+==072.010909.2152102106)10210(45=⨯⨯⨯⨯⨯⨯+=--mm4.15用波长为500nm 地单色光照明一个宽为0.1mm 地缝作为杨氏双缝干涉实脸地光源,设光源缝至双缝距离为0. 5 m ,试问恰能观察到干涉条纹时两缝间最大距离是多少?解:lt bλ=,将2105⨯=l mm ,1.0=b mm ,500=λnm 4105-⨯=mm 代入,得:5.21.010510542=⨯⨯⨯=-t mm4.17在杨氏双缝实验装置中,双缝相距0.5mm ,接收屏距双缝1m ,点光源距双缝30cm ,它发射λ= 500nm 地单色光.试求:(1)屏上干涉条纹间距;(2)若点光源由轴上向下平移2mm ,屏上干涉条纹向什么方向移动?移动多少距离? (3)若点光源发出地光波为500±2.5nm 范围内地准单色光,求屏上能看到地干涉极大地最高级次;(4)若光源具有一定地宽度,屏上干涉条纹消失时,它地临界宽度是多少? 解:(1)由λtDx =∆,将5.0=t mm ,310=D mm ,4105-⨯=λmm 代入,得 15.01051043=⨯⨯=∆-x mm(2)若将光源向下平移2mm ,则干涉条纹向上移动,移动地距离为67.62300103=⨯=='x l D x δδmm(3)设屏上能看见地条纹地最高干涉级次为K ,因为能产生干涉地最大光程差必小于相干长度,即 0K L λ≤将20L λλ=∆,500nm λ=,5nm λ∆=代入上式,得5001005L K λλλ≤===∆ (4)光源地临界宽度为3.01055.03004=⨯⨯==-λt l b mm4.20在阳光照射下,沿着与肥皂膜法线成30°方向观察时,见膜呈绿色(λ= 550nm ),设肥皂液地折射率为1.33.求:(1)膜地最小厚度;(2)沿法线方向观察时是什么颜色? 解:(1)由λλK i n n h =--2sin 22202,得in n K h 2202sin 2)21(-+=λ将n = 1.33,n 0 = 1,i = 30º,550=λnm 代入上式并取K = 0得最小厚度60.11210h -=⨯m m(2)若0i =,由22h K λλ=,得2K λ=+将6m 00.11210m, 1.33,1,0,0h n n i K -=⨯===︒=代入,得595.8nm λ=,故呈黄色.这道题表明,我们可以通过改变视线角i 来观察注视点色调地变化.如题,当视线角从30º变化至0º,注视点地色调则从绿色变为黄色.当然,读者还可以进一步思考,若膜厚不为最小值(即令1,2,K =等等)时,注视点地色调会发生怎样地变化.4.21将曲率半径为1m 地薄凸透镜紧贴在平晶上,并用钠光(λ= 589.3nm )垂直照射,从反射光中观察牛顿环,然后在球面和平面之间地空气隙内充满四氯化碳液体(n = 1.461),试求充液前后第5暗环地半径之比以及充液后第5暗环地半径等于多少?解:若牛顿环中充以某种折射率为n 地液体,则由其第K 级暗环半径公式nRK r λ=暗 可知,充液前后第5级暗环半径之比为21.1461.15555===='n nR Rr r λλ 充液后第5级暗环半径为42.1461.11103.5895595=⨯⨯⨯=='-n R r λmm4.25用彼此以凸面紧贴地两平凸透镜观察反射光所生成地牛顿环,两透镜地曲率半径分别为R 1和R 2,所用光波波长为λ,求第K 级暗环地半径.若将曲率半径为R 1地平凸透镜凸面放在曲率半径为R 2地平凹透镜凹面上(R 2>R 1),第K 级暗环地半径又等于多少?解:由图(a )可见,21h h h +=,而1212R r h =,2222R r h = 所以2)11(22212λλ++=+=∆R R r h 当 1()2K λ∆=+时,得第K 级暗环 即 212111()()22r K R R λλ++=+ 于是可得第K 级暗环地半径为k r == 第二种情况如图(b )所示,由图可见,21h h h -=,于是同理可得第K 级暗环地半径为k r ==4.33F -P 干涉仪工作表面地反射率为0.90,两反射表面相距3 mm ,用波长为600=λnm 地单色光照明,求:(1)精细系数F 、半强相位宽度ε、精细度F';(2)干涉条纹地最高级数K 和中央往外数第3亮环地角半径. 