2020版高考数学(文)刷题小卷练:21 Word版含解析
- 格式:doc
- 大小:86.00 KB
- 文档页数:8
刷题小卷练21等比数列小题基础练○21一、选择题1.[2019·四川成都南充高中模拟]已知等比数列的前3项为x,3x+3,6x+6,则其第4项的值为()A.-24 B.-24或0C.12或0 D.24答案:A解析:由x,3x+3,6x+6成等比数列,得(3x+3)2=x(6x+6).解得x1=-3或x2=-1(此时a2=a3=0,不合题意,舍去).故这个等比数列的首项为-3,公比为2,所以a n=-3·2n-1,所以数列的第4项为a4=-24.故选A.2.[2019·河北保定一中模拟]若项数为2m(m∈N*)的等比数列的中间两项正好是方程x2+px+q=0的两个根,则此数列的各项积是()A.p m B.p2mC.q m D.q2m答案:C解析:由题意得a m a m+1=q,所以由等比数列的性质得此数列各项积为(a m a m+1)m=q m.3.设{a n}是由正数组成的等比数列,S n为其前n项和.已知a2a4=1,S3=7,则S5等于()A.152 B.314C.334 D.172答案:B解析:显然公比q≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 1(1-q 3)1-q=7,解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9,q =-13(舍去),∴S 5=a 1(1-q 5)1-q =4⎝ ⎛⎭⎪⎫1-1251-12=314. 4.[2019·福建闽侯模拟]已知数列{a n }为等比数列,且a 1a 13+2a 27=5π,则cos(a 2a 12)的值为( )A .-12 B.22C.32D.12 答案:D解析:∵a 1a 13+2a 27=5π,∴a 2a 12+2a 2a 12=5π,∴a 2a 12=5π3,∴cos(a 2a 12)=cos 5π3=12.故选D.5.[2019·合肥模拟]已知各项均为正数的等比数列{a n }满足a 1a 5=16,a 2=2,则公比q =( )A .4 B.52C .2 D.12 答案:C解析:由题意,得⎩⎨⎧ a 1·a 1q 4=16,a 1q =2,解得⎩⎨⎧a 1=1,q =2或⎩⎨⎧a 1=-1,q =-2(舍去),故选C. 6.[2019·新余调研]已知等比数列{a n }中,a 2=2,a 6=8,则a 3a 4a 5=( )A .±64B .64C .32D .16 答案:B解析:由等比数列的性质可知,a 2a 6=a 24=16,而a 2,a 4,a 6同号,故a 4=4,所以a 3a 4a 5=a 34=64.故选B.7.[2019·辽宁五校联考]各项为正数的等比数列{a n }中,a 4与a 14的等比中项为22,则log 2a 7+log 2a 11的值为( )A .1B .2C .3D .4 答案:C解析:由题意得a 4a 14=(22)2=8,由等比数列的性质,得a 4a 14=a 7a 11=8,∴log 2a 7+log 2a 11=log 2(a 7a 11)=log 28=3,故选C.8.已知各项均为正数的等比数列{a n }的前n 项和为S n ,若S 2n =6,S 3n =14,则S 4n -S n 的值为( )A .18B .20C .24D .28 答案:D解析:由等比数列的性质知,S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n构成等比数列,设S n =x ,则x,6-x,14-6构成等比数列,得到(6-x )2=8x ,即x 2-20x +36=0,解得x =2或x =18(舍去).从而S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n 是以2为首项,S 2n -S n S n=6-22=2为公比的等比数列,则S 4n -S 3n =24=16,故S 4n =30,S 4n -S n =30-2=28,选D.二、非选择题9.[2019·石家庄模拟]在等比数列{a n }中,若a 7+a 8+a 9+a 10=158,a 8a 9=-98,则1a 7+1a 8+1a 9+1a 10=________.答案:-53解析:因为1a 7+1a 10=a 7+a 10a 7a 10,1a 8+1a 9=a 8+a 9a 8a 9,由等比数列的性质知a 7a 10=a 8a 9,所以1a 7+1a 8+1a 9+1a 10=a 7+a 8+a 9+a 10a 8a 9=158÷⎝ ⎛⎭⎪⎫-98=-53. 10.已知数列{c n },其中c n =2n +3n ,且数列{c n +1-pc n }为等比数列,则常数p =________.答案:2或3解析:由数列{c n +1-pc n }为等比数列,得(c 3-pc 2)2=(c 2-pc 1)(c 4-pc 3),即(35-13p )2=(13-5p )·(97-35p ),解得p =2或p =3.11.在等比数列{a n }中,公比q >1,a 1+a m =17,a 2a m -1=16,且前m 项和S m =31,则项数m =________.答案:5解析:由等比数列的性质知a 1a m =a 2a m -1=16,又a 1+a m =17,q >1,所以a 1=1,a m =16,S m =a 1(1-q m )1-q =a 1-a m q 1-q =1-16q1-q =31,解得q =2,a m =a 1q m -1=2m -1=16,所以m =5. 12.[2019·内蒙古包钢一中调研]在83和272之间插入三个正数,使这五个数成等比数列,则插入的三个数的乘积为________.答案:216解析:在83和272之间插入三个正数,使这五个数成等比数列,设插入的三个正数为a ,b ,c ,则b 2=ac =83×272=36,b =6,从而abc =b 3=63=216.课时增分练○21一、选择题1.[2019·广州综合测试]已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为( )A .10B .20C .100D .200 答案:C解析:a 7(a 1+2a 3)+a 3a 9=a 7a 1+2a 7a 3+a 3a 9=a 24+2a 4a 6+a 26=(a 4+a 6)2=102=100.2.已知数列{a n }的前n 项和S n =4n +b (b 是常数,n ∈N *),若这个数列是等比数列,则b =( )A .-1B .0C .1D .4 答案:A解析:显然数列{a n }的公比不等于1, 所以S n =a 1·(q n -1)q -1=a 1q -1·q n -a 1q -1=4n +b ,∴b =-1.3.[2019·湖北重点中学联考]《九章算术》中:今有蒲生一日,长三尺.莞生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等.意思是蒲第一天长3尺,以后逐日减半;莞第一天长1尺,以后逐日增加一倍,则( )天后,蒲、莞长度相等?参考数据:lg2≈0.301 0,lg3≈0.477 1,结果精确到0.1( )A .2.2B .2.4C .2.6D .2.8 答案:C 解析:设蒲每天的长度构成等比数列{a n },其首项a 1=3,公比为12,其前n 项和为A n .设莞每天的长度构成等比数列{b n },其首项b 1=1,公比为2,其前n 项和为B n .则A n =3⎝ ⎛⎭⎪⎫1-12n 1-12,B n =1-2n1-2.设经过x 天后,蒲、莞长度相等,则3⎝ ⎛⎭⎪⎫1-12x 1-12=1-2x 1-2,化简得2x +62x =7,计算得出2x =6,2x=1(舍去).所以x =lg6lg2=1+lg3lg2≈2.6.则估计2.6天后蒲、莞长度相等.故选C.4.[2019·重庆月考]在等比数列{a n }中,a 1和a 2 018是方程2x 2+x -2 018=0的两个根,则a 4·a 2 015=( )A .-2 018B .2 018C .1 009D .-1 009 答案:D解析:由题意得a 1和a 2 018是方程2x 2+x -2 018=0的两个根,根据根与系数的关系得a 1·a 2 018=-1 009.在等比数列{a n }中,a 4·a 2 015=a 1·a 2 018=-1 009.故选D.5.[2019·黑龙江齐齐哈尔模拟]已知S n 是公比为4的等比数列{a n }的前n 项和,若ma n -3S n =8,则m =( )A .3B .4C .5D .6 答案:B解析:∵ma n -3S n =8,∴ma n +1-3S n +1=8,两式相减得ma n+1-ma n -3a n +1=0,(m -3)a n +1=ma n .由条件知m ≠3,则a n +1=m m -3a n .由已知可得mm -3=4,∴m =4.故选B. 6.在数列{a n }中,“a n =2a n -1,n =2,3,4,…”是“{a n }是公比为2的等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:B解析:当a n =0时,也有a n =2a n -1,n =2,3,4,…,但{a n }不是等比数列,因此充分性不成立;当{a n }是公比为2的等比数列时,有a na n -1=2,n =2,3,4,…,即a n =2a n -1,n =2,3,4,…,所以必要性成立.故选B.7.已知等比数列{a n }共有10项,其中奇数项之积为2,偶数项之积为64,则其公比q 为( )A.32 B. 2 C .2 D .2 2 答案:C 解析:由奇数项之积为2,偶数项之积为64,得a 1·a 3·a 5·a 7·a 9=2,a 2·a 4·a 6·a 8·a 10=64,则q 5=a 2·a 4·a 6·a 8·a 10a 1·a 3·a 5·a 7·a 9=32,则q =2,故选C.8.[2019·贵阳模拟]已知数列{a n }满足a 1=1,a n -1=3a n (n ≥2,n ∈N *),其前n 项和为S n ,则满足S n ≥12181的n 的最小值为( )A .6B .5C .8D .7 答案:B解析:由a n -1=3a n (n ≥2)可得a n a n -1=13(n ≥2),可得数列{a n }是首项为a 1=1,公比为q =13的等比数列,所以S n =1-⎝ ⎛⎭⎪⎫13n 1-13=32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n .由S n ≥12181可得32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n ≥12181,1-⎝ ⎛⎭⎪⎫13n ≥242243,得n ≥5(n ∈N *),故选B.二、非选择题9.[2019·衡水模拟]已知在数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2),且b 1=a 2,则|b 1|+|b 2|+…+|b n |=________.答案:4n -1解析:由题意知,q =a 2-a 1=-4,b 1=a 2=-3,所以|b n |=|-3×(-4)n -1|=3·4n -1,所以|b 1|+|b 2|+…+|b n |=3+3×4+3×42+…+3×4n -1=3×1-4n1-4=4n -1.10.[2019·郑州一测]已知数列{a n }满足log 2a n +1=1+log 2a n (n ∈N *),且a 1+a 2+a 3+…+a 10=1,则log 2(a 101+a 102+…+a 110)=________.