八年级上学期数学上册期中测试卷及答案解析
- 格式:pdf
- 大小:259.40 KB
- 文档页数:9
2023-2024学年江苏省常州市武进区八年级(上)期中水平测试数学试卷一、选择题(每小题2分,共16分)1.(2分)下列各选项中,两个三角形成轴对称的是( )A .B .C .D .2.(2分)若二次根式有意义,则实数x 的取值范围是( )A .x ≥1B .x >1C .x ≥0D .x >03.(2分)下列长度的三条线段能组成直角三角形的是( )A .2cm ,3cm ,4cmB .3cm ,4cm ,5cmC .4cm ,5cm ,6cmD .5cm ,6cm ,7cm4.(2分)如图,若△ABC ≌△DEF ,B 、E 、C 、F 在同一直线上,BC =7,EC =4,则CF 的长是( )A .2B .3C .5D .75.(2分)一个正比例函数的图象经过(2,﹣1),则它的表达式为( )A .y =﹣2xB .y =2xC .D .6.(2分)到三角形各顶点距离相等的点是( )A .三条边垂直平分线交点B .三个内角平分线交点C .三条中线交点D.三条高交点x y 21-=x y 21=7.(2分)等腰三角形的一个角是70°,它的底角的大小为( )A.70°B.40°C.70°或40°D.70°或55°8.(2分)如图,∠ABC=60°,AB=6,动点P从点B出发,以每秒1个单位长度的速度沿射线l 运动,设点P的运动时间为t秒(t>0),当△ABP为锐角三角形时,t的取值范围是( )A.t>3B.t>6C.6<t<12D.3<t<12二、填空题(每小题2分,共20分)9.(2分)8的立方根是 .10.(2分)近年来,5G在全球发展迅猛,中国成为这一领域基础设施建设、技术与应用落地的一大推动者.截至2021年3月底,中国已建成约819000座5G基站,占全球70%以上.数据819000用科学记数法表示为 .11.(2分)已知点P(﹣3,1),则点P关于x轴对称的点的坐标是 .12.(2分)比较大小: +1.(填“>”“<”或“=”)13.(2分)如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B= °.14.(2分)如图,△ABC中,AB=AC=13,BC=10,AD平分∠BAC交BC于点D,点E为AC 的中点,连接DE,则△CDE的周长是 .15.(2分)如图,已知△ABC≌△ADE,∠B=25°,∠E=98°,∠EAB=20°,则∠BAD的度数为 .16.(2分)若一次函数y=(1﹣a)x+2的函数值y随自变量x增大而减小,则实数a的取值范围是 .17.(2分)如图,△ABC中,AD平分∠BAC,AB=4,AC=2,且△ABD的面积为2,则△ABC的面积为 .18.(2分)如图,将长方形OABC放置在平面直角坐标系中,点P是折线A﹣B﹣C上的动点(点P不与A、C重合),连接OP,将OP绕点P顺时针旋转90°,点O落到点Q处.已知点B坐标为(24,15),当OP=25时,则点Q坐标为 .三、解答题(共64分)19.(6分)计算:(1).(2).20.(6分)求x的值:(1)(x﹣2)2﹣16=0;(2)(x+3)3=﹣27.21.(6分)如图所示,由每一个边长均为1的小正方形构成的8×8正方形网格中,点A ,B ,C ,M ,N 均在格点上(小正方形的顶点为格点),利用网格画图.(1)画出△ABC 关于直线MN 对称的△A ′B ′C ′;(2)△ABC 的面积为 ;(3)在线段MN 上找一点P ,使得∠APM =∠CPN .(保留必要的画图痕迹,并标出点P 位置)22.(6分)如图,爷爷家有一块长方形空地ABCD ,空地的长AB 为m ,宽BC 为m ,爷爷准备在空地中划出一块长m ,宽m 的小长方形地种植香菜(即图中阴影部分),其余部分种植青菜.(1)求出长方形ABCD 的周长;(结果化为最简二次根式)(2)求种植青菜部分的面积.23.(8分)如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°.点B 、D 、E 在同一条直线上,连结CE .(1)求证:△ABD ≌△ACE .(2)求∠BEC 的度数.(3)过点A 作AM ⊥DE 于点M ,若AM =3.5,BD =5,求线段BC 的长.24.(10分)如图,一次函数y=kx+b(k≠0)的图象经过点A、B.(1)根据图象,求一次函数y=kx+b(k≠0)的表达式;(2)将直线AB向下平移5个单位后经过点(m,﹣5),求m的值;(3)P(0,a)为y轴上的一动点,当△ABP的面积为15时,求a的值.25.(10分)课本再现:(1)如图1,四个全等的直角三角形拼成一个大正方形,中间空白部分也是正方形.已知直角三角形的两直角边长分别为a,b,斜边长为c.课堂上,老师结合图形,用不同的方式表示大正方形的面积,证明了勾股定理.请证明:a2+b2=c2.类比迁移(2)现将图1中的两个直角三角形向内翻折,得到图2,若a=3,b=4,则空白部分的面积为 .方法运用(3)小贤将四个全等的直角三角形拼成图3的“帽子”形状,若AH=3,BH=4,请求出“帽子”外围轮廓(实线)的周长.(4)如图4,分别以Rt△ABC的三条边向外作三个正方形,连接EC,BG,若设S△EBC=S1,S △BCG=S2,S正方形BCIH=S3,则S1,S2,S3之间的关系为 .26.(12分)如图①,在长方形ABCD中,已知AB=20,AD=12,动点P从点D出发,以每秒2个单位的速度沿线段DC向终点C运动,运动时间为t秒,连接AP,设点D关于AP的对称点为点E.(1)如图②,射线PE恰好经过点B,试求此时t的值.(2)当射线PE与边AB交于点Q时,①请直接写出AQ长的取值范围: ;②是否存在这样的t的值,使得QE=QB?若存在,请求出所有符合题意的t的值;若不存在,请说明理由.2023-2024学年江苏省常州市武进区八年级(上)期中水平测试数学试卷参考答案与试题解析一、选择题(每小题2分,共16分)1.(2分)下列各选项中,两个三角形成轴对称的是( )A.B.C.D.【解答】解:各选项中,两个三角形成轴对称的是选项A.故选:A.2.(2分)若二次根式有意义,则实数x的取值范围是( )A.x≥1B.x>1C.x≥0D.x>0【解答】解:∵二次根式有意义,∴x﹣1≥0,解得:x≥1.故选:A.3.(2分)下列长度的三条线段能组成直角三角形的是( )A.2cm,3cm,4cm B.3cm,4cm,5cmC.4cm,5cm,6cm D.5cm,6cm,7cm【解答】解:A、22+32=13≠42,不能构成直角三角形,故本选项错误;B、32+42=25=52,能构成直角三角形,故本选项正确;C、42+52=41≠62,不能构成直角三角形,故本选项错误;D、52+62=61≠72,不能构成直角三角形,故本选项错误;故选:B.4.(2分)如图,若△ABC≌△DEF,B、E、C、F在同一直线上,BC=7,EC=4,则CF的长是A .2B .3C .5D .7【解答】解:∵△ABC ≌△DEF ,BC =7,∴EF =BC =7,∴CF =EF ﹣EC =3,故选:B .5.(2分)一个正比例函数的图象经过(2,﹣1),则它的表达式为( )A .y =﹣2xB .y =2xC .D .【解答】解:设该正比例函数的解析式为y =kx (k ≠0),∵正比例函数的图象经过点(2,﹣1),∴﹣1=2k ,解得k =﹣,∴这个正比例函数的表达式是y =﹣x .故选:C .6.(2分)到三角形各顶点距离相等的点是( )A .三条边垂直平分线交点B .三个内角平分线交点C .三条中线交点D .三条高交点【解答】解:∵到线段的两个端点的距离相等的点在线段的垂直平分线上,∴到三角形各顶点距离相等的点是三角形三条边的垂直平分线的交点,故选:A .7.(2分)等腰三角形的一个角是70°,它的底角的大小为( )A .70°B .40°C .70°或40°D .70°或55°【解答】解:①当这个角是顶角时,底角=(180°﹣70°)÷2=55°;②当这个角是底角时,另一个底角为70°,顶角为40°.x y 21-=x y 21=8.(2分)如图,∠ABC=60°,AB=6,动点P从点B出发,以每秒1个单位长度的速度沿射线l 运动,设点P的运动时间为t秒(t>0),当△ABP为锐角三角形时,t的取值范围是( )A.t>3B.t>6C.6<t<12D.3<t<12【解答】解:分两种情况:当∠APB=90°,如图:在Rt△ABP中,∠ABC=60°,AB=6,∴,当∠BAP=90°,如图:在Rt△ABP中,∠ABC=60°,AB=6,∴BP=2AB=2×6=12,∴当3<BP<12时,△ABP为锐角三角形,∴3<t<12,故选:D.二、填空题(每小题2分,共20分)9.(2分)8的立方根是 2 .【解答】解:∵23=8,∴8的立方根是2.故答案为:2.10.(2分)近年来,5G在全球发展迅猛,中国成为这一领域基础设施建设、技术与应用落地的一大推动者.截至2021年3月底,中国已建成约819000座5G基站,占全球70%以上.数据819000用科学记数法表示为 8.19×105 .【解答】解:819000=8.19×105.故答案为:8.19×105.11.(2分)已知点P(﹣3,1),则点P关于x轴对称的点的坐标是 (﹣3,﹣1) .【解答】解:∵点P(﹣3,1),∴点P关于x轴对称的点的坐标是(﹣3,﹣1).故答案为:(﹣3,﹣1).12.(2分)比较大小: < +1.(填“>”“<”或“=”)【解答】解:∵,,,∴,∴.故答案为:<13.(2分)如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B= 30 °.【解答】解:∵EF垂直平分BC,∴BF=CF,∴∠B=∠BCF,∵△ACF为等边三角形,∴∠AFC=60°,∴∠B=∠BCF=30°.故答案为:30.14.(2分)如图,△ABC中,AB=AC=13,BC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长是 18 .【解答】解:∵AB=AC,BC=10,AD平分∠BAC,∴AD⊥BC,CD=BC=5,在Rt△ADC中,点E为AC的中点,∴DE=AC=,CE=AC=,∴△CDE的周长=CE+DE+CD=18,故答案为:18.15.(2分)如图,已知△ABC≌△ADE,∠B=25°,∠E=98°,∠EAB=20°,则∠BAD的度数为 77° .【解答】解:∵△ABC≌△ADE,∠B=25°,∴∠D=∠B=25°,∵∠E=98°,∴∠EAD=180°﹣∠D﹣∠E=57°,∵∠EAB=20°,∴∠BAD=∠BAE+∠EAD=20°+57°=77°,故答案为:77°.16.