解:(1)已知R = 0.90,则其精细系数为360)9.01(9.04)1(422=-⨯=-=R R F 其条纹半强相位宽度为21.036044===F ε 精细度为 8.29360214.32==='F F π(2)由λ02K h =得最高干涉级λhK 20=,并将h = 3mm ,4106-⨯=λmm 代入,得4401010632=⨯⨯=-K 由于第K 级亮环地角半径为hn mn i λ01=(此处公式说明删去) 将n 0 = 1,h = 3mm ,n = 1,m = K 0–K = 3代入,得241045.231063--⨯=⨯⨯=i rad5.4一束直径为 2mm 地氦氖激光(8.632=λnm )自地面射向月球.已知月球离地面地距离为51076.3⨯km ,问在月球上得到地光斑有多大(不计大气地影响)?若把这样地激光束经扩束器扩大到直径为2m 和5m 后再发射,月球上地光斑各有多大?解:设月球上光斑直径为d ,则Drd λ22.12= 将81076.3⨯=r m ,9108.632-⨯=λm ,3102-⨯=D m 代入,得339810290102108.63222.11076.32⨯=⨯⨯⨯⨯⨯⨯=--d m = 290km 若2=D m ,则2902108.63222.11076.3298=⨯⨯⨯⨯⨯=-d m若5=D m ,则1165108.63222.11076.3298=⨯⨯⨯⨯⨯=-d m本题旨在认识衍射反比规律,即对光束限制愈大,衍射场愈弥散.5.12用波长为624nm 地单色光照射一光栅,已知该光栅地缝宽a = 0.012mm ,不透明部分b= 0.029mm ,缝数N = 103条.试求:(1)中央峰地角宽度;(2)中央峰内干涉主极大地数目; (3)谱线地半角宽度.解:(1)中央峰地角宽度为:aλθ22=,将41024.6-⨯=λmm ,a = 0.012mm 代入,得104.0012.01024.6224=⨯⨯=-θrad(2)中央峰内主极大数目为71012.0029.0012.02121212=-+⨯=-+=-=-=ab a a d K n(3)谱线半角宽度为221sin 1cos ⎪⎭⎫⎝⎛-=-==∆d K Nd Nd Nd KKλλθλθλθ52434105.1041.01024.61041.0101024.6---⨯=⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯⨯=rad5.13一光栅地光栅常数d = 4μm ,总宽度W = 10cm ,现有波长为500nm 和500.01nm 地平面波垂直照射到这块光栅上,选定光栅在第2级工作,问这两条谱线分开多大地角度?能否分辨此双线?解:由光栅方程λθK d =sin ,在θ角很小时,有669121051041001.02---⨯=⨯⨯⨯=∆=-=∆d K d K d K λλλθrad 而根据光栅地色分辨本领公式45005100.01R λλ===⨯∆,即需4105⨯=R 地光栅才能将这两条谱线分辨.对题给地光栅dW K KN R ==,将 K = 2,21010-⨯=W m ,6104-⨯=d m 代入,得46210510410102⨯=⨯⨯⨯=--R 恰好可以分辨.5.16 有2N 条平行狭缝,缝宽都是a ,缝间不透光部分地宽度作周期性变化:a ,3a ,a ,3a ,…(见图 5.2),单色平行光正入射到多缝上,求下列各种情形中地夫琅禾费衍射光强分布:(1)遮住偶数缝; (2)遮住奇数缝; (3)全开放.