答案:100解析:因为log 2a n +1=1+log 2a n ,可得log 2a n +1=log 22a n ,所以a n +1=2a n ,所以数列{a n }是以a 1为首项,2为公比的等比数列,又a 1+a 2+…+a 10=1,所以a 101+a 102+…+a 110=(a 1+a 2+…+a 10)×2100=2100,所以log 2(a 101+a 102+…+a 110)=log 22100=100. 11.[2019·广东深圳模拟]设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2(n ∈N *).(1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式.解析:(1)证明 由a 1=1及S n +1=4a n +2,有a 1+a 2=4a 1+2,则a 2=3a 1+2=5,∴b 1=a 2-2a 1=3.∵S n +1=4a n +2,n ∈N *,① ∴S n =4a n -1+2,n ≥2,n ∈N *,② ①-②得a n +1=4a n -4a n -1, ∴a n +1-2a n =2(a n -2a n -1). ∵b n =a n +1-2a n ,∴b n =2b n -1,n ≥2.∴数列{b n }是首项为3,公比为2的等比数列. (2)由(1)可得b n =3·2n -1,∴a n+1-2a n=3·2n-1,∴a n+12n+1-a n2n=34,设c n=a n2n,则c n+1-c n=34,∴c1=a12=12.∴数列{c n}是以12为首项,34为公差的等差数列.∴c n=34n-14,∴a n=2n·c n=(3n-1)·2n-2.。
2020年北京卷高考数学21题解析一、题目描述(在此插入题目描述,包括题目所给条件和要求,以及题目涉及的知识点)二、解题思路1. 认真阅读题目,理解题意:首先,我们需要仔细阅读题目,理解题目所给的条件,明确题目要求解决的问题。
2. 寻找解题切入点,确定解题思路:根据题目所给条件,我们可以尝试从不同的角度去思考问题,寻找解题的切入点。
在这个过程中,我们需要明确解题思路,逐步推进问题的解决。
3. 利用数学知识,逐步解题:在确定了解题思路之后,我们需要利用所学的数学知识,逐步推导出问题的答案。
在这个过程中,我们需要细心、耐心地计算,确保答案的准确性。
三、具体步骤1. 根据题目所给条件,求出函数f(x)的表达式:a. 根据题目所给的数据和公式,代入计算得到f(x)的表达式。
b. 将表达式化简,得到最终的表达式。
2. 确定函数f(x)的单调区间:a. 根据导数知识,求出函数f(x)的导数。
b. 根据导数和函数单调性的关系,确定函数f(x)的单调区间。
3. 利用函数的单调性,结合题目所给条件,求出函数f(x)在区间[a, b]上的最值:a. 根据函数单调性的性质和题目所给条件,求出函数f(x)在区间[a, b]上的最小值和最大值。
b. 将最小值和最大值代入题目要求中进行验证,确保符合题意。
4. 验证端点值是否符合题意:a. 将区间[a, b]的端点值代入函数f(x)中,验证是否满足f(a) > 0且f(b) < 0的条件。
四、答案解析根据以上步骤,我们可以得到以下答案:函数f(x)的表达式为:f(x) = x^3 - 2x^2 + 3x - 5函数f(x)的单调区间为:在区间(-∞, 1]和[3, +∞)上单调递增,在区间(1, 3)上单调递减。
函数f(x)在区间[a, b]上的最小值为:f(1) = -1函数f(x)在区间[a, b]上的最大值为:f(3) = 10a的取值范围为:(0, 1),b的取值范围为:(3, +∞),且a < b < 3。
刷题小卷练20 等差数列小题基础练⑳一、选择题1.在等差数列{a n }中,若a 3=-5,a 5=-9,则a 7=( ) A .-12 B .-13 C .12 D .13 答案:B解析:通解 设公差为d ,则2d =a 5-a 3=-9+5=-4,则d =-2,故a 7=a 3+4d =-5+4×(-2)=-13,选B.优解 由等差数列的性质得a 7=2a 5-a 3=2×(-9)-(-5)=-13,选B.2.[2019·湖南衡阳二十六中模拟]在等差数列{a n }中,a 3=1,公差d =2,则a 8的值为( )A .9B .10C .11D .12 答案:C解析:a 8=a 3+5d =1+5×2=11,故选C.3.已知等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=0,则公差d 等于( )A .-1B .1C .2D .-2 答案:D解析:由S 3=3a 2=6,得a 2=2,又a 3=0,所以公差d =-2.4.[2019·南宁摸考]等差数列{a n }中,a 3+a 7=6,则{a n }的前9项和等于( )A .-18B .27C .18D .-27 答案:B解析:解法一 设等差数列的公差为d ,则a 3+a 7=a 1+2d +a 1+6d =2a 1+8d =6,所以a 1+4d =3.于是{a n }的前9项和S 9=9a 1+9×82d =9(a 1+4d )=9×3=27,故选B.解法二 由等差数列的性质,得a 1+a 9=a 3+a 7=6,所以数列{a n }的前9项和S 9=a 1+a 92=9×62=27,故选B.5.[2019·西安八校联考(一)]设数列{a n }是等差数列,且a 2=-6,a 6=6,S n 是数列{a n }的前n 项和,则( )A .S 4<S 3B .S 4=S 3C .S 4>S 1D .S 4=S 1 答案:B解析:设{a n }的公差为d ,由a 2=-6,a 6=6,得⎩⎪⎨⎪⎧a 1+d =-6,a 1+5d =6,解得⎩⎪⎨⎪⎧a 1=-9,d =3.于是,S 1=-9,S 3=3×(-9)+3×22×3=-18,S 4=4×(-9)+4×32×3=-18,所以S 4=S 3,S 4<S 1,故选B.6.[2019·茂名模拟]我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为( )A .6斤B .9斤C .9.5斤D .12斤 答案:A 解析:依题意,金箠由粗到细各尺的重量构成一个等差数列,设首项a 1=4,则a 5=2,由等差数列的性质得a 2+a 4=a 1+a 5=6,所以第二尺与第四尺的重量之和为6斤.故选A.7.[2019·贵州遵义模拟]设等差数列{a n }的前n 项和为S n ,若a 4,a 6是方程x 2-18x +p =0的两根,则S 9=( )A .9B .81C .5D .45 答案:B解析:由题意,根据根与系数的关系知a 4+a 6=18,故S 9=92(a 1+a 9)=92(a 4+a 6)=81.故选B. 8.[2019·江西K12联盟质量检测]已知等差数列{a n }的前n项和为S n ,若a 3+a 4+a 8=9,则S 9=( )A .27B .18C .9D .3 答案:A解析:∵等差数列{a n }中,a 3+a 4+a 8=9,∴3a 1+12d =9,得a 1+4d =3,即a 5=3,∴S 9=a 1+a 92=9a 5=27.故选A.二、非选择题9.设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37=________.答案:100 解析:∵{a n },{b n }都是等差数列,∴{a n +b n }也是等差数列. ∵a 1+b 1=25+75=100,a 2+b 2=100,∴{a n +b n }的公差为0,∴a 37+b 37=100.10.已知{a n }为等差数列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=________.答案:20解析:解法一 设数列{a n }的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d =5,故a 19+a 20+a 21=a 7+12d +a 8+12d +a 9+12d =10+36d =20.解法二 由等差数列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差数列,设此数列公差为D .所以5+2D =10,所以D =52. 所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20.11.[2019·广东深圳中学月考]已知数列{a n }为等差数列,a 3=7,a 1+a 7=10,S n 为其前n 项和,则使S n 取到最大值的n 等于________.答案:6解析:设等差数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧a 3=7,2a 4=10,故d =a 4-a 3=-2,a n =a 3+(n -3)d =7-2(n -3)=13-2n .令a n >0,得n <6.5.所以在等差数列{a n }中,其前6项均为正,其他各项均为负,于是使S n 取到最大值的n 的值为6.12.[2019·甘肃兰州月考]已知正项数列{a n }的首项a 1=1,前n 项和为S n ,若坐标为(a n ,S n )的点在曲线y =12x (x +1)上,则数列{a n }的通项公式为________.答案:a n =n ,n ∈N *解析:因为以(a n ,S n )为坐标的点在曲线y =12x (x +1)上,所以S n =12a n (a n +1),即2S n =a 2n +a n,2S n +1=a 2n +1+a n +1,两式相减得2a n +1=a 2n +1+a n +1-(a 2n +a n ),即(a n +1-a n -1)·(a n +1+a n )=0.因为a n >0,所以a n +1-a n =1.又a 1=1,所以数列{a n }是首项、公差均为1的等差数列,则数列{a n }的通项公式为a n =n ,n ∈N *.课时增分练⑳一、选择题 1.已知数列{a n }满足a 1=1,a n +1=ra n +r (n ∈N *,r ∈R ,r ≠0),则“r =1”是“数列{a n }为等差数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:A解析:当r =1时,a n +1=a n +1,显然数列{a n }是首项为1,公差为1的等差数列,所以充分性成立;当数列{a n }为等差数列时,设公差为d ,则a n +1=a n +d =ra n +r ,若r ≠1,则a n =r -d1-r ,为常数,因此数列{a n }为常数列,则d =0,所以r1-r=1,解得r =12,必要性不成立,故“r =1”是“数列{a n }为等差数列”的充分不必要条件.2.[2019·兰州市诊断考试]已知等差数列{a n }的前n 项和为S n ,若a 3+a 5+a 7=24,则S 9=( )A .36B .72C .144D .288 答案:B解析:∵a 3+a 5+a 7=3a 5=24,∴a 5=8,∴S 9=a 1+a 92=9a 5=9×8=72.3.[2019·河南郑州七校联考]在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .2B .10 C.52 D.54 答案:C解析:对任意的n ∈N *有2a n +1=1+2a n ,即a n +1-a n =12,所以数列{a n }是首项a 1=-2,公差d =12的等差数列.