(2分)若一次函数y=(1﹣a)x+2的函数值y随自变量x增大而减小,则实数a的取值范围是 a>1 .【解答】解:∵一次函数y=(1﹣a)x+2的函数值y随自变量x增大而减小,∴1﹣a<0,解得:a>1,∴实数a的取值范围是a>1.故答案为:a>1.17.(2分)如图,△ABC中,AD平分∠BAC,AB=4,AC=2,且△ABD的面积为2,则△ABC的面积为 3 .【解答】解:过D作DE⊥AB于E,DF⊥AC于F,∵S△ABD=AB•DE,∴×4×DE=2,解得DE=1,∵AD平分∠BAC,∴DF=DE=1,∴S△ACD=AC•DF=×2×1=1,∴S△ABC=S△ABD+S△ADC=2+1=3,故答案为3.18.(2分)如图,将长方形OABC放置在平面直角坐标系中,点P是折线A﹣B﹣C上的动点(点P不与A、C重合),连接OP,将OP绕点P顺时针旋转90°,点O落到点Q处.已知点B坐标为(24,15),当OP=25时,则点Q坐标为 (5,35)或(17,31) .【解答】解:如图1,当点P在AB上,过点Q作QE⊥AB于E,∵点B坐标为(24,15),∴AB=OC=24,AO=BC=15,∴AP===20,∵将OP绕点P顺时针旋转90°,∴OP=PQ,∠OPQ=90°,∴∠QPE+∠OPA=90°=∠APO+∠AOP,∴∠QPE=∠AOP,在△EPQ和△AOP中,,∴△EPQ≌△AOP(AAS),∴EP=AO=15,QE=AP=20,∴AE=AP﹣EP=5,∴点Q(5,35);当点P在BC上时,过点Q作QF⊥BC,交CB的延长线于F,∴CP===7,∵将OP绕点P顺时针旋转90°,∴OP=PQ,∠OPQ=90°,∴∠QPF+∠OPC=90°,∠OPC+∠POC=90°,∴∠POC=∠QPF,在△OPC和△PQF中,,∴△OPC≌△PQF(AAS),∴QF=CP=7,PF=OC=24,∴CF=31,∴点Q(17,31),综上所述:点Q坐标为:(5,35)或(17,31),故答案为:(5,35)或(17,31).三、解答题(共64分)19.(6分)计算:(1).(2).【解答】解:(1)=2﹣3+2﹣=1﹣;(2)=4×﹣2+1=2﹣1.20.(6分)求x的值:(1)(x﹣2)2﹣16=0;(2)(x+3)3=﹣27.【解答】解:(1)(x﹣2)2﹣16=0,(x﹣2)2=16,∴x=6或x=﹣2;(2)(x+3)3=﹣27,x+3=﹣3,∴x=﹣6.21.(6分)如图所示,由每一个边长均为1的小正方形构成的8×8正方形网格中,点A,B,C,M,N均在格点上(小正方形的顶点为格点),利用网格画图.(1)画出△ABC关于直线MN对称的△A′B′C′;(2)△ABC的面积为 3 ;(3)在线段MN上找一点P,使得∠APM=∠CPN.(保留必要的画图痕迹,并标出点P位置)【解答】解:(1)如图所示,△A′B′C′即为所求.(2)△ABC的面积=2×4﹣×2×2﹣×1×2﹣×1×4=3.故答案为:3;(3)如图所示,点P即为所求.22.(6分)如图,爷爷家有一块长方形空地ABCD,空地的长AB为m,宽BC为m,爷爷准备在空地中划出一块长m,宽m的小长方形地种植香菜(即图中阴影部分),其余部分种植青菜.(1)求出长方形ABCD的周长;(结果化为最简二次根式)(2)求种植青菜部分的面积.【解答】解:(1)长方形ABCD 的周长=2(+)=2(3+4)=14(m ).答:长方形ABCD 的周长是14m ;(2)种植青菜部分的面积为:×﹣(+1)(﹣1)=24﹣(3﹣1)=24﹣2=22(m 2).答:种植青菜部分的面积为22m 2.23.(8分)如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°.点B 、D 、E 在同一条直线上,连结CE .(1)求证:△ABD ≌△ACE .(2)求∠BEC 的度数.(3)过点A 作AM ⊥DE 于点M ,若AM =3.5,BD =5,求线段BC 的长.【解答】(1)证明:∵△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,∴AB =AC ,AD =AE ,∠BAC ﹣∠DAC =∠DAE ﹣∠DAC ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,,∴△ABD ≌△ACE (SAS );(2)解:∵AD =AE ,∠DAE =90°,∴∠ADE=∠AED=45°,∴∠ADB=180°﹣∠ADE=180°﹣45°=135°,∵△ABD≌△ACE,∴∠AEC=∠ADB=135°,∴∠BEC=∠AEC﹣∠AED=135°﹣45°=90°;(3)解:∵AM⊥DE,∴∠AMD=∠AME=90°,∵∠ADE=∠AED=45°,∴∠DAM=∠EAM=45°,∵AM=3.5,BD=5,∴DM=AM=3.5,EM=AM=3.5,∴BE=BD+DM+EM=5+3.5+3.5=12,∵△ABD≌△ACE,∴CE=BD=5,在Rt△BEC中,根据勾股定理,得.24.(10分)如图,一次函数y=kx+b(k≠0)的图象经过点A、B.(1)根据图象,求一次函数y=kx+b(k≠0)的表达式;(2)将直线AB向下平移5个单位后经过点(m,﹣5),求m的值;(3)P(0,a)为y轴上的一动点,当△ABP的面积为15时,求a的值.【解答】解:(1)由图象可知,一次函数y=kx+b(k≠0)的图象经过点A(2,6)、B(﹣4,﹣3),∴,解得,所以一次函数的表达式为:y=x+3;(2)将直线AB向下平移5个单位后得到y=x+3﹣5,即y=x﹣2,∵经过点(m,﹣5),∴﹣5=m﹣2,解得m=﹣2;(3)在y=x+3中,令x=0,则y=3,∵P(0,a)为y轴上的一动点,当△ABP的面积为15时,∴,解得a=13或﹣7.25.(10分)课本再现:(1)如图1,四个全等的直角三角形拼成一个大正方形,中间空白部分也是正方形.已知直角三角形的两直角边长分别为a,b,斜边长为c.课堂上,老师结合图形,用不同的方式表示大正方形的面积,证明了勾股定理.请证明:a2+b2=c2.类比迁移(2)现将图1中的两个直角三角形向内翻折,得到图2,若a=3,b=4,则空白部分的面积为 13 .方法运用(3)小贤将四个全等的直角三角形拼成图3的“帽子”形状,若AH=3,BH=4,请求出“帽子”外围轮廓(实线)的周长.(4)如图4,分别以Rt△ABC的三条边向外作三个正方形,连接EC,BG,若设S△EBC=S1,S △BCG=S2,S正方形BCIH=S3,则S1,S2,S3之间的关系为 2(S1+S2)=S3 .【解答】(1)证明:如图1,∵大的正方形的面积可以表示为(a+b)2,大的正方形的面积又可以表示为c2+4×ab,∴c2+2ab=a2+b2+2ab,∴a2+b2=c2;(2)解:如图2,空白部分的面积=边长为c的正方形的面积﹣2个直角三角形的面积=c2﹣2×ab,∵a=3,b=4,∴空白部分的面积=32+42﹣2×=13.故答案为:13.(3)解:如图3,在Rt△ABH中,AB===5,∵△ABH≌△AFH≌△ADI≌△ADG,∴AD=AF=AB=5,∴DH=AD﹣AH=5﹣3=2,BI=AB﹣AI=5﹣3=2,∴DH=BI,∵∠DCH=∠BCI,∠CHD=∠CIB=90°,∴△CDH≌△CBI(AAS),∴CD=BC,设BC=x,则CH=4﹣x,在Rt△CDH中,CH2+DH2=CD2,∴(4﹣x)2+22=x2,解得:x=,∴BC=CD=,同理可得DE=EF=BC=,∴“帽子”外围轮廓(实线)的周长为AB+AF+BC+CD+DE+EF=5+5++++=20.(4)解:如图4,过点A作AK⊥HI于点K,交BC于点J,∵RtABC中,∠BAC=90°,∴AB2+AC2=BC2,∵四边形ABED、四边形ACGF、四边形BCIH均为正方形,∴S正方形ABED=AB2,S正方形ACGF=AC2,S3=S正方形BCIH=BC2,∵正方形ABED与△EBC同底等高,∴S正方形ABED=2S△EBC=2S1,∴AB2=2S1,∵正方形ACGF与△EBC同底等高,∴S正方形ACGF=2S△BCG=2S2,∴AC2=2S2,∵S正方形BCIH=S3,∴2S1+2S2=S3,即2(S1+S2)=S3.26.(12分)如图①,在长方形ABCD中,已知AB=20,AD=12,动点P从点D出发,以每秒2个单位的速度沿线段DC向终点C运动,运动时间为t秒,连接AP,设点D关于AP的对称点为点E.(1)如图②,射线PE恰好经过点B,试求此时t的值.(2)当射线PE与边AB交于点Q时,①请直接写出AQ长的取值范围: 12≤AQ≤20 ;②是否存在这样的t的值,使得QE=QB?若存在,请求出所有符合题意的t的值;若不存在,请说明理由.【解答】解:(1)如图1,∵AB∥CD,∴∠DPA=∠PAB,由轴对称得:∠DPA=∠EPA,∴∠EPA=∠PAB,∴BP=AB=20,在Rt△PCB中,由勾股定理得:PC===16,∴PD=4=2t,∴t=2;(2)①解法一:如图2,过点P作PH⊥AB于H,过点Q作QG⊥CD于G,∴PH=QG=AD=12,∵∠APQ=∠PAQ,∴AQ=PQ,∵PQ2=PG2+QG2=PG2+122=144+PG2,∴AQ2=144+PG2,∵AQ=DG=DP+PG,∴(DP+PG)2=144+PG2,∵PD=2t,∴(2t+PG)2=144+PG2,解得:PG=,∵AQ=PD+PG=2t+==t+,∵t+=(﹣)2+2≥2=12,∴AQ=t+≥12,由(1)可知:当t=2时,Q与B重合,此时AQ=AB=20,∴12≤AQ≤20;解法二:由(1)可知:当t=2时,Q与B重合,此时AQ=AB=20,如图2,当PQ⊥AB时,E与Q重合,此时AQ=AD=12,∴12≤AQ≤20,故答案为:12≤AQ≤20;②存在,分两种情况:当点E在矩形ABCD内部时,如图3,∵QE=PQ﹣PE=PQ﹣DP=PQ﹣2t,∵QE=QB,PQ=AQ,∴QB=AQ﹣2t,∵AQ+BQ=AB=20,∴AQ+AQ﹣2t=20,∴AQ=10+t,由①可知:AQ=t+,∴t+=10+t,解得:t=3.6;当点E在矩形ABCD的外部时,如图4,∵QE=PE﹣PQ=DP﹣PQ=2t﹣PQ,∵QE=QB,∴BQ=2t﹣AQ,∴AB﹣AQ=2t﹣AQ,∴AB=2t,∴t==10(此时P与C重合),综上,存在这样的t值,使得QE=QB,t的值为3.6或10.。