解:因为复杂光栅地强度分布为)()()(220θθθN M I I ⋅=其中)(θM 为衍射因子,)(θN 为干涉因子,λθπαααθsin ,sin )(a M ==λθπβββθsin ,sin sin )(d N N ==在(1)、(2)情况下,d = 6a ,故αβ6=,于是得220)6sin 6sin ()sin ()(ααααθN I I =在(3)情况下,将每两缝看作一个衍射单元,其衍射因子为ββααθ''⋅=sin 2sin sin )(M ,因为αλθπβ2sin )2(=='a ,故αααθ2cos sin 2)(⎪⎭⎫⎝⎛=M其干涉因子为ββθsin sin )(N N =,因为αλθπβ6sin )6(==a ,故习题图5.16ααθ6sin 6sin )(N N =故全开放时,其衍射光强为220)6sin 6sin ()2cos sin (4)(αααααθN I I =5.17 一闪耀光栅刻线数为100条/mm :用600=λnm 地单色平行光垂直入射到光栅平面,若第2级光谱闪耀,闪耀角应为多大?解:由闪耀光栅地干涉主极大公式 λθK i d =sin cos 2 因为平行光沿光栅平面地法线垂直入射,所以θ=i ,即有λθθK d =sin cos 2将 K = 2代入得,λθ22sin =d ,故)101062(sin 21)2(sin 212411----⨯⨯==d λθ 72345.3'︒≈︒=5.18 一波长589nm 地单色平行光照明一直径为D = 2.6mm 地小圆孔,接收屏距孔1.5m ,问轴线与屏地交点是亮点还是暗点?当孔地直径改变为多大时,该点地光强发生相反地变化.解:小孔露出地波面部分对交点所包含地半波带数为 200()R r n Rr ρλ+=因为是平行光入射,即∞→R ,有 2n r ρλ=将589=λnm 41089.5-⨯=mm ,3.12==Dρmm ,30105.1⨯=r mm 代入,得 2431.3 1.9125.8910 1.510n -==≈⨯⨯⨯n 为偶数,则该交点是一个暗点.若要使它变为亮点,则须n = 1或者n = 3. 当n = 1时,94.0105.11089.53401=⨯⨯⨯==-r λρmm当n = 3时,63.194.0333103=⨯===ρλρr mm其相应小孔地直径为88.1211==ρD mm 及26.3222==ρD mm版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.83lcP 。
光学(郭永康著)课后答案下载光学(郭永康著)课后答案下载近几十年来光学更加迅猛地发展,开始进入了一个新的时期,学科进展成为现代物理学与现代科学和技术前沿的重要组成部分。
最重要的成就是证实并完善了爱因斯坦于1916年预言过的原子和分子的受激辐射的理论,并创造了许多具体产生受激辐射的技术。
爱因斯坦研究辐射时指出,有自发辐射和受激辐射两种。
光源的发射一般都属自发辐射,其中受激辐射概率小到可忽略不计。
但受激辐射具有产生同方向、同位相、同频率和同偏振辐射的性质。
在一定条件下,如果能使受激辐射继续去激发其他粒子,造成连锁反应,雪崩似地获得放大效果,最后给出单色性的辐射,即所谓的激光。
第一个实现这种量子放大的辐射的是1954年以C.汤斯完成的微波激射器。
随后在1960年T.梅曼用红宝石制成第一台可见光的激光器;同年制成氦氖激光器;1962年产生了半导体激光器;1963年产生可调谐染料激光器。
近几十年来制成的各种激光器已覆盖由X射线、紫外、可见、红外及至微波的整个波段。
由于激光具有极好的单色性、高亮度和良好的方向性,所以自激光器发明以来,激光科学与激光技术得到了迅速发展和广泛应用,引起了整个科学技术的重大变化。
[1] [2]另一个重要的现代光学分支是由成像光学、全息术和光学信息处理组成的。
这一分支可追溯到1873年E.阿贝提出的显微镜成像理论和1906年A.波特为之完成的实验验证;1935年F.泽尔尼克提出位相反衬观察法,而由蔡司(Zeiss)工厂制成相衬显微镜,为此他于1953年获得诺贝尔物理学奖;1948年D.伽柏提出的现代全息照相术前身的波阵面再现原理,为此,伽柏于1971年获得诺贝尔物理学奖。