所以数列{a n }的前10项和S 10=10a 1+10×92d =10×(-2)+45×12=52,故选C.4.[2018·全国卷Ⅰ]记Sn 为等差数列{an }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .12 答案:B解析:设等差数列{an }的公差为d ,由3S 3=S 2+S 4,得3⎣⎢⎢⎡⎦⎥⎥⎤3a 1+-2×d =2a 1+-2×d +4a 1+-2×d ,将a 1=2代入上式,解得d =-3,故a 5=a 1+(5-1)d =2+4×(-3)=-10. 故选B.5.[2019·湖北襄阳四校模拟]在等差数列{a n }中,已知|a 7|=|a 12|,且公差d >0,则其前n 项和S n 取得最小值时n 的值为( )A.7 B.8C.9 D.10答案:C解析:∵|a7|=|a12|,且公差d>0,∴-a7=a12,∴a7+a12=0.∴a9+a10=0,∴a9<0,a10>0.∴数列{a n}前n项和S n取得最小值时n的值为9.故选C.6.[2019·丹东模拟]在等差数列{a n}中,公差d≠0,若lg a1,lg a2,lg a4也成等差数列,且a5=10,则{a n}的前5项和S5=( ) A.40 B.35C.30 D.25答案:C解析:lg a1,lg a2,lg a4成等差数列,所以2lg a2=lg a1+lg a4⇒lg a22=lg a1a4⇒a22=a1a4⇒d2=a1d,因为d≠0,所以a1=d,又a5=a1+4d=10,所以a1=2,d=2,S5=5a1+5×42d=30.选C.7.[2019·辽宁大连第二十四中学月考]数列{a n}满足a1=2,a2=1并且1a n-1=2a n-1a n+1(n≥2),则数列{a n}的第100项为( )A.1100 B.150C.12100 D.1250答案:B解析:∵1a n-1=2a n-1a n+1(n≥2),∴1a n+1+1a n-1=2a n,∴⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n为等差数列,首项为1a1=12,第二项为1a2=1,∴d=12,∴1a100=1a1+99d=50,∴a100=150.8.[2019·天津月考]已知函数f(x)在(-1,+∞)上单调,且函数y=f(x-2)的图象关于直线x=1对称,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则a1+a100等于( ) A.2 B.-2C.0 D.-1答案:B解析:由题意得函数f(x)在区间(-1,+∞)上单调,且函数y=f(x-2)的图象关于直线x=1对称,所以y=f(x)的图象关于直线x=-1对称.由数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),可得12(a50+a51)=-1,即a50+a51=-2.又数列{a n}是等差数列,所以a1+a100=a50+a51=-2.故选B.二、非选择题9.设等差数列{a n}的前n项和为S n,且S3=-12,S9=45,则S12=________.答案:114解析:因为{a n}是等差数列,所以S3,S6-S3,S9-S6,S12-S9成等差数列,所以2(S6-S3)=S3+(S9-S6),即2(S6+12)=-12+(45-S6),解得S6=3.又2(S9-S6)=(S6-S3)+(S12-S9),即2×(45-3)=(3+12)+(S12-45),解得S12=114.10.[2019·九江模拟]已知数列{a n}为等差数列,a1=1,a n>0,其前n项和为S n,且数列{S n}也为等差数列,设b n=a n+22n·a n·a n+1,则数列{b n}的前n项和T n=________.答案:1-1 2n n+解析:设等差数列{a n}的公差为d(d≥0),∵S1=1,S2=2+d,S3=3+3d成等差数列,∴22+d=1+3+3d,得d=2,∴a n=1+(n-1)×2=2n-1,S n=n2,S n=n,故数列{S n}为等差数列,b n=a n+22n·a n·a n+1=2n+32n n-n+=12n-1n--12n n+,则T n=120-121×3+121×3-122×5+…+12n-1n--12n n+=1-12n n+.11.已知在等差数列{a n}中,a1=31,S n是它的前n项的和,S10=S22.(1)求S n;(2)这个数列前多少项的和最大?并求出这个最大值.解析:(1)∵S10=a1+a2+…+a10,S 22=a 1+a 2+…+a 22,又S 10=S 22,∴a 11+a 12+…+a 22=0,即a 11+a 222=0,即a 11+a 22=2a 1+31d =0. 又a 1=31,∴d =-2.∴S n =na 1+n n -2d =31n -n (n -1)=32n -n 2.(2)解法一 由(1)知,S n =32n -n 2=-(n -16)2+256, ∴当n =16时,S n 有最大值256. 解法二 由(1)知,令⎩⎪⎨⎪⎧a n =31+n --=-2n +33≥0,a n +1=31+n-=-2n +31≤0(n ∈N *),解得312≤n ≤332,∵n ∈N *,∴n =16时,S n 有最大值256.。
2020年普通高等学校招生全国统一考试数学文试题(新课标卷,解析版)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷上.....作答无效。
..... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}{}0,1,2,3,4,1,3,5,,M N P M N ===I 则P 的子集共有 (A )2个 (B )4个 (C )6个 (D )8个解析:本题考查交集和子集概念,属于容易题。
显然P={}3,1,子集数为22=4 故选B(2)复数512ii=- (A )2i - (B )12i - (C )2i -+ (D )12i -+ 解析:本题考查复数的运算,属容易题。
解法一:直接法512ii =-()()()i i i i i +-=+-+22121215,故选C 解法二:验证法 验证每个选项与1-2i 的积,正好等于5i 的便是答案。
(3)下列函数中,即是偶数又在()0,+∞单调递增的函数是A. 3y x = B. 1y x =+ C. 21y x =-+ D. 2xy -=解析:本题考查函数的奇偶性和单调性,属于简单题可以直接判断:A 是奇函数,B 是偶函数,又是()0,+∞的增函数,故选B 。
(4).椭圆221168x y +=的离心率为A.13 B. 12C. 33D. 22解析;本题考查椭圆离心率的概念,属于容易题,直接求e=22422==a c ,故选D 。
2020-2021学年(新课标i卷)⾼考数学⽂科模拟试题及答案解析绝密★启封并使⽤完毕前试题类型:普通⾼等学校招⽣全国统⼀考试⽂科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(⾮选择题)两部分.第Ⅰ卷1⾄3页,第Ⅱ卷3⾄5页. 2.答题前,考⽣务必将⾃⼰的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上⽆效.4.考试结束后,将本试题和答题卡⼀并交回.第Ⅰ卷⼀. 选择题:本⼤题共12⼩题,每⼩题5分,在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =I(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7}(2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=(A )-3(B )-2(C )2(D )3(3)为美化环境,从红、黄、⽩、紫4种颜⾊的花中任选2种花种在⼀个花坛中,余下的2种花种在另⼀个花坛中,则红⾊和紫⾊的花不在同⼀花坛的概率是(A )13(B )12(C )13(D )56(4)△ABC 的内⾓A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b=(A (B C )2(D )3(5)直线l 经过椭圆的⼀个顶点和⼀个焦点,若椭圆中⼼到l 的距离为其短轴长的14,则该椭圆的离⼼率为(A )13(B )12(C )23(D )34(6)若将函数y=2sin (2x+π6)的图像向右平移14个周期后,所得图像对应的函数为(A )y=2sin(2x+π4) (B )y=2sin(2x+π3) (C )y=2sin(2x –π4) (D )y=2sin(2x –π3)(7)如图,某⼏何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该⼏何体的体积是28π3,则它的表⾯积是(A )17π(B )18π(C )20π(D )28π(8)若a>b>0,0(A )log a c(D )c a>c b(9)函数y=2x 2–e |x|在[–2,2]的图像⼤致为(A )(B )(C )(D )(10)执⾏右⾯的程序框图,如果输⼊的0,1,x y ==n=1,则输出,x y 的值满⾜(A )2y x =(B )3y x = (C )4y x = (D )5y x =(11)平⾯α过正⽂体ABCD —A 1B 1C 1D 1的顶点A 11//CB D α平⾯,ABCD m α=I 平⾯,11ABB A n α=I 平⾯,则m ,n 所成⾓的正弦值为(A )3(B )22(C )3(D )13(12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是(A )[]1,1-(B )11,3??-(C )11,33??-(D )11,3--第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考⽣都必须作答.第(22)题~第(24)题为选考题,考⽣根据要求作答. ⼆、填空题:本⼤题共3⼩题,每⼩题5分(13)设向量a=(x ,x+1),b=(1,2),且a ⊥b ,则x=. (14)已知θ是第四象限⾓,且sin(θ+π4)=35,则tan(θ–π4)=. (15)设直线y=x+2a 与圆C :x 2+y 2-2ay-2=0相交于A ,B 两点,若,则圆C 的⾯积为。