八年级(上)期中数学试卷一、选择题:(本题满分36分,每小题3分)1.以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,62.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A. B. C. D.3.五边形的内角和是()A.180°B.360°C.540°D.600°4.下列图形中有稳定性的是()A.正方形B.直角三角形C.长方形D.平行四边形5.如图,△ABC中,BD是∠ABC的角平分线,DE∥BC,交AB于E,∠A=60°,∠BDC=95°,则∠BED的度数是()A.35°B.70°C.110°D.130°6.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠27.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等8.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)9.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆形 D.线段10.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对11.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.18 C.26 D.2812.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点二、填空题(本题满分24分,每小题4分)13.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.14.已知点P在线段AB的垂直平分线上,PA=6,则PB=.15.已知,如图,∠ACD=130°,∠A=∠B,那么∠A的度数是°.16.已知A(﹣1,﹣2)和B(1,3),将点A向平移个单位长度后得到的点与点B关于y轴对称.17.如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简写).18.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带去配,这样做的数学依据是.三、解答题(本大题满分50分)19.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠=∠(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD.20.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.21.已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.22.已知:BE⊥CD,BE=DE,BC=DA,求证:△BEC≌△DAE.23.已知:如图,已知△ABC,分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2.24.如图,AC和BD相交于点O,且AB∥DC,OC=OD,求证:OA=OB.参考答案与试题解析一、选择题:(本题满分36分,每小题3分)1.以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,6【考点】三角形三边关系.【分析】三角形的三条边必须满足:任意两边之和>第三边,任意两边之差<第三边.【解答】解:A中,3+3>3,能构成三角形;B中,3+3=6,不能构成三角形;C中,3+2=5,不能构成三角形;D中,3+2<6,不能构成三角形.故选A.【点评】本题主要考查对三角形三边关系的理解应用.判断是否可以构成三角形,只要判断两个较小的数的和<最大的数就可以.2.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形定义可知:A、不是轴对称图形,符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意.故选A.【点评】掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.五边形的内角和是()A.180°B.360°C.540°D.600°【考点】多边形内角与外角.【专题】常规题型.【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:(5﹣2)•180°=540°.故选:C.【点评】本题主要考查了多边形的内角和定理,是基础题,熟记定理是解题的关键.4.下列图形中有稳定性的是()A.正方形B.直角三角形C.长方形D.平行四边形【考点】三角形的稳定性.【分析】根据三角形具有稳定性可得答案.【解答】解:直角三角形有稳定性,故选:B.【点评】此题主要考查了三角形的稳定性,是需要识记的内容.5.如图,△ABC中,BD是∠ABC的角平分线,DE∥BC,交AB于E,∠A=60°,∠BDC=95°,则∠BED的度数是()A.35°B.70°C.110°D.130°【考点】平行线的性质.【分析】由三角形的外角性质得出∠ABD=35°,由角平分线的定义求出∠ABC=2∠ABD=70°,再由平行线的性质得出同旁内角互补∠BED+∠ABC=180°,即可得出结果.【解答】解:∵∠BDC=∠A+∠ABD,∴∠ABD=95°﹣60°=35°,∵BD是∠ABC的角平分线,∴∠ABC=2∠ABD=70°,∵DE∥BC,∴∠BED+∠ABC=180°,∴∠BED=180°﹣70°=110°.故选C.【点评】本题考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质,运用三角形的外角性质求出∠ABD的度数是解决问题的关键.6.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠2【考点】全等三角形的判定与性质.【分析】先根据角角边证明△ABC与△CED全等,再根据全等三角形对应边相等,全等三角形的对应角相等的性质对各选项判断后,利用排除法求解.【解答】解:∵AC⊥CD,∴∠1+∠2=90°,∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2,在△ABC和△CED中,,∴△ABC≌△CED(AAS),故B、C选项正确;∵∠2+∠D=90°,∴∠A+∠D=90°,故A选项正确;∵AC⊥CD,∴∠ACD=90°,∠1+∠2=90°,故D选项错误.故选D.【点评】本题主要考查全等三角形的性质,先证明三角形全等是解决本题的突破口,也是难点所在.做题时,要结合已知条件与全等的判定方法对选项逐一验证.7.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.【点评】此题主要考查了全等图形,关键是掌握全等形的概念.8.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点M(1,2)关于x轴对称的点的坐标为(1,﹣2),故选:C.【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.9.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆形 D.线段【考点】轴对称的性质.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可进行选择.【解答】解:A、因为等腰三角形分别沿底边的中线所在的直线对折,对折后的两部分都能完全重合,则等腰三角形是轴对称图形,底边的中线所在的直线就是对称轴,所以等腰三角形有1条对称轴;B、因为正方形沿对边的中线及其对角线所在的直线对折,对折后的两部分都能完全重合,则正方形是轴对称图形,对边的中线及其对角线所在的直线就是其对称轴,所以正方形有4条对称轴;C、因为圆沿任意一条直径所在的直线对折,对折后的两部分都能完全重合,则圆是轴对称图形,任意一条直径所在的直线就是圆的对称轴,所以说圆有无数条对称轴.D、线段是轴对称图形,有两条对称轴.故选:C.【点评】本题考查了轴对称图形的性质,解答此题的主要依据是:轴对称图形的定义及其对称轴的条数.10.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对【考点】等腰三角形的性质.【分析】分边11cm是腰长与底边两种情况讨论求解.【解答】解:①11cm是腰长时,腰长为11cm,②11cm是底边时,腰长=(26﹣11)=7.5cm,所以,腰长是11cm或7.5cm.故选C.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.11.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.18 C.26 D.28【考点】线段垂直平分线的性质.【分析】利用线段垂直平分线的性质得AE=CE,再等量代换即可求得三角形的周长.【解答】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=10,∴△EBC的周长=BC+BE+CE=10厘米+8厘米=18厘米,故选B.【点评】本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.12.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点【考点】角平分线的性质.【分析】利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交点.【解答】解:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交P.故选D.【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质.做题时注意题目要求要满足两个条件①到角两边距离相等,②点在CD上,要同时满足.二、填空题(本题满分24分,每小题4分)13.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.【点评】此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.14.已知点P在线段AB的垂直平分线上,PA=6,则PB=6.【考点】线段垂直平分线的性质.【分析】直接根据线段垂直平分线的性质进行解答即可.【解答】解:∵点P在线段AB的垂直平分线上,PA=6,∴PB=PA=6.故答案为:6.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.15.已知,如图,∠ACD=130°,∠A=∠B,那么∠A的度数是65°.【考点】三角形的外角性质.【分析】直接根据三角形内角与外角的性质解答即可.