[1] [2]20世纪50年代开始把数学、电子技术和通信理论与光学结合起来,给光学引入了频谱、空间滤波、载波、线性变换及相关运算等概念,更新了经典成像光学,形成了傅里叶光学。
再加上由于激光所提供的相干光和由E.利思及J.阿帕特内克斯改进了的波阵面再现——全息术,近几十年来形成了一个新的学科领域——光学信息处理。
《光学教程》考试练习题一、单项选择和填空题1.将扬氏双缝干涉实验装置放入折射率为n 的介质中,其条纹间隔是空气中的 A n 1倍 B n 倍 C n1倍 D n 倍 2.在菲涅耳圆屏衍射的几何阴影中心处A永远是个亮点,其强度只与入射光强有关B永远是个亮点,其强度随着圆屏的大小而变C有时是亮点,有时是暗点。
3.光具组的入射光瞳、有效光阑,出射光瞳之间的关系一般为A入射光瞳和有效光阑对整个光具组共轭。
B出射光瞳和有效光阑对整个光具组共轭。
C入射光瞳和出射光瞳对整个光具组共轭。
4.通过一块二表面平行的玻璃板去看一个点光源,则这个点光源显得离观察者A 远了B 近了C 原来位置。
5.使一条不平行主轴的光线,无偏折(即传播方向不变)的通过厚透镜,满足的条件是入射光线必须通过A 光心B 物方焦点C 物方节点D 象方焦点6. 一薄透镜由折射率为1.5的玻璃制成,将此薄透镜放在折射率为4/3的水中。
则此透镜的焦距数值就变成原来在空气中焦距数值的:A 2 倍B 3 倍C 4 倍D 1.5/1.333倍7. 光线由折射率为n 1的媒质入射到折射率为n 2的媒质,布儒斯特角i p 满足:A .sin i p = n 1 / n 2B 、sin i p = n 2 / n 1C 、tg i p = n 1 / n 2D 、tg i p = n 2 / n 18.用迈克耳逊干涉仪观察单色光的干涉,当反射镜M 1移动0.1mm 时,瞄准点的干涉条纹移过了400条,那么所用波长为A 5000ÅB 4987ÅC 2500ÅD 三个数据都不对9.一波长为5000Å的单色平行光,垂直射到0.02cm 宽的狭缝上,在夫琅禾费衍射花样中心两旁第二条暗纹之间的距离为3mm ,则所用透镜的焦距为A 60mmB 60cmC 30mmD 30cm.10. 光电效应中的红限依赖于:A 、入射光的强度B 、入射光的频率C 、金属的逸出功D 、入射光的颜色11. 用劈尖干涉检测二件的表面,当波长为λ的单色光垂直入射时,观察到干涉条纹如图,图中每一条纹弯曲部分的顶点恰与右边相邻的直线部分的连续相切,由图可见二件表面:A 、有一凹陷的槽,深为4λB 、有一凹陷的槽,深为2λC 、有一凸起的埂,高为4λD 、有一凸起的埂,高为2λ12. 随着辐射黑体温度的升高,对应于最大单色光发射本领的波长将:A 、向短波方向移动B 、向长波方向移动C 、先向短波方向,后向长短方向移动D 、先向长波方向,后向短波方向移动13.用单色光观察牛顿环,测得某一亮环直径为3mm ,在它外边第5个亮环直径为4.6mm ,用平凸透镜的凸面曲率半径为1.0m ,则此单色光的波长为A 5903 ÅB 6080 ÅC 7600 ÅD 三个数据都不对14. 一束自然光以布儒斯特角入射于平板玻璃,则:A 、反射光束偏振面垂直于入射面,而透射光束偏振面平行于入射面并为完全线偏振光B 、反射光束偏振面平行偏振于入射面,而透射光束是部分偏振光C 、反射光束偏振面是垂直于入射面,而透射光束是部分偏振光D 、反射光束和透射光束都是部分偏振光15. 仅用检偏器观察一束光时,强度有一最大但无消光位置,在检偏器前置一 4λ片,使其光轴与上述强度为最大的位置平行,通过检偏器观察时有一消光位置,这束光是:A 、部分偏振光B 、椭园偏振光C 、线偏振光D 、园偏振光16.要使金属发生光电效应,则应:A 、尽可能增大入射光的强度B 、选用波长较红限波长更短的光波为入射光C 、选用波长较红限波长更长的光波为入射光波D 、增加光照的时间;17.下列说法正确的是A 、利用不同折射率的凸凹透镜相配,可以完全消除去球差和色差;B 、 近视眼需用凹透镜校正;C 、 扩大照相景深的方法是调大光圈;D 、 天文望远镜的作用是使遥远的星体成像在近处,使得人们能看清楚;18.将折射率n 1=1.50的有机玻璃浸没在油中。