2020年全国统一高考数学模拟试卷(文科)(新课标I)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则下列Venn图中阴影部分表示集合{3,5}的是()A.B.C.D.2.若数据x1,x2,x3,…,x n的平均数为=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数和方差分别为()A.5,2 B.16,2 C.16,18 D.16,93.“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.24里B.48里C.96里D.192里5.已知双曲线C的渐近线方程为3x±2y=0,且焦点在x轴上,焦点到渐近线的距离为6,则该双曲线的方程为()A.B.C.D.6.设曲线y=sinx(a∈R)上任一点(x,y)处切线斜率为g(x),则函数y=x2g(x)的部分图象可以为()A.B. C.D.7.执行如图的程序,若输出的值为2,则输入的值构成的集合是()A.{2}B.{1,2,﹣1,﹣2} C.{1,﹣1} D.{2,﹣2}8.圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,则a﹣b的取值范围是()A.(﹣∞,4)B.(﹣∞,0)C.(﹣4,+∞)D.(4,+∞)9.如图,在平面四边形ABCD中,AB=1,,,∠ABC=120°,∠DAB=75°,则CD=()A.B. C. D.10.若x,y满足,则z=y﹣2|x|的最大值为()A.﹣8 B.﹣4 C.1 D.211.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的外接球的体积是()A.12πB.48πC.4πD.32π12.已知函数f(x)=|2x+1+|在[﹣,3]上单调递增,则实数a的取值范围是()A.[0,1]B.[﹣1,1] C.[﹣1,2] D.(﹣∞,2]二、填空题:本大题共4小题,每小题5分.13.设(i为虚数单位),则=_______.14.已知向量,且,则=_______.15.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为_______.16.函数f(x)=sin2x在[﹣π,π]内满足的n的最大值是_______.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.某市根据地理位置划分成了南北两区,为调查该市的一种经济作物A(下简称A作物)的生长状况,用简单随机抽样方法从该市调查了500处A作物种植点,其生长状况如表:生长指数 2 1 0 ﹣1地域南区空气质量好45 54 26 35空气质量差7 16 12 5 北区空气质量好70 105 20 25空气质量差19 38 18 5其中生长指数的含义是:2代表“生长良好”,1代表“生长基本良好”,0代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.附:P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.828.18.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.(1)证明:平面A1AE⊥平面A1DE;(2)若DE=A1E,试求异面直线AE与A1D所成角的余弦值.19.已知数列{a n}的前n项和为S n,a1=1,a n+1=(λ+1)S n+1(n∈N*,λ≠﹣2),且3a1,4a2,a3+13成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足a n b n=log4a n+1,求数列{b n}的前n项和T n.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(I)求C的方程.(Ⅱ)若直线y=k(x﹣1)与曲线C交于R,S两点,问是否在x轴上存在一点T,使得当k变动时总有∠OTS=∠OTR?若存在,请说明理由.21.已知函数f(x)=(其中k∈R,e是自然对数的底数),f′(x)为f(x)导函数.(Ⅰ)若k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f′(1)=0,试证明:对任意x>0,f′(x)<恒成立.选修4-1:几何证明与选讲22.如图,在⊙O中,弦AF交直径CD于点M,弦的延长线交CD的延长线于点E,M、N分别是AF、AB的中点.(Ⅰ)求证:OE•ME=NE•AE;(Ⅱ)若,求∠E的大小.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,曲线C:(x﹣2)2+(y﹣3)2=1,以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为θ=(p∈R).(1)求曲线C的参数方程及直线l的直角坐标方程;(2)设曲线C与直线l相交于点A、B,若点P为曲线C上一动点(异于点A、B),求△PAB面积的最大值.选修4-5:不等式选讲24.已知f(x)=|x﹣3|,g(x)=|x﹣k|(其中k≥2).(Ⅰ)若k=4,求f(x)+g(x)<9的解集;(Ⅱ)若∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,求实数k的值.2020年全国统一高考数学模拟试卷(文科)(新课标I)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则下列Venn图中阴影部分表示集合{3,5}的是()A.B.C.D.【考点】Venn图表达集合的关系及运算.【分析】结合已知条件即可求解.观察Venn图,得出图中阴影部分表示的集合,【解答】解:∵全集U={1,2,3,4,5,6},集合A={1,2,4},∴(∁A)={3,5,6},∵B={1,3,5},∴B∩(∁A)={3,5}.故选:B.2.若数据x1,x2,x3,…,x n的平均数为=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数和方差分别为()A.5,2 B.16,2 C.16,18 D.16,9【考点】极差、方差与标准差.【分析】由平均数和方差的性质得数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数为,方差为32•σ2.【解答】解:∵x1,x2,x3,…,x n的平均数为5,∴=5,∴+1=3×5+1=16,∵x1,x2,x3,…,x n的方差为2,∴3x1+1,3x2+1,3x3+1,…,3x n+1的方差是32×2=18.故选:C.3.“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合双曲线的定义进行判断即可.【解答】解:若曲线mx2﹣(m﹣2)y2=1为双曲线,则对应的标准方程为,则>0,即m(m﹣2)>0,解得m>2或m<0,故“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的充分不必要条件,故选:A4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.24里B.48里C.96里D.192里【考点】等比数列的前n项和.【分析】由题意可知此人每天走的步数构成为公比的等比数列,由求和公式可得首项,可得答案.【解答】解:由题意可知此人每天走的步数构成为公比的等比数列,由题意和等比数列的求和公式可得=378,解得a1=192,∴第此人二天走192×=96步故选:C5.已知双曲线C的渐近线方程为3x±2y=0,且焦点在x轴上,焦点到渐近线的距离为6,则该双曲线的方程为()A.B.C.D.【考点】双曲线的简单性质.【分析】设双曲线的方程为﹣=1(a,b>0),求得渐近线方程,由题意可得=,运用点到直线的距离公式,解方程可得a=4,b=6,进而得到双曲线的方程.【解答】解:设双曲线的方程为﹣=1(a,b>0),可得渐近线方程为y=±x,由题意可得=,设一个焦点为(c,0),可得=6,可得c=2,即a2+b2=52,解得a=4,b=9,则双曲线的方程为﹣=1.故选:D.6.设曲线y=sinx(a∈R)上任一点(x,y)处切线斜率为g(x),则函数y=x2g(x)的部分图象可以为()A.B. C.D.【考点】函数的图象;利用导数研究函数的单调性.【分析】求导y′=cosx,从而可得y=x2g(x)=x2cosx,从而判断.【解答】解:∵y=sinx,∴y′=cosx,由导数的几何意义知,g(x)=cosx,故y=x2g(x)=x2cosx,故函数y=x2g(x)是偶函数,故排除A,D;又∵当x=0时,y=0,故排除C,故选B.7.执行如图的程序,若输出的值为2,则输入的值构成的集合是()A.{2}B.{1,2,﹣1,﹣2} C.{1,﹣1} D.{2,﹣2}【考点】程序框图.【分析】由框图知程序功能是计算并输出y=的值,由题意分类讨论即可得解.【解答】解:由框图知程序功能是计算并输出y=的值,当x>0时,令x2﹣x=2,解得x=2或﹣1(舍去);当x<0时,令x2+x=2,解得x=﹣2或1(舍去);故输入的值构成的集合是:{﹣2,2}.故选:D.8.圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,则a﹣b的取值范围是()A.(﹣∞,4)B.(﹣∞,0)C.(﹣4,+∞)D.(4,+∞)【考点】直线与圆相交的性质.【分析】由题意知,圆心在直线上,解出b,再利用圆的半径大于0,解出a<2,从而利用不等式的性质求出a﹣b的取值范围.【解答】解:∵圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,∴圆心(1,﹣3)在直线y=x+2b上,故﹣3=1+2b,∴b=﹣2.对于圆x2+y2﹣2x+6y+5a=0,有4+36﹣20a>0,∴a<2,a﹣b=a+2<4,故选A.9.如图,在平面四边形ABCD中,AB=1,,,∠ABC=120°,∠DAB=75°,则CD=()A.B. C. D.【考点】解三角形.【分析】分别过C,D作AB的垂线DE,CF,则通过计算可得四边形DEFC为矩形,于是CD=EF=AB﹣AE+BF.【解答】解:过D作DE⊥AB于E,过C作CF⊥AB交AB延长线于F,则DE∥CF,∠CBF=60°.DE=ADsinA==,CF=BCsin∠CBF=()×=.∴四边形DEFC是矩形.∴CD=EF=AB﹣AE+BF.∵AE=ADcosA==,BF=BCcos∠CBF=()×=.∴CD=1﹣+=.故选:A.10.若x,y满足,则z=y﹣2|x|的最大值为()A.﹣8 B.﹣4 C.1 D.2【考点】简单线性规划.【分析】由约束条件作出可行域,分类化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图,当x≥0时,可行域为四边形OACD及其内部区域,A点是目标函数取得最大值的点;当x≤0时,可行域为三角形OAB及其内部区域,A点是目标函数取得最大值的点.∴z=y﹣2|x|的最大值为2.故选:D.11.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的外接球的体积是()A.12πB.48πC.4πD.32π【考点】由三视图求面积、体积.【分析】由三视图知该几何体为棱锥,其中SC⊥平面ABCD,此四面体的外接球为正方体的外接球,正方体的对角线长为2,外接球的半径为,即可求出此四面体的外接球的体积.【解答】解:由三视图知该几何体为棱锥S﹣ABD,其中SC⊥平面ABCD,此四面体的外接球为正方体的外接球,正方体的对角线长为2,外接球的半径为所以四面体的外接球的体积=4.故选:C.12.已知函数f(x)=|2x+1+|在[﹣,3]上单调递增,则实数a的取值范围是()A.[0,1]B.[﹣1,1] C.[﹣1,2] D.(﹣∞,2]【考点】函数单调性的判断与证明.【分析】为去绝对值号,讨论a:(1)a<0时,根据指数函数和增函数的定义便可判断函数在[,3]上单调递增,从而需满足g(﹣)≥0,这样可得到﹣1≤a <0;(2)a=0时,显然满足条件;(3)a>0时,得到f(x)=,并可判断x=时取等号,从而需满足,可解出该不等式,最后便可得出实数a的取值范围.【解答】解:(1)当a<0时,函数在上单调递增;∴;∴﹣1≤a<0;(2)当a=0时,f(x)=2x+1在上单调递增;(3)当a>0时,,当且仅当,即x=时等号成立;∴要使f(x)在[]上单调递增,则;即0<a≤1;综上得,实数a的取值范围为[﹣1,1].故选B.二、填空题:本大题共4小题,每小题5分.13.设(i为虚数单位),则=2﹣i.【考点】复数代数形式的混合运算.【分析】直接由复数求模公式化简复数z,则答案可求.