【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠A+∠B,∵∠ACD=130°,∠A=∠B,∴∠A==65°.【点评】本题比较简单,考查的是三角形外角的性质,即三角形的外角等于不相邻的两个内角的和.16.已知A(﹣1,﹣2)和B(1,3),将点A向上平移5个单位长度后得到的点与点B关于y轴对称.【考点】关于x轴、y轴对称的点的坐标.【分析】熟悉:关于y轴对称的点,纵坐标相同,横坐标互为相反数;把一个点左右平移,则横坐标是左减右加,把一个点上下平移,则纵坐标是上加下减.【解答】解:根据平面直角坐标系中对称点的规律可知,点B关于y轴对称的点为(﹣1,3),又点A(﹣1,﹣2),所以将点A向上平移5个单位长度后得到的点(﹣1,3).【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.平移时坐标变化规律:把一个点左右平移,则横坐标是左减右加,把一个点上下平移,则纵坐标是上加下减.17.如图,AC=AD,BC=BD,则△ABC≌△ABD;应用的判定方法是(简写)SSS.【考点】全等三角形的判定.【分析】此题不难,关键是找对对应点,即A对应A,B对应B,C对应D,即可.【解答】解:∵AC=AD,BC=BD,AB=AB(公共边),∴△ABC≌△ABD(SSS).【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,本题要用SSS.18.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带③去配,这样做的数学依据是两个角及它们的夹边对应相等的两个三角形全等.【考点】全等三角形的应用.【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故答案为:③;两个角及它们的夹边对应相等的两个三角形全等.【点评】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.三、解答题(本大题满分50分)19.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD SAS.【考点】全等三角形的判定;等腰三角形的性质.【专题】推理填空题.【分析】根据角平分线的定义及全等三角形的判定定理,填空即可.【解答】解:∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义),在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).【点评】本题考查了全等三角形的判定,解答本题的关键是掌握全等三角形的判定定理及角平分线的定义.20.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.【解答】证明:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS).【点评】本题考查了全等三角形全等的判定,熟练掌握各判定定理是解题的关键.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.21.已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】要证明AF=DE,可以证明它们所在的三角形全等,即证明△ABF≌△DEC,已知两边(由BE=CF得出BF=CE,AB=DC)及夹角(∠B=∠C),由SAS可以证明.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,又∵AB=DC,∠B=∠C,∴△ABF≌△DCE,∴AF=DE.【点评】本题考查了全等三角形的判定及性质;证明两边相等时,如果这两边不在同一个三角形中,通常是证明它们所在的三角形全等来证明它们相等,是一种很重要的方法.22.已知:BE⊥CD,BE=DE,BC=DA,求证:△BEC≌△DAE.【考点】全等三角形的判定.【专题】证明题.【分析】根据已知得出Rt△CEB和Rt△AED,利用HL定理得出即可.【解答】证明:∵BE⊥CD,∴∠CEB=∠AED=90°,∴在Rt△CEB和Rt△AED中,∴Rt△CEB≌Rt△AED(HL).【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.23.已知:如图,已知△ABC,分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2.【考点】作图-轴对称变换.【分析】根据关于坐标轴对称的点的坐标特点画出图形即可.【解答】解:如图所示.【点评】本题考查的是作图﹣轴对称变换,熟知关于坐标轴对称的点的坐标特点是解答此题的关键.24.如图,AC和BD相交于点O,且AB∥DC,OC=OD,求证:OA=OB.【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据OC=OD得,△ODC是等腰三角形;根据AB∥DC,得出对应角相等,求得△AOB是等腰三角形,证明最后结果.【解答】证明:∵OC=OD,∴△ODC是等腰三角形,∴∠C=∠D,又∵AB∥DC,∴∠A=∠C,∠B=∠D,∴∠A=∠B,∴△AOB是等腰三角形,∴OA=OB.【点评】本题主要考查了等腰三角形的判定和平行线的性质:两直线平行,内错角相等.。
辽宁省大连市高新区2023-2024学年八年级上学期期中数学试卷(解析版)一、选择题(本题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个选项正确)1.(2分)剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,不是轴对称图形的是( )A.B.C.D.2.(2分)正八边形的外角和为( )A.540°B.360°C.720°D.1080°3.(2分)在下列长度的四根木棒中,能与5cm、9cm长的两根木棒钉成一个三角形的是( )A.3cm B.4cm C.5cm D.14cm4.(2分)在平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标是( )A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)5.(2分)根据下列已知条件,不能画出唯一△ABC的是( )A.∠A=60°,∠B=45°,AB=4B.∠A=30°,AB=5,BC=3C.∠B=60°,AB=6,BC=10D.∠C=90°,AB=5,BC=36.(2分)若等腰三角形的两边长分别为2和5,则它的周长为( )A.9B.7C.12D.9或127.(2分)如图,已知△ABC≌△BDE,∠ABC=∠ACB=70°,则∠ABE的度数为( )A.25°B.30°C.35°D.40°8.(2分)如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长为( )A.2cm B.cm C.cm D.3cm9.(2分)如图,在△ABC中,∠ACB=90°,AC<BC.分别以点A,B为圆心;大于的长为半径画弧,两弧交于D,E两点,直线DE交BC于点F,连接AF.以点A为圆心,AF为半径画弧,交BC延长线于点H,连接AH.若BC=3,则△AFH的周长为( )A.3B.4C.5D.610.(2分)如图,△ABC≌△DEF,FH⊥BC,垂足为E.若∠A=α,∠CHE=β,则∠BED 的大小为( )A.α﹣βB.90°+α﹣βC.β﹣αD.90°﹣α+β二、填空题(本题共6小题,每小题3分,共18分)11.(3分)如图,△ABC中,∠B=35°,∠ACD=120°,则∠A= .12.(3分)如图,四边形ABCD是轴对称图形,直线AC是它的对称轴,若∠BAC=65°,∠B=50°,则∠BCD的大小为 .13.(3分)一个n边形的每个内角都等于144°,则n= .14.(3分)如图,在△ABC中,∠B=∠C=30°,AD⊥AB交BC于点D,BC=6,则AD = .15.(3分)如图,在△ABC中,AB=AC.过点A作BC的平行线交∠ABC的角平分线于点D,连接CD.若∠BAD=140°,则∠ACD= °.16.(3分)如图,在等边△ABC中,BF是AC上中线且BF=4,点D在线段BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则AE+EF的最小值为 .三、解答题(本题共4小题,其中17题6分,18、19、20题各8分,共30分)17.(6分)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.18.(8分)如图,在△ABC中,AB=AC,D为BC边上一点,AD=BD,AC=DC.求∠BAC 的度数.19.(8分)如图为某单摆装置示意图,摆线长OA=OB=OC,当摆线位于OB位置时,过点B作BD⊥OA于点D,测得OD=15cm,当摆线位于OC位置时,OB与OC恰好垂直,求此时摆球到OA的水平距离CE的长(CE⊥OA).20.(8分)如答题卡中的图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)请以x轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;(2)点P(a+1,b﹣2)与点C关于y轴对称,则a= ,b= .四、解答题(本题共2小题,其中21题8分,22题10分,共18分)21.(8分)如图,在△ABC中,∠BAC的平分线与BC的中垂线DE交于点E,过点E作AC 边的垂线,垂足N,过点E作AB延长线的垂线,垂足为M.(1)求证:BM=CN;(2)若AB=2,AC=8,求BM的长.22.(10分)已知:如图,AC∥BD,请先作图再解决问题.(1)利用尺规完成以下作图,并保留作图痕迹,(不要求写作法)①作BE平分∠ABD交AC于点E;②在BA的延长线上截取AF=BA,连接EF;(2)判断△BEF的形状,并说明理由.五、解答题(本题共2小题,其中23题10分,24题12分,共22分)23.(10分)如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A﹣B﹣C﹣D﹣A返回到点A停止,设点P运动的时间为t秒.(1)当t=3时,BP= cm;(2)当t为何值时,连接CP,DP,△CDP是等腰三角形;(3)Q为AD边上的点,且DQ=5,当t为何值时,以长方形的两个顶点及点P为顶点的三角形与△DCQ全等.24.