第三章 几何光学1.证明反射定律符合费马原理证明:设界面两边分布着两种均匀介质,折射率为1n 和2n (如图所示)。
光线通过第一介质中指定的A 点后到达同一介质中指定的B 点。
(1)反正法:如果反射点为'C ,位于ox 轴与A 和B 点所著称的平面之外,那么在ox 轴线上找到它的垂足点"C 点,.由于'''''',AC AC BC BC >>,故光线'AC B 所对应的光程总是大于光线''AC B 所对应的光程而非极小值,这就违背了费马原理。
故入射面和反射面在同一平面内。
(2)在图中建立坐xoy 标系,则指定点A,B 的坐标分别为11(,)x y 和22(,)x y ,反射点C 的坐标为(,0)x 所以ACB 光线所对应的光程为:根据费马原理,它应取极小值,所以有 即: 12i i =2.根据费马原理可以导出在近轴光线条件下,从物点发出并会聚到像点的所有光线的光程都相等。
证:如图所示,有位于主光轴上的一个物点S 发出的光束经薄透镜折射后成一个明亮的实象点'S 。
设光线SC 为电光源S 发出的任意一条光线,其中球面AC 是由点光源S 所发出光波的一个波面,而球面DB 是会聚于象点'S 的球面波的一个波面,所以有关系式SC SA =,''S D S B =.因为光程根据费马原理,它们都应该取极值或恒定值,这些连续分布的实际光线,在近轴条件下其光程都取极大值或极小值是不可能的,唯一的可能性是取恒定值,即它们的光程相等。
3.睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板,平板的厚度d 为30cm 。
求物体PQ 的像''P Q 与物体PQ 之间的距离2d 为多少?解:根据例题3.1的结果 4.玻璃棱镜的折射棱角A 为060,对某一波长的光其折射率n为1.6。
1.4 在充满水的容器底部放一平面反射镜,人在水面上正视镜子看自己的像。
若眼睛高出水面h 1=5.00cm ,水深h 2=8.00cm ,求眼睛的像和眼睛相距多远?像的大小如何?设水的折射率n =1.33。
解:如图,人见水中镜离自己的距离为nh h h h 2121'+=+ 所以眼睛的像和眼睛的距离为)(03.22)33.100.800.5(2)(221cm n h h =+=+1.8 一个顶角为60º之冕玻璃棱镜,对钠黄光的折射率为1.62。
已知光线在棱镜第一面上的入射角i 1=70º,求:(1)在第一面上的偏向角;(2)在第二面上的偏向角;(3)总的偏向角。
解:由图可知'2835)70sin 62.11(sin )sin 1(sin 001112===--i n i00012'603528'2432'i i α=-=-=110021'sin (sin ')sin (1.62sin 2432')4227'i n i --===A习题图1.8习题图1.4因此,在第一、第二面上的偏向角分别为011202213432'''1755'i i i i δδ=-==-=总偏向角为0125217'δδδ=+=1.11 一根长玻璃棒的折射率为 1.6350,将它的左端研磨并抛光成半径为2.50cm 的凸球面。
在空气中有一小物体位于光轴上距球面顶点9.0cm 处。
求: (1)球面的物方焦距和像方焦距;(2)光焦度;(3)像距;(4)横向放大率;(5)用作图法求像。
解:已知1,' 1.6350, 2.50,9.0n n r cm s cm ====- (1) 2.50 3.94' 1.63501n f r n n =-=-=---(㎝) ' 1.6350 2.50' 6.44' 1.63501n f r n n ⨯===--(㎝)(2)2' 1.635025.4(D)' 6.4410n f -Φ===⨯ (3)由'''n n n n s s r --=得 ' 1.653011''/() 1.6530/()11.402.509.0n n n s n r s --=+=+=-(㎝)(4)由'11.400.777' 1.6350(9.0)ns n s β===-⨯-,是一倒立的缩小的实像。