【解答】解:由=,则=2﹣i.故答案为:2﹣i.14.已知向量,且,则=5.【考点】平面向量数量积的坐标表示、模、夹角.【分析】根据平面向量的坐标运算与数量积运算,求出x的值,再求的值.【解答】解:向量,且,∴•=x﹣2=0,解得x=2,∴﹣2=(﹣3,4);==5.故答案为:5.15.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为2.【考点】抛物线的简单性质.【分析】利用抛物线的定义,求出P的坐标,然后求出三角形的面积.【解答】解:由抛物线定义,|PF|=x P+1=5,所以x P=4,|y P|=4,所以,△PFO的面积S==.故答案为:2.16.函数f(x)=sin2x在[﹣π,π]内满足的n的最大值是4.【考点】正弦函数的图象.【分析】由题意可得,本题即求函数f(x)=sin2x与y=kx的图象的交点个数,但不含原点,数形结合得出结论.【解答】解:满足的x的个数n,即为函数f(x)=sin2x与y=kx的图象的交点个数,但不含原点,如图所示,存在k∈(﹣∞,0),使得n取到最大值4,故答案为:4.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.某市根据地理位置划分成了南北两区,为调查该市的一种经济作物A(下简称A作物)的生长状况,用简单随机抽样方法从该市调查了500处A作物种植点,其生长状况如表:生长指数 2 1 0 ﹣1地域南区空气质量好45 54 26 35空气质量差7 16 12 5 北区空气质量好70 105 20 25空气质量差19 38 18 5其中生长指数的含义是:2代表“生长良好”,1代表“生长基本良好”,0代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.附:P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.828.【考点】线性回归方程.【分析】(I)根据表格数据计算;(II)采用独立检验方法列联表计算K2,与6.635比较大小得出结论;(III)根据绝收比例可以看出采用分层抽样比较合理.【解答】解:(1)调查的500处种植点中共有120处空气质量差,其中不绝收的共有110处,∴空气质量差的A作物种植点中,不绝收的种植点所占的比例.(2)列联表如下:收绝收合计南区160 40 200北区270 30 300合计430 70 500∴K2=≈9.967.∵9.967>6.635,∴有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关“.(3)由(2)的结论可知该市A作物的种植点是否绝收与所在地域有关,因此在调查时,先确定该市南北种植比例,再把种植区分南北两层采用分层抽样比采用简单随机抽样方法好.18.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.(1)证明:平面A1AE⊥平面A1DE;(2)若DE=A1E,试求异面直线AE与A1D所成角的余弦值.【考点】平面与平面垂直的判定;异面直线及其所成的角.【分析】(1)根据题意,得△ABE是正三角形,∠AEB=60°,等腰△CDE中∠CED==30°,所以∠AED=90°,得到DE⊥AE,结合DE⊥AA1,得DE⊥平面A1AE,从而得到平面A1AE ⊥平面平面A1DE.(2)取BB1的中点F,连接EF、AF,连接B1C.证出EF∥A1D,可得∠AEF(或其补角)是异面直线AE与A1D所成的角.利用勾股定理和三角形中位线定理,算出△AEF各边的长,再用余弦定理可算出异面直线AE与A1D所成角的余弦值.【解答】解:(1)依题意,BE=EC=BC=AB=CD…,∴△ABE是正三角形,∠AEB=60°…,又∵△CDE中,∠CED=∠CDE==30°…∴∠AED=180°﹣∠CED﹣∠AEB=90°,即DE⊥AE…,∵AA1⊥平面ABCD,DE⊆平面ABCD,∴DE⊥AA1.…,∵AA1∩AE=A,∴DE⊥平面A1AE…,∵DE⊆平面A1DE,∴平面A1AE⊥平面A1DE.….(2)取BB1的中点F,连接EF、AF,连接B1C,…∵△BB1C中,EF是中位线,∴EF∥B1C∵A1B1∥AB∥CD,A1B1=AB=CD,∴四边形ABCD是平行四边形,可得B1C∥A1D∴EF∥A1D…,可得∠AEF(或其补角)是异面直线AE与A1D所成的角….∵△CDE中,DE=CD==A1E=,AE=AB=1∴A1A=,由此可得BF=,AF=EF==…,∴cos∠AEF==,即异面直线AE与A1D所成角的余弦值为…19.已知数列{a n}的前n项和为S n,a1=1,a n+1=(λ+1)S n+1(n∈N*,λ≠﹣2),且3a1,4a2,a3+13成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足a n b n=log4a n+1,求数列{b n}的前n项和T n.【考点】数列的求和;数列递推式.【分析】(Ⅰ)讨论可判断出数列{a n}是以1为首项,λ+2为公比的等比数列,从而结合8a2=3a1+a3+13可得λ2﹣4λ+4=0,从而解得;(Ⅱ)化简可得b n=,从而可得T n=1+++…+,T n=+++…+,利用错位相减法求其前n项和即可.【解答】解:(Ⅰ)∵a n+1=(λ+1)S n+1,+1,∴当n≥2时,a n=(λ+1)S n﹣1∴a n+1﹣a n=(λ+1)a n,即a n+1=(λ+2)a n,又∵λ≠﹣2,∴数列{a n}是以1为首项,λ+2为公比的等比数列,故a2=λ+2,a3=(λ+2)2,∵3a1,4a2,a3+13成等差数列,∴8a2=3a1+a3+13,代入化简可得,λ2﹣4λ+4=0,故λ=2,故a n=4n﹣1;(Ⅱ)∵a n b n=log4a n+1=n,∴b n=,故T n=1+++…+,T n=+++…+,故T n=1+++…+﹣=(1﹣)﹣,故T n=﹣.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(I)求C的方程.(Ⅱ)若直线y=k(x﹣1)与曲线C交于R,S两点,问是否在x轴上存在一点T,使得当k变动时总有∠OTS=∠OTR?若存在,请说明理由.【考点】直线与圆的位置关系.【分析】(Ⅰ)求出圆M和圆N的圆心及半径,设圆P的圆心为P(x,y),半径为R.由圆P与圆M外切并与圆N内切,得到曲线C是以M,N为左右焦点,长半轴长为2,短半轴为的椭圆(左顶点除外),由此能求出C的方程.(Ⅱ)假设存在T(t,0)满足∠OTS=∠OTR.联立得(3+4k2)x2﹣8k2x+4k2﹣12=0,由此利用根的判别式、韦达定理,结合已知条件能求出存在T(4,0),使得当k变化时,总有∠OTS=∠OTR.【解答】解:(Ⅰ)圆M:(x+1)2+y2=1的圆心为M(﹣1,0),半径r1=1,圆N的圆心N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.∵圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+r1+r2﹣R=r1+r2=4.…由椭圆的定义可知,曲线C是以M,N为左右焦点,长半轴长为2,短半轴为的椭圆(左顶点除外),∴C的方程为.…(Ⅱ)假设存在T(t,0)满足∠OTS=∠OTR.设R(x1,y1),S(x2,y2)联立得(3+4k2)x2﹣8k2x+4k2﹣12=0,由韦达定理有①,其中△>0恒成立,…由∠OTS=∠OTR(由题意TS,TR的斜率存在),故k TS+k TR=0,即②,由R,S两点在直线y=k(x﹣1)上,故y1=k(x1﹣1),y2=k(x2﹣1),代入②得,即有2x1x2﹣(t+1)(x1+x2)+2t=0③…将①代入③即有:④,要使得④与k的取值无关,当且仅当“t=4“时成立,综上所述存在T(4,0),使得当k变化时,总有∠OTS=∠OTR.…21.已知函数f(x)=(其中k∈R,e是自然对数的底数),f′(x)为f(x)导函数.(Ⅰ)若k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f′(1)=0,试证明:对任意x>0,f′(x)<恒成立.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算f(1),f′(1),代入切线方程即可;(Ⅱ)求出k的值,令g(x)=(x2+x)f'(x),问题等价于,根据函数的单调性证明即可.【解答】解:(Ⅰ)由得,x∈(0,+∞),所以曲线y=f(x)在点(1,f(1))处的切线斜率为:,而f(1)=,故切线方程是:y﹣=﹣(x﹣1),即:x+ey﹣3=0;(Ⅱ)证明:若f′(1)=0,解得:k=1,令g(x)=(x2+x)f'(x),所以,x∈(0,+∞),因此,对任意x>0,g(x)<e﹣2+1,等价于,由h(x)=1﹣x﹣xlnx,x∈(0,∞),得h'(x)=﹣lnx﹣2,x∈(0,+∞),因此,当x∈(0,e﹣2)时,h'(x)>0,h(x)单调递增;x∈(e﹣2,+∞)时,h'(x)<0,h(x)单调递减,所以h(x)的最大值为h(e﹣2)=e﹣2+1,故1﹣x﹣xlnx≤e﹣2+1,设φ(x)=e x﹣(x+1),∵φ'(x)=e x﹣1,所以x∈(0,+∞)时,φ'(x)>0,φ(x)单调递增,φ(x)>φ(0)=0,故x∈(0,+∞)时,φ(x)=e x﹣(x+1)>0,即,所以.因此,对任意x>0,恒成立.选修4-1:几何证明与选讲22.如图,在⊙O中,弦AF交直径CD于点M,弦的延长线交CD的延长线于点E,M、N分别是AF、AB的中点.(Ⅰ)求证:OE•ME=NE•AE;(Ⅱ)若,求∠E的大小.【考点】相似三角形的性质;与圆有关的比例线段.【分析】(1)通过证明△AME∽△ONE,即可推出结果.(2)利用(1)的结论,设OE=x,求解x,然后在直角三角形中求解即可.【解答】(1)证明:∵M、N分别是AF、AB的中点.∴∠AME=∠ONE=90°,又∵∠E=∠E,∴△AME∽△ONE,∴,∴OE•ME=NE•AE.(2)设OE=x,(x>0),∵BE==,∴NE=2,AE=3,又∵OM=,∴x=2,即:(x﹣4)(2x+9)=0,∵x>0,∴x=4,即OE=4,则在Rt△ONE中,cos∠E===∴∠E=30°.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,曲线C:(x﹣2)2+(y﹣3)2=1,以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为θ=(p∈R).(1)求曲线C的参数方程及直线l的直角坐标方程;(2)设曲线C与直线l相交于点A、B,若点P为曲线C上一动点(异于点A、B),求△PAB面积的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)令x﹣2=cosα,y﹣3=sinα即可得出曲线C的参数方程,直线l过原点,且斜率为tanθ,利用点斜式方程写出直线l的方程;(2)解方程组求出A,B坐标,得到AB,则P到AB的最大距离为C到AB的距离与圆C 的半径的和.【解答】解:(1)令x﹣2=cosα,y﹣3=sinα,则x=2+cosα,y=3+sinα,∴曲线C的参数方程为(α为参数).直线l的斜率k=tanθ=1,∴直线l的直角坐标方程为y=x.(2)解方程组得或.设A(2,2),B(3,3).则|AB|==.∵圆C的圆心为C(2,3),半径r=1,∴C到直线AB的距离为=.∴P到直线AB 的最大距离d=+1.∴△PAB面积的最大值为=.选修4-5:不等式选讲24.已知f(x)=|x﹣3|,g(x)=|x﹣k|(其中k≥2).(Ⅰ)若k=4,求f(x)+g(x)<9的解集;(Ⅱ)若∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,求实数k的值.【考点】绝对值不等式的解法.【分析】(Ⅰ)将k=4代入g(x),通过讨论x的范围,求出不等式的解集即可;(Ⅱ)问题等价于∀x∈[1,2],x+3≥2k恒成立,根据x的范围求出k的范围即可.【解答】解:(Ⅰ)k=4时,f(x)+g(x)<9,即|x﹣3|+|x﹣4|<9,即或或,解得:﹣1<x<3或3≤x≤4或4<x<8,故原不等式的解集是{x|﹣1<x<8};(Ⅱ)∵k∵≥2且x∈[1,2],∴x﹣3<0,x﹣k<0,∴f(x)=|x﹣3|=3﹣x,g(x)=|x﹣k|=k﹣x,则∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,等价于∀x∈[1,2],x+3≥2k恒成立,∴4≥2k,即k≤2,又∵k≥2,∴k=2.2020年9月9日。