(12分)在△ABC中,AB=AC,∠BAC=α,射线AD,AE的夹角为,过点B作BF ⊥AD于点F,直线BF交AE于点G,连结CG.(1)如图1,射线AD,AE都在∠BAC内部.①若α=120°,∠CAE=20°,则∠CBG= °;②作点B关于直线AD的对称点H,在图1中找出与线段GH相等的线段,并证明.(2)如图2,射线AD在∠BAC的内部,射线AE在∠BAC的外部,其它条件不变,探究线段BF,BG,CG之间的数量关系,并证明.六、解答题(本题12分)25.(12分)综合与实践阅读材料:材料1:如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,以C为圆心,CA长为半径画弧,交AB边于点D,连结CD,则△ACD是等边三角形,△BCD是等腰三角形.材料2:如图2,△ABC是等边三角形,D为直线BD上一点,以AD为边在AD右侧作等边△ADE,连结CE,随着D点位置的改变,始终有△ABD≌△ACE.根据上述阅读材料,解决下面的问题.已知,在△ABC中,∠ACB=90°,∠A=60°,D为AB边上一点,以CD为边在CD 右侧作等边△CDE.特例探究:(1)如图3,当点E在AB边上时,求证:DE=BE.感悟应用:(2)如图4,当点E在△ABC内部时,连结BE,求证:DE=BE.拓展延伸:(3)当点E在△ABC的外部时,过点E作EH⊥AB于H,EF∥AB交射线AC于F,CF=2,BH=3,请画出图形,并求AB的长.参考答案与试题解析一、选择题(本题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个选项正确)1.(2分)剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,不是轴对称图形的是( )A.B.C.D.【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【解答】解:选项A、B、D均能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;选项C,不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(2分)正八边形的外角和为( )A.540°B.360°C.720°D.1080°【分析】根据多边形的外角和等于360°解答即可.【解答】解:∵任意多边形的外角和等于360°,∴正八边形的外角和等于360°,故选:B.【点评】本题考查了多边形的外角,掌握多边形的外角和等于360°是解题的关键.3.(2分)在下列长度的四根木棒中,能与5cm、9cm长的两根木棒钉成一个三角形的是( )A.3cm B.4cm C.5cm D.14cm【分析】根据三角形的三边关系确定第三边的范围,判断即可.【解答】解:设第三边的长为xcm,则9﹣5<x<9+5,即4<x<14,∴四根木棒中,长度为5cm的木棒,能与5cm、9cm长的两根木棒钉成一个三角形,故选:C.【点评】本题考查的是三角形的三边关系,熟记三角形两边之和大于第三边、三角形的两边差小于第三边是解题的关键.4.(2分)在平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标是( )A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【解答】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选:D.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.5.(2分)根据下列已知条件,不能画出唯一△ABC的是( )A.∠A=60°,∠B=45°,AB=4B.∠A=30°,AB=5,BC=3C.∠B=60°,AB=6,BC=10D.∠C=90°,AB=5,BC=3【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A.∠A=60°,∠B=45°,AB=4,符合全等三角形的判定定理ASA,能画出唯一的△ABC,故本选项不符合题意;B.∠A=30°,AB=5,BC=3,不符合全等三角形的判定定理,不能画出唯一的△ABC,故本选项符合题意;C.∠B=60°,AB=6,BC=10,符合全等三角形的判定定理SAS,能画出唯一的△ABC,故本选项不符合题意;D.∠C=90°,AB=5,BC=3,符合全等直角三角形的判定定理HL,能画出唯一的△ABC,故本选项不符合题意;故选:B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.6.(2分)若等腰三角形的两边长分别为2和5,则它的周长为( )A.9B.7C.12D.9或12【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故选:C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.7.(2分)如图,已知△ABC≌△BDE,∠ABC=∠ACB=70°,则∠ABE的度数为( )A.25°B.30°C.35°D.40°【分析】先根据三角形内角和计算出∠A=40°,再根据全等三角形的性质得到∠DBE=∠A=40°,然后计算∠ABC﹣∠DBE即可.【解答】解:∵∠ABC=∠ACB=70∴∠A=180°﹣70°﹣70°=40°,∵△ABC≌△BDE,∴∠DBE=∠A=40°,∴∠ABE=∠ABC﹣∠DBE=70°﹣40°=30°.故选:B.【点评】本题考查了全等三角形的性质:全等三角形的对应角相等.8.(2分)如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长为( )A.2cm B.cm C.cm D.3cm【分析】过点D作DF⊥BC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,然后根据△ABC的面积列出方程求解即可得到DE.【解答】解:如图,过点D作DF⊥BC于F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,∵S△ABC=36cm2,AB=18cm,BC=12cm,∴S△ABC=S△ABD+S△BCD=AB•DE+BC•DF=DE•(AB+BC)=36cm2,解得:DE=(cm).故选:C.【点评】此题考查了角平分线的性质,三角形的面积公式,正确作出辅助线是解题的关键.9.(2分)如图,在△ABC中,∠ACB=90°,AC<BC.分别以点A,B为圆心;大于的长为半径画弧,两弧交于D,E两点,直线DE交BC于点F,连接AF.以点A为圆心,AF为半径画弧,交BC延长线于点H,连接AH.若BC=3,则△AFH的周长为( )A.3B.4C.5D.6【分析】直接利用基本作图方法得出DE垂直平分AB,AF=AH,再利用等腰三角形的性质、线段垂直平分线的性质得出AF+FC=BF+FC=BC,即可得出答案.【解答】解:由基本作图方法得出:DE垂直平分AB,则AF=BF,∴AF+FC=BF+FC=BC=3,而AF=AH,AC⊥FH,∴FC=CH,∴AF+FC=AH+HC=BC=3,∴△AFH的周长为:AF+FC+CH+AH=2BC=6.故选:D.【点评】此题主要考查了基本作图以及等腰三角形的性质、线段垂直平分线的性质等知识,正确得出AF+FC=BF+FC=BC是解题关键.10.(2分)如图,△ABC≌△DEF,FH⊥BC,垂足为E.若∠A=α,∠CHE=β,则∠BED 的大小为( )A.α﹣βB.90°+α﹣βC.β﹣αD.90°﹣α+β【分析】根据直角三角形两锐角互余求出∠C=90°﹣∠CHE=90°﹣β,由三角形内角和定理得出∠B=180°﹣∠A﹣∠C=90°﹣α+β.根据全等三角形对应角相等求出∠DEF=∠C=90°﹣α+β,根据∠BED=∠BEF﹣∠DEF即可得出答案.【解答】解:∵FH⊥BC,垂足为E,∴∠CEH=∠BEF=90°,∴∠C=90°﹣∠CHE=90°﹣β,∴∠B=180°﹣∠A﹣∠C=180°﹣α﹣(90°﹣β)=90°﹣α+β.∵△ABC≌△DEF,∴∠DEF=∠B=90°﹣α+β,∴∠BED=∠BEF﹣∠DEF=90°﹣(90°﹣α+β)=α﹣β.故选:A.【点评】本题考查了全等三角形的性质,垂直的定义,直角三角形的性质,三角形内角和定理.掌握相关性质与定理是解题的关键.二、填空题(本题共6小题,每小题3分,共18分)11.(3分)如图,△ABC中,∠B=35°,∠ACD=120°,则∠A= 85° .【分析】根据三角形外角的性质,得∠ACD=∠B+∠A,那么∠A=∠ACD﹣∠B=85°.【解答】解:∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°.故答案为:85°.【点评】本题主要考查三角形外角的性质,熟练掌握三角形外角的性质是解决本题的关键.12.(3分)如图,四边形ABCD是轴对称图形,直线AC是它的对称轴,若∠BAC=65°,∠B=50°,则∠BCD的大小为 130° .【分析】直接利用轴对称图形的性质得出∠DAC=∠BAC=65°,∠D=∠B=50°,再结合三角形内角的定理得出答案.【解答】解:∵四边形ABCD是轴对称图形,直线AC是它的对称轴,∴∠DAC=∠BAC=65°,∠D=∠B=50°,∴∠BCA=∠DCA=180°﹣65°﹣50°=65°,∴∠BCD的大小为:65°×2=130°.故答案为:130°.【点评】此题主要考查了轴对称图形的性质,正确得出对应角度数是解题关键.13.(3分)一个n边形的每个内角都等于144°,则n= 10 .【分析】根据多边形的内角和定理:(n﹣2)180°求解即可.【解答】解:由题意可得:(n﹣2)180°=n×144°,解得n=10.故答案为:10.【点评】本题主要考查了多边形的内角和定理.熟练掌握n边形的内角和为:(n﹣2)180°是关键.14.(3分)如图,在△ABC中,∠B=∠C=30°,AD⊥AB交BC于点D,BC=6,则AD = 2 .【分析】由三角形的内角和定理可求∠BAC=120°,结合垂直的定义可求得∠CAD=30°,BD=2AD,进而可求得AD=BC=2,即可求解.【解答】解:∵∠B=∠C=30°,∴∠BAC=180°﹣30°﹣30°=120°,∵AD⊥AB,∴∠BAD=90°,∴∠CAD=∠C=30°,BD=2AD,∴AD=CD,∴AD=BC=2.故答案为:2.【点评】本题主要考查等腰三角形的性质,三角形的内角和定理,含30°角的直角三角形的性质,证明AD=CD是解题的关键.15.(3分)如图,在△ABC中,AB=AC.过点A作BC的平行线交∠ABC的角平分线于点D,连接CD.