’(5)作图,如图。
1.12 将一根40cm 长的透明棒的一端切平,另一端磨成半径为12cm 的半球面。
有一小物体沿棒轴嵌在棒内,并与棒的两端等距。
当从棒的平端看去时,物的表观深度为12.5cm 。
问从半球端看去时,它的表观深度为多少? 解:已知1120,'12.5s cm s cm ==,由平面折射11'12.5s s cm n==, 得 1.60n =而对于球面,220,12s cm r cm =-=-,由球面折射公式2211'n ns s r --=代入数据,得2'33.33s =-(㎝)表观深度为33.33cm1.19 一双凸透镜的球面半径为20cm ,透镜材抖的折射率为1.5,一面浸在水中,另一面置于空气中。
试求透镜的物方焦距和像方焦距。
解:由 )'/(''2010r n n r n n n f -+-=及)'/(210r n n r n n n f -+--= 并将120420,20, 1.5,,'13r cm r cm n n n ==-===代入,得1.54/31 1.5'1/()302020f cm --=+=-4 1.54/31 1.5/()4032020f cm --=-+=--1.21 两薄透镜的焦距为f 1’=5.0cm ,f 2’=10.0cm ,相距5.0cm ,若一高为2.50cm 的物体位于第一透镜前15.0cm 处,求最后所成像的位置和大小,并作出成像的光路图。
解:首先物体经L 1成像。
已知1115,' 5.0s cm f cm =-=,由由薄透镜的成像公式111''s s f -=及's s β= 得11111''7.5'f s s cm f s ==+ 1111'7.515 , '1524s y s β===-=--2.2 两个薄透镜L 1和L 2的口径分别是6cm 和4cm ,它们的焦距是f 1’=9cm 和f 2’=5cm ,相距5cm ,在L 1和L 2之间距离L 2为2cm 处放入一个带有直径为6cm 的小孔的光阑AB 。
物点位于L 1前方12cm 处,求孔径光阑,入射光瞳和出射光瞳。
解:(1).求孔径光阑:(a)L 1对其前面的光学系统成像是本身,对物点的张角为130.2512tgu == (b )光阑AB 对L 1成像为A 'B '。
已知13,''9,3s cm f f cm y cm =-===,由高斯公式111''s s f -= 及''s y y s =,得'(3)9' 4.5'(3)9f s s cm f s -⨯===-+-+ ' 4.5'3 4.53s y y cm s -=⋅=⨯=- A ’B ’对物点的张角为习题图1.21L2 4.50.2712 4.5tgu ==+(c )L 2对L 1成像为L 2’已知15,''9,2s cm f f cm y cm =-===,由高斯公式111''s s f -=及''s y y s =,得 '(5)9'11.25'(5)9f s s cm f s -⨯===-+-+ '11.25'2 4.55s y y cm s -=⋅=⨯=- L 2’对物点的张角为3 4.50.191211.25tgu ==+比较u 1、u 2及u 3可知,L 2’对物点的张角u 3最小,故透镜L 2为孔径光阑。
(2). 求入瞳:孔径光阑L 2对其前面的光学系统成像为入瞳,所以L 2’为入射光瞳,位于L 1右侧11.25cm 处,口径为9cm 。
(3).求出瞳:L 2孔径光阑对其后面的光学系统成像为出瞳。
所以透镜L 2 又为出瞳。
2.5 用一正常调节的开普勒望远镜观察远处的星,设望远镜的物镜和目镜都可看作是单个薄透镜,物镜焦距f 0’=80mm ,相对孔径D/ f 0’=0.5,目镜焦距f e ’=10mm ,位于物镜后焦面上的分划板直径D=10mm ,物镜为孔径光阑,分划板通光孔为视场光阑。
试求: (1)出瞳的位置和大小; (2)视角放大率;(3)入窗和出窗的位置;(4)物方视场角及像方视场角的大小。