最新高三数学试卷(文科)一.选择题(每题5分,共40分)1.已知全集U=R,集合A={1,2,3,4,5},B={x∈R|x≥2},如图中阴影部分所表示的集合为()A.{1} B.{0,1} C.{1,2} D.{0,1,2}2.已知a,b为非零实数,z=a+bi,“z2为纯虚数”是“a=b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.在极坐标系中,过点且平行于极轴的直线的方程是()A.ρcosθ=B.ρcosθ=﹣ C.ρsinθ=1 D.ρsinθ=﹣14.阅读程序框图,为使输出的数据为31,则①处应填的数字为()A.4 B.5 C.6 D.75.若函数的图象上所有点的横坐标扩大到原来的2倍,纵坐标不变,则得到的图象所对应的函数解析式为()A.B.C.D.6.某企业生产甲、乙两种产品.已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨、B原料不超过18吨,那么该企业可获得最大利润是()A.12万元B.20万元C.25万元D.27万元7.已知||=||=2,•=﹣2,则|﹣t|(t∈R)的最小值为()A.1 B.C.D.28.在6枚硬币A,B,C,D,E,F中,有5枚是真币,1枚是假币,5枚真币重量相同,假币与真币的重量不同,现称得A和B共重10克,C,D共重11克,A,C,E共重16克,则假币为()A.A B.B C.C D.D二、填空题(共6小题,每小题5分,共30分)9.某地为了调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中,抽取若干人组成调查小组,有关数据见如表:相关人员数抽取人数公务员32 x教师48 y自由职业者64 4则调查小组的总人数为.10.双曲线﹣y2=1的右焦点与抛物线y2=8x的焦点重合,该双曲线的渐近线为.11.在△ABC中,a=7,b=8,A=,则边c= .12.一个正三棱柱的三视图如图所示,则这个正三棱柱的体积是.13.已知数列{a n}中,a1=,a n+1=1﹣(n≥2),则a16= .14.对于给定的非空数集,其最大元素最小元素的和称为该集合的“特征值”,A1,A2,A3,A4,A5都含有20个元素,且A1∪A2∪A3∪A4∪A5={x∈N*|x≤100},则这A1,A2,A3,A4,A5的“特征值”之和的最小值为.三.解答题(共6小题,共80分)15.函数f(x)=cos(πx+φ)(0<φ<)的部分图象如图所示.(Ⅰ)写出φ及图中x0的值;(Ⅱ)设g(x)=f(x)+f(x+),求函数g(x)在区间上的最大值和最小值.16.对甲、乙两名篮球运动员分别在100场比赛中的得分情况进行统计,做出甲的得分频率分布直方图如图所示,列出乙的得分统计表如下:分值[0,10)[10,20)[20,30)[30,40)场数10 20 40 30(Ⅰ)估计甲在一场比赛中得分不低于20分的概率;(Ⅱ)判断甲、乙两名运动员哪个成绩更稳定;(结论不要求证明)(Ⅲ)在甲所进行的100场比赛中,以每场比赛得分所在区间中点的横坐标为这场比赛的得分,试计算甲每场比赛的平均得分.17.在等差数列{a n}中,其前n项和为S n,满足S5﹣S2=21,2a2﹣a4=﹣1(1)求数列{a n}的通项公式;(2)若b n=a,求数列{b n}的前n项和的表达式.18.如图,四边形ABCD是菱形,DE⊥平面ABCD,AF∥DE,DE=3AF.(1)求证:平面BAF∥平面CDE;(2)求证:平面EAC⊥平面EBD;(3)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.19.在平面直角坐标系xOy中,椭圆C的中心在原点,焦点F1,F2在x轴上,焦距为,P是椭圆上一动点,△PF1F2的面积最大值为2.(Ⅰ)求椭圆的标准方程;(Ⅱ)过点M(1,0)的直线l交椭圆C于A,B两点,交y轴于点N,若,,求证:λ1+λ2为定值.20.已知函数f(x)=.(Ⅰ)求函数f(x)的零点及单调区间;(Ⅱ)求证:曲线y=存在斜率为6的切线,且切点的纵坐标y0<﹣1.参考答案与试题解析一.选择题(每题5分,共40分)1.已知全集U=R,集合A={1,2,3,4,5},B={x∈R|x≥2},如图中阴影部分所表示的集合为()A.{1} B.{0,1} C.{1,2} D.{0,1,2}【考点】Venn图表达集合的关系及运算;交、并、补集的混合运算.【分析】先观察Venn图,得出图中阴影部分表示的集合,再结合已知条件即可求解.【解答】解:图中阴影部分表示的集合中的元素是在集合A中,但不在集合B中.又A={1,2,3,4,5},B={x∈R|x≥2},则右图中阴影部分表示的集合是:{1}.故选A.2.已知a,b为非零实数,z=a+bi,“z2为纯虚数”是“a=b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】求出z2,根据纯虚数的定义,求出a=±b,根据充分必要条件的定义判断即可.【解答】解:∵z=a+bi,∴z2=a2﹣b2+2abi,若z2为纯虚数,则a=±b,故是“a=b”的必要不充分条件,故选:B.3.在极坐标系中,过点且平行于极轴的直线的方程是()A.ρcosθ=B.ρcosθ=﹣ C.ρsinθ=1 D.ρsinθ=﹣1【考点】简单曲线的极坐标方程.【分析】利用化为直角坐标,即可得出.【解答】解:点化为直角坐标,即.∴过点且平行于极轴的直线的方程是y=﹣1,化为直角坐标方程为:ρsinθ=﹣1.故选:D.4.阅读程序框图,为使输出的数据为31,则①处应填的数字为()A.4 B.5 C.6 D.7【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求S的值,我们用表格列出程序运行过程中各变量的值的变化情况,不难给出答案.【解答】解:程序在运行过程中各变量的值如下表示:S i 是否继续循环循环前 1 1/第一圈3 2 是第二圈7 3 是第三圈15 4 是第四圈31 5 否故最后当i<5时退出,故选B.5.若函数的图象上所有点的横坐标扩大到原来的2倍,纵坐标不变,则得到的图象所对应的函数解析式为()A.B.C.D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】只需把原函数解析式中x的系数变为原来的倍,即可得到所得的图象所对应的函数解析式.【解答】解:把函数的图象上所有点的横坐标扩大到原来的2倍,纵坐标不变,则得到的图象所对应的函数解析式为,故选B.6.某企业生产甲、乙两种产品.已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨、B原料不超过18吨,那么该企业可获得最大利润是()A.12万元B.20万元C.25万元D.27万元【考点】简单线性规划的应用.【分析】先设该企业生产甲产品为x吨,乙产品为y吨,列出约束条件,再根据约束条件画出可行域,设z=5x+3y,再利用z的几何意义求最值,只需求出直线z=5x+3y过可行域内的点时,从而得到z值即可.【解答】解:设该企业生产甲产品为x吨,乙产品为y吨,则该企业可获得利润为z=5x+3y,且联立解得由图可知,最优解为P(3,4),∴z的最大值为z=5×3+3×4=27(万元).故选D.7.已知||=||=2,•=﹣2,则|﹣t|(t∈R)的最小值为()A.1 B.C.D.2【考点】平面向量数量积的运算.【分析】根据向量的数量积的运算法则和利用二次函数的性质求得它的最小值.【解答】解:由||=||=2,•=﹣2,则|﹣t|2=||2+t2||2﹣2t•=4+4t2+4t=4(t+)2+3,∴当t=﹣时,|﹣t|2的最小值为3,当t=﹣时,则|﹣t|(t∈R)的最小值为,故选:B8.在6枚硬币A,B,C,D,E,F中,有5枚是真币,1枚是假币,5枚真币重量相同,假币与真币的重量不同,现称得A和B共重10克,C,D共重11克,A,C,E共重16克,则假币为()A.A B.B C.C D.D【考点】进行简单的合情推理.【分析】由题意可知,C,D中一定有一个为假的,分别假设C为假币,或D为假币,去判断假设是否成立,问题得以解决.【解答】解:5枚真币重量相同,则任意两枚硬币之和一定为偶数,由题意可知,C,D中一定有一个为假的,假设C为假币,则真硬币的重量为5克,则C的重量为6克,满足A,C,E共重16克,故假设成立,若D为假币,则真硬币的重量为5克,不满足A,C,E共重16克,故假设不成立,则D是真硬币,故选:C二、填空题(共6小题,每小题5分,共30分)9.某地为了调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中,抽取若干人组成调查小组,有关数据见如表:相关人员数抽取人数公务员32 x教师48 y自由职业者64 4则调查小组的总人数为.【考点】分层抽样方法.【分析】根据分层抽样原理,即可求出答案.【解答】解:根据分层抽样原理,得==,解得x=2,y=3,所以调查小组的总人数为2+3+4=9(人).故答案为:9.10.双曲线﹣y2=1的右焦点与抛物线y2=8x的焦点重合,该双曲线的渐近线为.【考点】双曲线的简单性质.【分析】求出抛物线的焦点坐标,结合双曲线的方程求出m的值,利用双曲线的渐近线方程进行求解即可.【解答】解:抛物线的焦点坐标为(2,0),即双曲线的焦点坐标为(2,0),则c=2,且双曲线的焦点在x轴,则a2=m,b2=1,a2+b2=c2,即m+1=4,则m=3,即a=,b=1,则双曲线的渐近线方程为y=±x=±x=±x,故答案为:y=±x.11.在△ABC中,a=7,b=8,A=,则边c= .【考点】正弦定理.【分析】根据余弦定理a2=b2+c2﹣2bccosA,列出方程即可求出c的值.【解答】解:△ABC中,a=7,b=8,A=,∴由余弦定理得:a2=b2+c2﹣2bccosA,64+c2﹣2×8c•cos=49,c2﹣8c+15=0,解得c=3或5.经验证,3或5都满足题意,所以c的值为3或5.故答案为:3或5.12.一个正三棱柱的三视图如图所示,则这个正三棱柱的体积是.【考点】由三视图求面积、体积.【分析】由已知中的三视图,我们易判断出三棱柱的底面上的高和棱柱的高,进而求出底面面积,代入棱柱体积公式,即可得到答案.【解答】解:由已知中三视图,可得这是一个正三棱柱底面的高为2,则底面面积S==4棱柱的高H=2则正三棱柱的体积V=SH=8故答案为:813.已知数列{a n}中,a1=,a n+1=1﹣(n≥2),则a16= .【考点】数列递推式.【分析】由,可分别求a2,a3,a4,从而可得数列的周期,可求【解答】解:∵,则=﹣1=2=∴数列{a n}是以3为周期的数列∴a16=a1=故答案为:14.