若∠BAD=140°,则∠ACD= 70 °.【分析】根据平行线的性质以及角平分线的性质得出AB=AD,进而得出AC=AD,进而得出∠DAC=∠ACB=40°,根据三角形内角和定理即可求解.【解答】解:∵∠BAD=140°,AD∥BC,∴∠ABC=40°,∵AB=AC,∴∠ACB=∠ABC=40°,∵AD∥BC,∴∠DAC=∠ACB=40°,∵BD是∠ABC的角平分线,∴∠ABD=∠DBC,∵AD∥BC,∴∠ADB=∠DBC=20°,∴∠ABD=∠ADB=20°,∴AB=AD,∴AC=AD,∴∠ACD=×(180°−∠CAD)=×(180°−40°)=70°.故答案为:70.【点评】本题考查了三角形内角和定理,三角形角平分线的定义,平行线的性质,等腰三角形的性质与判定,证明AC=AD是解题的关键.16.(3分)如图,在等边△ABC中,BF是AC上中线且BF=4,点D在线段BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则AE+EF的最小值为 +4 .【分析】根据等边三角形的性质可得AB=AC,AD=AE,∠BAC=∠DAE=60°,据此得出∠ABD=∠ACE,作点A关于CE的对称点M,连接FM交CE于E′,此时AE+EF 的值最小,此时AE+EF=FM,证明△ACM是等边三角形,得出FM=FB=4,于是得到结论.【解答】解:∵△ABC、△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵AF=CF,∴∠ABD=∠CBD=∠ACE=30°,∴点E在射线CE上运动(∠ACE=30°),作点A关于CE的对称点M,连接FM交CE于E′,此时AE+EF的值最小,此时AE+EF=FM,∵CA=CM,∠ACM=60°,∴△ACM是等边三角形,∴△ACM≌△ACB,∴FM=FB=4,∴AB=,∴AE+EF的最小值是AF+FM=+4,故答案为:+4.【点评】本题考查的是轴对称的性质﹣最短路径问题,掌握轴对称的性质、等边三角形的判定和性质是解题的关键.三、解答题(本题共4小题,其中17题6分,18、19、20题各8分,共30分)17.(6分)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.【分析】根据CE∥DF,可得∠ACE=∠D,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.【解答】证明:∵CE∥DF,∴∠ACE=∠D,在△ACE和△FDB中,,∴△ACE≌△FDB(SAS),∴AE=FB.【点评】此题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.18.(8分)如图,在△ABC中,AB=AC,D为BC边上一点,AD=BD,AC=DC.求∠BAC 的度数.【分析】设∠B=α,根据等腰三角形的性质得∠B=∠C=α,∠B=∠BAD=α,进而得∠CDA=∠B+∠BAD=2α,则∠CAD=∠CDA=2α,∠BAC=3α,进而根据∠C+∠CAD+∠CDA=180°可解得α=36°,据此可得∠BAC的度数.【解答】解:设∠B=α,∵AB=AC,∴∠B=∠C=α,∵AD=BD,∴∠B=∠BAD=α,∴∠CDA=∠B+∠BAD=2α,∵AC=CD,∴∠CAD=∠CDA=2α,∴∠BAC=∠BAD+∠CAD=3α,在△CAD中,∠C+∠CAD+∠CDA=180°,∴α+2α+2α=180°,解得:α=36°,∴∠BAC=3α=3×36°=108°.【点评】此题主要考查了等腰三角形的性质,三角形内角和定理,熟练掌握等腰三角形的性质,灵活三角形内角和定理进行角度计算是解决问题的关键19.(8分)如图为某单摆装置示意图,摆线长OA=OB=OC,当摆线位于OB位置时,过点B作BD⊥OA于点D,测得OD=15cm,当摆线位于OC位置时,OB与OC恰好垂直,求此时摆球到OA的水平距离CE的长(CE⊥OA).【分析】利用AAS证明△COE≌△OBD,得CE=OD=15cm.【解答】解:∵OB⊥OC,∴∠BOD+∠COE=90°,∵CE⊥OA,BD⊥OA,∴∠CEO=∠ODB=90°,∴∠BOD+∠B=90°,∴∠COE=∠B,在△COE和△OBD中,,∴△COE≌△OBD(AAS),∴CE=OD=15cm,∴摆球到OA的水平距离CE的长为15cm.【点评】本题主要考查了全等三角形的判定与性质,证明△COE≌△OBD是解题的关键.20.(8分)如答题卡中的图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)请以x轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;(2)点P(a+1,b﹣2)与点C关于y轴对称,则a= ﹣5 ,b= 1 .【分析】(1)根据轴对称的性质作图,即可得出答案.(2)关于y轴对称的点的横坐标互为相反数,纵坐标相等,由此可得a+1=﹣4,b﹣2=﹣1,求出a,b的值即可.【解答】解:(1)如图,ΔA1B1C1即为所求.点A1(1,4),B1(5,4),C1(4,1).(2)∵点P与点C关于y轴对称,C(4,﹣1),∴点P的坐标为(﹣4,﹣1),∴a+1=﹣4,b﹣2=﹣1,解得a=﹣5,b=1.故答案为:﹣5;1.【点评】本题考查作图﹣轴对称变换,熟练掌握轴对称的性质是解答本题的关键.四、解答题(本题共2小题,其中21题8分,22题10分,共18分)21.(8分)如图,在△ABC中,∠BAC的平分线与BC的中垂线DE交于点E,过点E作AC 边的垂线,垂足N,过点E作AB延长线的垂线,垂足为M.(1)求证:BM=CN;(2)若AB=2,AC=8,求BM的长.【分析】(1)连接BE,CE,根据角平分线的性质得到EM=EN,根据线段垂直平分线的性质得到BE=CE,根据全等三角形的判定和性质即可得到结论;(2)根据全等三角形的性质得到AM=AN,设BM=CN=x,列方程即可得到结论.【解答】(1)证明:连接BE,CE,∵AE平分∠BAC,EM⊥AB,EN⊥AC,∴EM=EN,∵DE垂直平分BC,∴BE=CE,∴Rt△BEM≌Rt△CEN(HL),∴BM=CN;(2)解:∵∠M=∠ANE=90°,∴Rt△AME≌Rt△ANE(HL),∴AM=AN,设BM=CN=x,∵AB=2,AC=8,∴x+2=8﹣x,∴x=3,∴BM=3.【点评】本题考查了全等三角形的判定和性质,角平分线的性质,线段垂直平分线的性质,正确的作出辅助线构造全等三角形是解题的关键.22.(10分)已知:如图,AC∥BD,请先作图再解决问题.(1)利用尺规完成以下作图,并保留作图痕迹,(不要求写作法)①作BE平分∠ABD交AC于点E;②在BA的延长线上截取AF=BA,连接EF;(2)判断△BEF的形状,并说明理由.【分析】(1)①根据要求作出图形即可;②根据要求作出图形即可;(2)证明AE=AF=AB,再利用等腰三角形的性质以及三角形内角和定理证明即可.【解答】解:(1)①如图,射线BE即为所求;②如图,线段AE,EF即为所求;(2)△BEF是直角三角形.理由:∵BE平分∠ABC,∴∠ABE=∠EBD,∵AC∥BD,∴∠AEB=∠EBD,∴∠ABE=∠AEB,∴AB=AE,∵AB=AF,∴AE=AF=AB,∴∠AFE=∠AEF,∠ABE=∠AEB,∵∠ABE+∠AFE+∠BEF=180°,∴2∠AEF+2∠AEB=180°,∴∠AEF+∠AEB=90°,∴∠BEF=90°,∴△BEF是直角三角形.【点评】本题考查作图﹣复杂作图,直角三角形的判定,等腰三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.五、解答题(本题共2小题,其中23题10分,24题12分,共22分)23.(10分)如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A﹣B﹣C﹣D﹣A返回到点A停止,设点P运动的时间为t秒.(1)当t=3时,BP= 2 cm;(2)当t为何值时,连接CP,DP,△CDP是等腰三角形;(3)Q为AD边上的点,且DQ=5,当t为何值时,以长方形的两个顶点及点P为顶点的三角形与△DCQ全等.【分析】(1)当t=3时,点P运动到线段BC上,即可得到BP的长度;(2)分三种情况讨论,①当点P在AB上时,②当点P在BC上时,③当点P在AD 上时,根据全等三角形的判定与性质、等腰三角形的性质即可得到答案;(3)根据题意,要使一个三角形与△DCQ全等,则点P的位置可以有四个,根据点P 运动的位置,即可计算出时间.【解答】解:(1)当t=3时,点P走过的路程为:2×3=6,∵AB=4,∴点P运动到线段BC上,∴BP=6﹣4=2,故答案为:2;(2)①当点P在AB上时,△CDP是等腰三角形,∴PD=CP,在矩形ABCD中,AD=BC,∠A=∠B=90°,∴△DAP≌△CBP(HL),∴AP=BP,∴AP==2,∴t==1,②当点P在BC上时,△CDP是等腰三角形,∵∠C=90°,∴CD=CP=4,∴BP=CB﹣CD=2,∴t==3,③当点P在AD上时,△CDP是等腰三角形,∵∠D=90°,∴DP=CD=4,∴t==9,综上所述,t=1或3或9时,△CDP是等腰三角形;(3)根据题意,如图,连接CQ,则AB=CD=4,∠A=∠B=∠C=∠D=90o,DQ=5,∴要使一个三角形与△DCQ全等,则另一条直角边必须等于DQ,①当点P运动到P1时,CP1=DQ=5,此时△DCQ≌△CDP1,∴点P的路程为:AB+BP1=4+1=5,∴t=5÷2=2.5,②当点P运动到P2时,BP2=DQ=5,此时△CDQ≌△ABP2,∴点P的路程为:AB+BP2=4+5=9,∴t=9÷2=4.5,③当点P运动到P3时,AP3=DQ=5,此时△CDQ≌△ABP3,∴点P的路程为:AB+BC+CD+DP3=4+6+4+1=15,∴t=15÷2=7.5,④当点P运动到P4时,即P与Q重合时,DP4=DQ=5,此时△CDQ≌△CDP4,∴点P的路程为:AB+BC+CD+DP4=4+6+4+5=19,∴t=19÷2=9.5,综上所述,时间的值可以是:t=2.5,4.5,7.5或9.5,故答案为:2.5或4.5或7.5或9.5.【点评】本题考查了全等三角形的判定与性质,等腰三角形的性质,矩形的性质,线段的动点问题,解题的关键是掌握全等三角形的判定与性质及动点的运动状态,从而进行分类讨论.24.(12分)在△ABC中,AB=AC,∠BAC=α,射线AD,AE的夹角为,过点B作BF ⊥AD于点F,直线BF交AE于点G,连结CG.(1)如图1,射线AD,AE都在∠BAC内部.①若α=120°,∠CAE=20°,则∠CBG= 20 °;②作点B关于直线AD的对称点H,在图1中找出与线段GH相等的线段,并证明.