解:(1)求出瞳:物镜为孔径光阑, 物镜对目镜所成的像为出瞳。
已知90,''10e s mm f f mm =-==,由高斯公式111''s s f -=,得 '10(90)'11.25'10(90)f s s mm f s ⨯-===++-'11.252'240590s D y y mm s ==⋅=⨯=- 即 出瞳位于目镜右侧11.25mm 处,口径为5mm 。
(2)求视角放大率:由望远镜视角放大率的定义'8'o e f M f =-=-倍 (3)求入窗和出窗:分划板通光孔为视场光阑,入窗为视场光阑对物镜所成之像。
已知80,''80o s mm f f mm =-==,由高斯公式111''s s f -=,得 '80(80)''80(80)f s s f s ⨯-==→∞++- 即入窗位于物方无限远。
而出窗为视场光阑对目镜所成之像,由于视场光阑也处于目镜的物方焦平面上,故出窗位于像方无限远。
(4)求物方视场角及像方视场角的大小:(如图所示)物方视场角ω0为入窗半径对入瞳中心的张角,其物理意义是能进入系统的主光线与光轴的最大夹角。
它又等于F.S 的半径对入瞳中心的张角,即050.062580tg ω==故,物方视场角为00003.576, 27.15ωω≈≈由于像方视场角ω0’与物方视场角ω0 共轭,入瞳中心与出瞳中心共轭,故其像方视场角ω0’如图所示。
又由于 F.S.位于目镜的物方焦平面上,故由图中关系可知,它又等于F.S.半径对目镜中心的张角,即05'0.510tg ω== 习题图2.5F.S.目镜 物镜A.S 入瞳故,像方视场角为0000'26.565, 2'53.13ωω≈≈3.4 在玻璃中z 方向上传播的单色平面波的波函数为⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-⨯-=)65.0(10exp 10),(152c z t i t p E π式中c 为真空中光速,时间以s 为单位,电场强度以v/m 为单位,距离以m 为单位。
试求(1)光波的振幅和时间频率;(2)玻璃的折射率;(3) z 方向上的空间颇率;(4)在xz 面内与x 轴成45°角方向上的空间频率。
解:将⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-⨯-=)65.0(10exp 10),(152c z t i t p E π与(,)exp ()z E p t A i t c ω⎧⎫⎡⎤=--⎨⎬⎢⎥⎣⎦⎩⎭比较, 可得(1)210(V/m),A =151410 = =510(Hz)22ωπνππ⨯=⨯(2) 1.54v 0.65c c n c=== (3)146-18011.545102.5610(m )310nn f c νλλ⨯⨯=====⨯⨯ (4)66-1cos 45 2.5610 1.8610(m )o x f f ==⨯=⨯3.6 一平面波函数的复振幅为⎪⎪⎭⎫ ⎝⎛++=z k y k x k i A p E 14314214exp )(~试求波的传播方向。
解:因为cos cos cos x y z k k k k k k αβγ======向余弦为cos , cos , cos 141414αβγ===3.10 如习题图 3.10,已知,一束自然光入射到折射率34=n 的水面上时反射光是线偏振的,一块折射率23=n 的平面玻璃浸在水面下,若要使玻璃表面的反射光O'N'也是线偏振的,则玻璃表面与水平面夹角φ应为多大?解:如图当i 为布儒斯特角时,190i i =-,并由折射定律,可得111122sin sin cos n n i i i n n ==, 故 11011213656'1.33n i tg tg n --=== 因为i 2也是布儒斯特角, 故110322 1.54826'1.33n i tg tg n --=== 由图中几何关系可得 0211130'i i ϕ=-=3.13 计算光波垂直入射到折射率为n= 1.33的深水表面的反射光和入射光强度之比。