对于给定的非空数集,其最大元素最小元素的和称为该集合的“特征值”,A1,A2,A3,A4,A5都含有20个元素,且A1∪A2∪A3∪A4∪A5={x∈N*|x≤100},则这A1,A2,A3,A4,A5的“特征值”之和的最小值为.【考点】集合中元素个数的最值;元素与集合关系的判断.【分析】判断集合的元素个数中的最小值与最大值的可能情况,然后按照定义求解即可.【解答】解:A1∪A2∪A3∪A4∪A5={x∈N*|x≤100},可得所有元素是:1,2,3,4, (100)A1,A2,A3,A4,A5都含有20个元素,可知:最小的5个数分别为:1,2,3,4,5.100必是一个集合的最大元素,含有100集合中的元素,有82,83,84,…,99.和1,2,3,4,5中的一个.这样特征值会比较小,则另一个集合的最大值为:81.类比可知:5个最大值为:24,43,62,81,100.则这A1,A2,A3,A4,A5的“特征值”之和的最小值为:1+2+3+4+5+24+43+62+81+100=325.故答案为:325.三.解答题(共6小题,共80分)15.函数f(x)=cos(πx+φ)(0<φ<)的部分图象如图所示.(Ⅰ)写出φ及图中x0的值;(Ⅱ)设g(x)=f(x)+f(x+),求函数g(x)在区间上的最大值和最小值.【考点】余弦函数的图象.【分析】(Ⅰ)由题意可得=cos(0+φ),可得φ的值.由=cos(πx0+),可得x0的值.(Ⅱ)先求得g(x)的函数解析式,由,可得,从而可求函数g(x)在区间上的最大值和最小值.【解答】(共13分)解:(Ⅰ)∵=cos(0+φ)∴φ的值是.…∵=cos(πx0+)∴2π﹣=πx0+,可得x0的值是.…(Ⅱ)由题意可得:.…所以=…==.…因为,所以.所以当,即时,g(x)取得最大值;当,即时,g(x)取得最小值.…16.对甲、乙两名篮球运动员分别在100场比赛中的得分情况进行统计,做出甲的得分频率分布直方图如图所示,列出乙的得分统计表如下:分值[0,10)[10,20)[20,30)[30,40)场数10 20 40 30(Ⅰ)估计甲在一场比赛中得分不低于20分的概率;(Ⅱ)判断甲、乙两名运动员哪个成绩更稳定;(结论不要求证明)(Ⅲ)在甲所进行的100场比赛中,以每场比赛得分所在区间中点的横坐标为这场比赛的得分,试计算甲每场比赛的平均得分.【考点】众数、中位数、平均数;极差、方差与标准差;古典概型及其概率计算公式.【分析】(Ⅰ)根据频率分布直方图,计算甲在一场比赛中得分不低于20分的频率即可;(Ⅱ)根据甲乙运动员得分的分布情况,即可判断甲、乙两名运动员成绩稳定的稳定性,(Ⅲ)根据平均数的计算公式,即可得到结论.【解答】解:(Ⅰ)根据频率分布直方图可知甲在一场比赛中得分不低于20分的频率为0.048×10+0.024×10=0.48+0.24=0.72.即甲在一场比赛中得分不低于20分的概率为0.72.(Ⅱ)根据甲的频率分布直方图可知,甲的成绩主要集中[20,30),乙的成绩比较分散,∴甲更稳定.(Ⅲ)∵组距为10,∴甲在区间[0,10),[10,20),[20,30),[30,40),上得分频率值分别为,,,,设甲的平均得分为S,则=23.80.17.在等差数列{a n}中,其前n项和为S n,满足S5﹣S2=21,2a2﹣a4=﹣1(1)求数列{a n}的通项公式;(2)若b n=a,求数列{b n}的前n项和的表达式.【考点】数列的求和.【分析】(1)设等差数列{a n}的公差为d,由S5﹣S2=21,2a2﹣a4=﹣1,可得5a1+10d﹣(2a1+d)=21,2(a1+d)﹣(a1+3d)=﹣1,解得:a1,d.可得a n.(2)b n==3×2n﹣1,再利用等比数列的求和公式即可得出.【解答】解:(1)设等差数列{a n}的公差为d,∵S5﹣S2=21,2a2﹣a4=﹣1,∴5a1+10d﹣(2a1+d)=21,2(a1+d)﹣(a1+3d)=﹣1,解得:a1=2,d=3.∴a n=2+3(n﹣1)=3n﹣1.(2)b n==3×2n﹣1,∴数列{b n}的前n项和=3×(2+22+…+2n)﹣n=3×﹣n=3×2n+1﹣6﹣n.18.如图,四边形ABCD是菱形,DE⊥平面ABCD,AF∥DE,DE=3AF.(1)求证:平面BAF∥平面CDE;(2)求证:平面EAC⊥平面EBD;(3)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.【考点】平面与平面垂直的判定;平面与平面平行的判定.【分析】(1)先证明AF∥平面CDE,AB∥平面CDE,即可证明平面BAF∥平面CDE;(2)证明AC⊥平面EBD平面EAC⊥平面EBD;(3)BM=BD时,AM∥平面BEF,证明AMNF是平行四边形得出AM∥FN,即可证明AM∥平面BEF.【解答】证明:(1)∵AF∥DE,AF⊄平面CDE,DE⊂平面CDE,∴AF∥平面CDE.同理,AB∥平面CDE,∵AF∩AB=A,∴平面BAF∥平面CDE;(2)∵四边形ABCD是菱形,∴AC⊥BD,∵DE⊥平面ABCD,AC⊂平面ABCD,∴AC⊥DE,∵BD∩DE=D.∴AC⊥平面EBD,∵AC⊂平面EAC,∴平面EAC⊥平面EBD;解:(3)BM=BD时,AM∥平面BEF,理由如下:作MN∥ED,则MN平行且等于BD,∵AF∥DE,DE=3AF,∴AF平行且等于MN,∴AMNF是平行四边形,∴AM∥FN,∵AM⊄平面BEF,FN⊂平面BEF,∴AM∥平面BEF19.在平面直角坐标系xOy中,椭圆C的中心在原点,焦点F1,F2在x轴上,焦距为,P是椭圆上一动点,△PF1F2的面积最大值为2.(Ⅰ)求椭圆的标准方程;(Ⅱ)过点M(1,0)的直线l交椭圆C于A,B两点,交y轴于点N,若,,求证:λ1+λ2为定值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)设椭圆的标准方程,利用焦距为,求得c的值,根据当点P在短轴的顶点时,P到F1F2的距离最大,所以此时△PF1F2的面积最大为2,建立方程,从而可得椭圆方程;(Ⅱ)直线l与椭圆方程联立,利用,,用A,B的横坐标表示λ1,λ2,从而可得结论.【解答】(Ⅰ)解:设椭圆的标准方程为(a>b>0).因为焦距为,所以c=.当点P在短轴的顶点时,P到F1F2的距离最大,所以此时△PF1F2的面积最大,所以,所以.因为a2=b2+c2=4,所以a2=4,所以椭圆方程为.…(Ⅱ)证明:依题意,直线l的斜率存在,可设为k,则直线l:y=k(x﹣1).设A(x1,y1),B(x2,y2),联立消y得(2k2+1)x2﹣4k2x+2k2﹣4=0.显然△>0,且,.因为直线l交y轴于点N,所以N(0,﹣k).所以,,且所以x1=λ1(1﹣x1),所以,同理.所以.即λ1+λ2为定值是.…20.已知函数f(x)=.(Ⅰ)求函数f(x)的零点及单调区间;(Ⅱ)求证:曲线y=存在斜率为6的切线,且切点的纵坐标y0<﹣1.【考点】利用导数研究曲线上某点切线方程;函数零点的判定定理.【分析】(Ⅰ)令f(x)=0,求出函数的零点,求出函数的导数,从而求出函数的单调区间;(Ⅱ)令,求出函数的导数,结合函数的单调性得到得:,从而证出结论.【解答】解:(Ⅰ)令f(x)=0,得x=e.故f(x)的零点为e,(x>0).令f′(x)=0,解得.当x变化时,f′(x),f(x)的变化情况如下表:x(0,)(,+∞)f′(x)﹣0 +f(x)递减递增所以f(x)的单调递减区间为,单调递增区间为.(Ⅱ)令.则,因为,f(e)=0,且由(Ⅰ)得,f(x)在(0,e)内是减函数,所以存在唯一的,使得g′(x0)=f(x0)=6.当x∈[e,+∞)时,f(x)≤0.所以曲线存在以(x0,g(x0))为切点,斜率为6的切线.由得:.所以.因为,所以,﹣6x0<﹣3.所以y0=g(x0)<﹣1.2016年10月11日。
12020年普通高等学校招生全国统一考试(Ⅰ卷)文科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则AB =A .{4,1}-B .{1,5}C .{3,5}D .{1,3} 2.若312i i z =++,则||=zA .0B .1C 2D .23.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为 A 51- B 51- C 51+ D 51+ 4.设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为 A .15B .25C .12D .455.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A .y a bx =+B .2y a bx =+C .e x y a b =+D .ln y a b x =+ 6.已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为A .1B .2C .3D .4 7.设函数π()cos()6f x x ω=+在[−π,π]的图像大致如下图,则f (x )的最小正周期为 A .10π9 B .7π6 C .4π3D .3π28.设3log 42a =,则4a -= A .116 B .19 C 18D .169.执行下面的程序框图,则输出的n =A .17B .19C .21D .2310.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=A .12B .24C .30D .3211.设12,F F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则12PF F △的面积为A .72B .3C .52D .212.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π2二、填空题:本题共4小题,每小题5分,共20分。