(2)如图2,射线AD在∠BAC的内部,射线AE在∠BAC的外部,其它条件不变,探究线段BF,BG,CG之间的数量关系,并证明.【分析】(1)①先根据角的运算得出∠BAD的度数,根据三角形内角和求出∠ABC的度数;再根据直角三角形两锐角互余可得出∠ABG的度数,作差可得结论;②连接AH,可得出AB=AH=AC,再根据∠BAC=α,∠DAE=α,可得出∠BAF+∠CAE=α,∠HAF+∠HAG=α,所以∠CAE=∠HAG;进而可得△AGH≌△AGC (SAS),再由全等三角形的性质可得结论;(2)在BG延长线上取点H,使HF=BF.连结AH.由垂直平分线的性质可得AB=AH,∠BAF=∠HAF;设∠CAD=x,∠CAE=y,所以∠DAE=x+y,由此表达∠BAC,∠BAF,∠HAF,由∠HAE=∠DAE+∠HAE,可得x+2y=x+y+∠HAE,所以∠HAE=y,即∠HAE=∠CAE;由此可得△ACG≌△AHG(SAS),所以CG=HG,由此可得结论.【解答】解:(1)①∵∠BAC=α=120°,∠DAE=α=60°,∠CAE=20°,∴∠BAD=120°﹣60°﹣20°=40°,∵BF⊥AD,∴∠AFB=90°,∴∠ABF=90°﹣40°=50°,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC=30°,∴∠CBG=∠ABF﹣∠ABC=50°﹣30°=20°;故答案为:20.②GH=GC,理由如下:证明:如图1,连结AH,∵点B与点H关于直线AD对称,AF⊥BH,∴BF=HF,∴AD是BH的垂直平分线,∴AB=AH,∠BAF=∠HAF,∵AB=AC,∴AH=AC,∵∠BAC=α,∠DAE=α,∴∠BAF+∠CAE=α,∠HAF+∠HAG=α,∴∠CAE=∠HAG;∵AG=AG,∴△AGH≌△AGC(SAS).∴GH=GC;(2)BG=2BF﹣CG;证明:如图2,在BG延长线上取点H,使HF=BF.连结AH.∵AF⊥BH,BF=HF,∴AB=AH,∠BAF=∠HAF;设∠CAD=x,∠CAE=y,∴∠DAE=x+y,∵∠DAE=∠BAC.∴∠BAC=2x+2y,∴∠BAF=∠BAC﹣∠CAD=2x+2y﹣x=x+2y.∴∠HAF=∠BAF=x+2y,∵∠HAE=∠DAE+∠HAE,∴x+2y=x+y+∠HAE,∴∠HAE=y,即∠HAE=∠CAE;∵AB=AC,AB=AH,∴AC=AH,∵AG=AG.∴△ACG≌△AHG(SAS).∴CG=HG;∵BG=BH﹣GH,BH=2BF,∴BG=2BF﹣CG.【点评】本题在三角形背景下考查旋转的相关知识,属于三角形的综合应用,熟练掌握三角形全等的判定及性质,轴对称的性质是解题的关键.六、解答题(本题12分)25.(12分)综合与实践阅读材料:材料1:如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,以C为圆心,CA长为半径画弧,交AB边于点D,连结CD,则△ACD是等边三角形,△BCD是等腰三角形.材料2:如图2,△ABC是等边三角形,D为直线BD上一点,以AD为边在AD右侧作等边△ADE,连结CE,随着D点位置的改变,始终有△ABD≌△ACE.根据上述阅读材料,解决下面的问题.已知,在△ABC中,∠ACB=90°,∠A=60°,D为AB边上一点,以CD为边在CD 右侧作等边△CDE.特例探究:(1)如图3,当点E在AB边上时,求证:DE=BE.感悟应用:(2)如图4,当点E在△ABC内部时,连结BE,求证:DE=BE.拓展延伸:(3)当点E在△ABC的外部时,过点E作EH⊥AB于H,EF∥AB交射线AC 于F,CF=2,BH=3,请画出图形,并求AB的长.【分析】(1)根据题意可得∠B=30°,结合△CDE是等边三角形即可求出∠BDE=∠B,从而得证.(2)以C为圆心,CA长为半径画弧交AB边于点M,连接CM,EM,则CM=CA,即可得出△ACM是等边三角形,然后证明△ACD≌△MCE,△MCE≌△MBE即可得证;(3)分两种情况进行讨论,当点F在线段AC上时和点F在AC延长线上时,分别计算即可.【解答】(1)证明:在△ABC中,∠ACB=90°,∠A=60°,∴∠B=30°,∵△CDE是等边三角形,∴∠CED=60°,∵∠CED=∠B+∠BDE,∴∠BDE=60°﹣30°=30°,∴∠BDE=∠B,∴DE=BE.(2)解:如图,以C为圆心,CA长为半径画弧交AB边于点M,连接CM,EM,则CM =CA,∵∠A=60°,∴△ACM是等边三角形,∴∠ACM=∠AMC=60°,又∵△CDE是等边三角形,∴CD=CE,∠DCE=60°,∴∠ACM=∠DCE,∴∠ACM﹣∠DCM=∠DCE﹣∠DCM,即∠ACD=∠MCE,∴△ACD≌△MCE(SAS),∴∠CME=∠A=60°,∵∠AMC=60°,∴∠BME=180°﹣∠AMC﹣∠CME=180°﹣60°﹣60=60°,∴∠CME=∠BME,∵∠BCM=∠ACB﹣∠ACM=90°﹣60°=30°,∴∠BCM=∠ABC,∴MC=MB,又∵ME=ME,∴△MCE≌△MBE(SAS),∴CE=BE,又∵△CDE是等边三角形,∴CE=DE,∴DE=BE.(3)解:如图,当点F在线段AC上时,以C为圆心,CA长为半径画弧,交AB边于M,连结ME,BE,CM,则△ACM为等边三角形,∴△ACD≌△MCE(SAS),∴∠CME=∠A=60°,∠EMB=60°=∠CME,又∵CM=BM,∴△CME≌△BME(SAS),∴BE=CE,∵CE=DE,∴BE=DE,∵EH⊥BD,∴BD=2BH,∵BH=3,∴BD=6,∵EF∥AB,∴∠CFE=∠A=60°,∴∠CFE=∠CMA.∵∠ECF=∠ECD+∠ACD=60°+∠ACD,∠CDM=∠A+∠ACD=60°+∠ACD,∴∠ECF=∠CDM,又∵∠ECF=∠CDM,∴△ECF≌△CDM(SAS),∴DM=CF=2,∴BM=BD﹣DM=6﹣2=4,∵CM=AM,CM=BM,∴AM=BM,∴AB=2BM=8;如图,当点F在AC延长线上时,同理可得BD=2BH=6.∵EF∥AB,∴∠F+∠A=180°,∴∠F=120°,∵∠AMC=60°,∴∠CMD=120°,∴∠F=∠CMD.∵∠ACM=∠DCE=60°,∴∠FCE+∠MCD=180°﹣120°=60°,∠MCD+∠MDC=∠AMC=60°.∴∠FCE=∠MDC.又∵CD=CE,∴△FCE≌△MDC(AAS),∴MD=FC=2,∴MB=BD+MD=8.同理AM=BM=8,∴AB=2AM=16.综上所述,AB的长为8或16.【点评】本题考查等边三角形的判定和性质,全等三角形的判定和性质,正确作出辅助线是解题关键.。
八年级(上)期中数学试卷一、选择题:每小题3分,共30分.1.下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形2.下列大学的校徽图案是轴对称图形的是()A.B.C.D.3.如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点D的坐标为()A.(2,2) B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)4.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB 的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSS B.SAS C.AAS D.HL5.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75°B.65°C.60°D.55°6.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线7.如图,△ABC≌△DEC,点B的对应点E在线段AB上,若AB∥CD,∠D=32°,则∠B的度数是()A.56°B.68°C.74°D.75°8.等腰三角形两条边的长分别为5,2,则该等腰三角形的周长为()A.9 B.10 C.12 D.9或129.图中有三个正方形,其中构成的三角形中全等三角形的对数有()A.2对 B.3对 C.4对 D.5对10.如图,在Rt△ABC中,AC=BC,点D是△ABC内一点,若AC=AD,∠CAD=30°,连接BD,则∠ADB的度数为()A.120°B.135°C.150° D.165°二、填空题:每小题3分,共18分.11.如图,AB∥CD,∠B=32°,∠ACD=56°,则∠ACB的度数是°.12.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为.13.如图,下列四组条件中:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③AB=DE,AC=DF,∠B=∠E;④∠B=∠E,BC=EF,∠C=∠F.其中不一定能使△ABC≌△DEF的条件是(只填序号).14.如图,在△ABC中,AC边的垂直平分线交BC于点D,若AC=4cm,△ABC 的周长为13cm,则△ABD的周长为cm.15.如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE 翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为°.16.如图,在△ABC中,E为AC的中点,点D为BC上一点,BD:CD=2:3,AD、BE交于点O,若S△AOE﹣S△BOD=1,则△ABC的面积为.三、解答题:共8小题,共72分.17.在△ABC中,∠A=∠B﹣10°,∠C=∠B﹣5°,求△ABC的各个内角的度数.18.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.19.已知:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.20.如图,△ABC中,点D、E分别在AB、AC上,△ABE≌△ACD.(1)求证:△BEC≌△CDB;(2)若∠A=50°,BE⊥AC,求∠BCD的度数.21.如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).(1)画出△ABC及关于y轴对称的△A1B1C1;(2)写出点A的对应点A1的坐标是,点B的对应点B1的坐标是,点C 的对应点C1的坐标是;(3)请直接写出以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标.22.如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).