刷题小卷练21 等比数列小题基础练○21一、选择题 1.[2019·四川成都南充高中模拟]已知等比数列的前3项为x,3x +3,6x +6,则其第4项的值为( )A .-24B .-24或0C .12或0D .24 答案:A 解析:由x,3x +3,6x +6成等比数列,得(3x +3)2=x (6x +6).解得x 1=-3或x 2=-1(此时a 2=a 3=0,不合题意,舍去).故这个等比数列的首项为-3,公比为2,所以a n =-3·2n -1,所以数列的第4项为a 4=-24.故选A.2.[2019·河北保定一中模拟]若项数为2m (m ∈N *)的等比数列的中间两项正好是方程x 2+px +q =0的两个根,则此数列的各项积是( )A .p mB .p 2mC .q mD .q 2m 答案:C解析:由题意得a m a m +1=q ,所以由等比数列的性质得此数列各项积为(a m a m +1)m =q m .3.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5等于( )A.152B.314C.334D.172 答案:B解析:显然公比q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 1(1-q 3)1-q =7,解得⎩⎪⎨⎪⎧ a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9,q =-13(舍去),∴S 5=a 1(1-q 5)1-q=4⎝ ⎛⎭⎪⎫1-1251-12=314. 4.[2019·福建闽侯模拟]已知数列{a n }为等比数列,且a 1a 13+2a 27=5π,则cos(a 2a 12)的值为( )A .-12 B.22C.32D.12 答案:D解析:∵a 1a 13+2a 27=5π,∴a 2a 12+2a 2a 12=5π,∴a 2a 12=5π3,∴cos(a 2a 12)=cos 5π3=12.故选D.5.[2019·合肥模拟]已知各项均为正数的等比数列{a n }满足a 1a 5=16,a 2=2,则公比q =( )A .4 B.52C .2 D.12 答案:C解析:由题意,得⎩⎪⎨⎪⎧ a 1·a 1q 4=16,a 1q =2,解得⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=-1,q =-2(舍去),故选C.6.[2019·新余调研]已知等比数列{a n }中,a 2=2,a 6=8,则a 3a 4a 5=( )A .±64B .64C .32D .16 答案:B解析:由等比数列的性质可知,a 2a 6=a 24=16,而a 2,a 4,a 6同号,故a 4=4,所以a 3a 4a 5=a 34=64.故选B.7.[2019·辽宁五校联考]各项为正数的等比数列{a n }中,a 4与a 14的等比中项为22,则log 2a 7+log 2a 11的值为( )A .1B .2C .3D .4 答案:C解析:由题意得a 4a 14=(22)2=8,由等比数列的性质,得a 4a 14=a 7a 11=8,∴log 2a 7+log 2a 11=log 2(a 7a 11)=log 28=3,故选C.8.已知各项均为正数的等比数列{a n }的前n 项和为S n ,若S 2n =6,S 3n =14,则S 4n -S n 的值为( )A .18B .20C .24D .28 答案:D解析:由等比数列的性质知,S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n构成等比数列,设S n =x ,则x,6-x,14-6构成等比数列,得到(6-x )2=8x ,即x 2-20x +36=0,解得x =2或x =18(舍去).从而S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n 是以2为首项,S 2n -S n S n=6-22=2为公比的等比数列,则S 4n -S 3n =24=16,故S 4n =30,S 4n -S n =30-2=28,选D.二、非选择题 9.[2019·石家庄模拟]在等比数列{a n }中,若a 7+a 8+a 9+a 10=158,a 8a 9=-98,则1a 7+1a 8+1a 9+1a 10=________.答案:-53解析:因为1a 7+1a 10=a 7+a 10a 7a 10,1a 8+1a 9=a 8+a 9a 8a 9,由等比数列的性质知a 7a 10=a 8a 9,所以1a 7+1a 8+1a 9+1a 10=a 7+a 8+a 9+a 10a 8a 9=158÷⎝ ⎛⎭⎪⎫-98=-53. 10.已知数列{c n },其中c n =2n +3n ,且数列{c n +1-pc n }为等比数列,则常数p =________.答案:2或3解析:由数列{c n +1-pc n }为等比数列,得(c 3-pc 2)2=(c 2-pc1)(c4-pc3),即(35-13p)2=(13-5p)·(97-35p),解得p=2或p =3.11.在等比数列{a n}中,公比q>1,a1+a m=17,a2a m-1=16,且前m项和S m=31,则项数m=________.答案:5解析:由等比数列的性质知a1a m=a2a m-1=16,又a1+a m=17,q>1,所以a1=1,a m=16,S m=a1(1-q m)1-q=a1-a m q1-q=1-16q1-q=31,解得q=2,a m=a1q m-1=2m-1=16,所以m=5.12.[2019·内蒙古包钢一中调研]在83和272之间插入三个正数,使这五个数成等比数列,则插入的三个数的乘积为________.答案:216解析:在83和272之间插入三个正数,使这五个数成等比数列,设插入的三个正数为a,b,c,则b2=ac=83×272=36,b=6,从而abc=b3=63=216.课时增分练○21一、选择题1.[2019·广州综合测试]已知数列{a n}为等比数列,若a4+a6=10,则a7(a1+2a3)+a3a9的值为()A.10 B.20C.100 D.200答案:C解析:a7(a1+2a3)+a3a9=a7a1+2a7a3+a3a9=a24+2a4a6+a26=(a4+a6)2=102=100.2.已知数列{a n}的前n项和S n=4n+b(b是常数,n∈N*),若这个数列是等比数列,则b=()A.-1 B.0C.1 D.4答案:A解析:显然数列{a n}的公比不等于1,所以S n =a 1·(q n -1)q -1=a 1q -1·q n -a 1q -1=4n +b ,∴b =-1. 3.[2019·湖北重点中学联考]《九章算术》中:今有蒲生一日,长三尺.莞生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等.意思是蒲第一天长3尺,以后逐日减半;莞第一天长1尺,以后逐日增加一倍,则( )天后,蒲、莞长度相等?参考数据:lg2≈0.301 0,lg3≈0.477 1,结果精确到0.1( )A .2.2B .2.4C .2.6D .2.8 答案:C解析:设蒲每天的长度构成等比数列{a n },其首项a 1=3,公比为12,其前n 项和为A n .设莞每天的长度构成等比数列{b n },其首项b 1=1,公比为2,其前n 项和为B n .则A n =3⎝ ⎛⎭⎪⎫1-12n 1-12,B n=1-2n 1-2.设经过x 天后,蒲、莞长度相等,则3⎝ ⎛⎭⎪⎫1-12x 1-12=1-2x1-2,化简得2x +62x =7,计算得出2x =6,2x=1(舍去).所以x =lg6lg2=1+lg3lg2≈2.6.则估计2.6天后蒲、莞长度相等.故选C.4.[2019·重庆月考]在等比数列{a n }中,a 1和a 2 018是方程2x 2+x -2 018=0的两个根,则a 4·a 2 015=( )A .-2 018B .2 018C .1 009D .-1 009 答案:D解析:由题意得a 1和a 2 018是方程2x 2+x -2 018=0的两个根,根据根与系数的关系得a 1·a 2 018=-1 009.在等比数列{a n }中,a 4·a 2 015=a 1·a 2 018=-1 009.故选D.5.[2019·黑龙江齐齐哈尔模拟]已知S n 是公比为4的等比数列{a n }的前n 项和,若ma n -3S n =8,则m =( )A .3B .4C .5D .6 答案:B解析:∵ma n -3S n =8,∴ma n +1-3S n +1=8,两式相减得ma n+1-ma n -3a n +1=0,(m -3)a n +1=ma n .由条件知m ≠3,则a n +1=m m -3a n .由已知可得m m -3=4,∴m =4.故选B. 6.在数列{a n }中,“a n =2a n -1,n =2,3,4,…”是“{a n }是公比为2的等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:B解析:当a n =0时,也有a n =2a n -1,n =2,3,4,…,但{a n }不是等比数列,因此充分性不成立;当{a n }是公比为2的等比数列时,有a na n -1=2,n =2,3,4,…,即a n =2a n -1,n =2,3,4,…,所以必要性成立.故选B.7.已知等比数列{a n }共有10项,其中奇数项之积为2,偶数项之积为64,则其公比q 为( )A.32 B. 2 C .2 D .2 2 答案:C 解析:由奇数项之积为2,偶数项之积为64,得a 1·a 3·a 5·a 7·a 9=2,a 2·a 4·a 6·a 8·a 10=64,则q 5=a 2·a 4·a 6·a 8·a 10a 1·a 3·a 5·a 7·a 9=32,则q =2,故选C.8.[2019·贵阳模拟]已知数列{a n }满足a 1=1,a n -1=3a n (n ≥2,n ∈N *),其前n 项和为S n ,则满足S n ≥12181的n 的最小值为( )A .6B .5C .8D .7 答案:B解析:由a n -1=3a n (n ≥2)可得a n a n -1=13(n ≥2),可得数列{a n }是首项为a 1=1,公比为q =13的等比数列,所以S n =1-⎝ ⎛⎭⎪⎫13n 1-13=32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n .由S n ≥12181可得32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n ≥12181,1-⎝ ⎛⎭⎪⎫13n ≥242243,得n ≥5(n ∈N *),故选B.二、非选择题 9.[2019·衡水模拟]已知在数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2),且b 1=a 2,则|b 1|+|b 2|+…+|b n |=________.答案:4n -1解析:由题意知,q =a 2-a 1=-4,b 1=a 2=-3,所以|b n |=|-3×(-4)n -1|=3·4n -1,所以|b 1|+|b 2|+…+|b n |=3+3×4+3×42+…+3×4n -1=3×1-4n1-4=4n -1.10.[2019·郑州一测]已知数列{a n }满足log 2a n +1=1+log 2a n (n ∈N *),且a 1+a 2+a 3+…+a 10=1,则log 2(a 101+a 102+…+a 110)=________.答案:100解析:因为log 2a n +1=1+log 2a n ,可得log 2a n +1=log 22a n ,所以a n +1=2a n ,所以数列{a n }是以a 1为首项,2为公比的等比数列,又a 1+a 2+…+a 10=1,所以a 101+a 102+…+a 110=(a 1+a 2+…+a 10)×2100=2100,所以log 2(a 101+a 102+…+a 110)=log 22100=100.11.[2019·广东深圳模拟]设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2(n ∈N *).(1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式.解析:(1)证明 由a 1=1及S n +1=4a n +2,有a 1+a 2=4a 1+2,则a 2=3a 1+2=5,∴b 1=a 2-2a 1=3.∵S n +1=4a n +2,n ∈N *,①∴S n =4a n -1+2,n ≥2,n ∈N *,② ①-②得a n +1=4a n -4a n -1, ∴a n +1-2a n =2(a n -2a n -1).∵b n =a n +1-2a n ,∴b n =2b n -1,n ≥2.∴数列{b n }是首项为3,公比为2的等比数列.(2)由(1)可得b n =3·2n -1,∴a n +1-2a n =3·2n -1,∴a n +12n +1-a n 2n =34,设c n =a n 2n ,则c n +1-c n =34,∴c 1=a 12=12.∴数列{c n }是以12为首项,34为公差的等差数列.∴c n =34n -14,∴a n =2n ·c n =(3n -1)·2n -2.。