(1)如图①,若点C落在AB边上的点E处,求△ADE的周长;(2)如图②,若点C落在AB变下方的点E处,求△ADE的周长的取值范围.23.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.24.如图,在平面直角坐标系中,已知A(7a,0),B(0,﹣7a),点C为x轴负半轴上一点,AD⊥AB,∠1=∠2.(1)求∠ABC+∠D的度数;(2)如图①,若点C的坐标为(﹣3a,0),求点D的坐标(结果用含a的式子表示);(3)如图②,在(2)的条件下,若a=1,过点D作DE⊥y轴于点E,DF⊥x轴于点F,点M为线段DF上一点,若第一象限内存在点N(n,2n﹣3),使△EMN 为等腰直角三角形,请直接写出符合条件的N点坐标,并选取一种情况计算说明.参考答案与试题解析一、选择题:每小题3分,共30分.1.下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形【考点】多边形;三角形的稳定性.【分析】根据三角形的性质,四边形的性质,可得答案.【解答】解:正方形不具有稳定性,故A符合题意;故选:A.2.下列大学的校徽图案是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.3.如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点D的坐标为()A.(2,2) B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)【考点】正方形的性质;坐标与图形性质.【分析】根据题意得:A与B关于x轴对称,A与D关于y轴对称,A与C关于原点对称,进而得出答案.【解答】解:如图所示:∵以正方形ABCD的中心O为原点建立坐标系,点A的坐标为(2,2),∴点B、C、D的坐标分别为:(2,﹣2),(﹣2,﹣2),(﹣2,2).故选B4.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB 的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSS B.SAS C.AAS D.HL【考点】全等三角形的判定.【分析】利用判定方法“HL”证明Rt△OMP和Rt△ONP全等,进而得出答案.【解答】解:在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP是∠AOB的平分线.故选:D5.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75°B.65°C.60°D.55°【考点】多边形内角与外角;平行线的性质.【分析】先根据平行线的性质求得∠B的值,再根据多边形内角和定理即可求得∠E的值即可.【解答】解:∵AB∥CD,∴∠B=180°﹣∠C=180°﹣60°=120°,∵五边形ABCDE内角和为(5﹣2)×180°=540°,∴在五边形ABCDE中,∠E=540°﹣135°﹣120°﹣60°﹣150°=75°.故图中x的值是75°.故选:A.6.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线【考点】角平分线的性质.【分析】由角平分线性质的逆定理:到角的两边的距离相等的点在角的平分线上,则这个点是三角形三条角平分线的交点.【解答】解:∵到角的两边的距离相等的点在角的平分线上,∴这个点是三角形三条角平分线的交点.故选A.7.如图,△ABC≌△DEC,点B的对应点E在线段AB上,若AB∥CD,∠D=32°,则∠B的度数是()A.56°B.68°C.74°D.75°【考点】全等三角形的性质.【分析】直接利用角平分线的性质结合平行线的性质得出∠B=∠CEB=∠CED,进而得出∠DEA+∠DEC+∠CEB=2∠B+∠DEA求出答案.【解答】解:∵△ABC≌△DEC,∴∠D=∠A=32°,EC=BC,∴∠B=∠CEB=∠CED,∵AB∥CD,∴∠DCA=∠A=∠DEA=32°,∴∠DEA+∠DEC+∠CEB=2∠B+∠DEA=2∠B+32°=180°,解得:∠B=74°.故选:C.8.等腰三角形两条边的长分别为5,2,则该等腰三角形的周长为()A.9 B.10 C.12 D.9或12【考点】等腰三角形的性质;三角形三边关系.【分析】根据2和5可分别作等腰三角形的腰,结合三边关系定理,分别讨论求解.【解答】解:当2为腰时,三边为2,2,5,由三角形三边关系定理可知,不能构成三角形,当5为腰时,三边为5,5,2,符合三角形三边关系定理,周长为:5+5+2=12.故选C.9.图中有三个正方形,其中构成的三角形中全等三角形的对数有()A.2对 B.3对 C.4对 D.5对【考点】全等三角形的判定.【分析】根据图形,结合正方形的性质,利用全等三角形的判定方法可得出答案.【解答】解:如图,∵四边形ABCD为正方形,∴AB=BC=CD=AD,∠ABC=∠ADC=90°,在△ABC和△ADC中∴△ABC≌△ADC(SAS);∵四边形BEFK为正方形,∴EF=FK=BE=BK,∵AB=BC,∴CK=KF=EF=AE,在△AEF和△CKF中∴△AEF≌△CKF(SAS);∵四边形HIJG为正方形,∴IH=GJ,∠AIH=∠GJC=90°,且∠IAH=∠JCG=45°,在△AIH和△CJG中∴△AIH≌△CJG(AAS),综上可知全等的三角形有3对,故选B.10.如图,在Rt△ABC中,AC=BC,点D是△ABC内一点,若AC=AD,∠CAD=30°,连接BD,则∠ADB的度数为()A.120°B.135°C.150° D.165°【考点】等腰直角三角形.【分析】先根据△ABC是等腰直角三角形得:∠CAB=∠ABC=45°,作辅助线,构建全等三角形,证明△CDB≌△AED,则∠ADE=∠CBD,ED=BD,设∠CBD=x,则∠ADE=x,∠DEB=∠DBE=15+x,根据∠ABC=45°列方程可求x的值,根据三角形内角和得∠BDC=150°,最后由周角得出结论.【解答】解:∵AC=BC,∠ACB=90°,∴∠CAB=∠ABC=45°,∵AC=AD,∴AD=BC,∵∠CAD=30°,∴∠ACD=∠ADC=75°,∠DAB=45°﹣30°=15°,∴∠DCB=90°﹣75°=15°,∴∠EAD=∠DCB,在AB上取一点E,使AE=CD,连接DE,在△CDB和△AED中,∵,∴△CDB≌△AED(SAS),∴∠ADE=∠CBD,ED=BD,∴∠DEB=∠DBE,设∠CBD=x,则∠ADE=x,∠DEB=∠DBE=15+x,∵∠ABC=45°,∴x+15+x=45,x=15°,∴∠DCB=∠DBC=15°,∴∠BDC=180°﹣15°﹣15°=150°,∴∠ADB=360°﹣75°﹣150°=135°;故选B.二、填空题:每小题3分,共18分.11.如图,AB∥CD,∠B=32°,∠ACD=56°,则∠ACB的度数是92°.【考点】平行线的性质.【分析】首先根据CD∥AB,可得∠BCD=148°;然后根据∠ACD=56°,求出∠ACB 的度数即可.【解答】解:∵CD∥AB,∠B=32°,∴∠ACB=180°﹣∠B=148°,又∵∠ACD=56°,∴∠ACB的度数为148°﹣56°=92°.故答案为:9212.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为(﹣3,﹣2).【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:∵点A(3,﹣2)与点B关于y轴对称,∴点B的坐标为(﹣3,﹣2).故答案为:(﹣3,﹣2).13.如图,下列四组条件中:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③AB=DE,AC=DF,∠B=∠E;④∠B=∠E,BC=EF,∠C=∠F.其中不一定能使△ABC≌△DEF的条件是③(只填序号).【考点】全等三角形的判定.【分析】根据全等三角形的判定方法逐个判断即可.【解答】解:①由AB=DE,BC=EF,AC=DF,可知在△ABC和△DEF中,满足SSS,可使△ABC ≌△DEF;②由AB=DE,∠B=∠E,BC=EF,可知在△ABC和△DEF中,满足SAS,可使△ABC ≌△DEF;③由AB=DE,AC=DF,∠B=∠E,可知在△ABC和△DEF中,满足SSA,不能使△ABC≌△DEF;④由∠B=∠E,BC=EF,∠C=∠F,可知在△ABC和△DEF中,满足ASA,可使△ABC≌△DEF.∴不一定能使△ABC≌△DEF的条件是③.故答案为:③.14.如图,在△ABC中,AC边的垂直平分线交BC于点D,若AC=4cm,△ABC的周长为13cm,则△ABD的周长为9cm.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出AD=DC,求出AB+BC,求出△ABD的周长=AB+BC,代入请求出即可.【解答】解:∵AC边的垂直平分线交BC于点D,∴AD=CD,∵AC=4cm,△ABC的周长为13cm,∴AB+BC=9cm,∴△ABD的周长为AB+BD+AD=AB+BD+DC=AB+AD=9cm,故答案为:9.15.如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE 翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为65°.【考点】翻折变换(折叠问题);三角形内角和定理.【分析】由点D为BC边的中点,得到BD=CD,根据折叠的性质得到DF=CD,∠EFD=∠C,得到DF=BD,根据等腰三角形的性质得到∠BFD=∠B,由三角形的内角和和平角的定义得到∠A=∠AFE,于是得到结论.【解答】解:∵点D为BC边的中点,∴BD=CD,∵将∠C沿DE翻折,使点C落在AB上的点F处,∴DF=CD,∠EFD=∠C,∴DF=BD,∴∠BFD=∠B,∵∠A=180°﹣∠C﹣∠B,∠AFE=180°﹣∠EFD﹣∠DFB,∴∠A=∠AFE,∵∠AEF=50°,∴∠A==65°.故答案为:65°.16.如图,在△ABC中,E为AC的中点,点D为BC上一点,BD:CD=2:3,AD、BE交于点O,若S△AOE﹣S△BOD=1,则△ABC的面积为10.【考点】三角形的面积.【分析】根据E为AC的中点可知,S△ABE =S△ABC,再由BD:CD=2:3可知,S△ABD=S△ABC,进而可得出结论.【解答】解:∵点E为AC的中点,∴S△ABE =S△ABC.∵BD:CD=2:3,∴S△ABD=S△ABC,∵S△AOE ﹣S△BOD=1,∴S△ABE =S△ABD=S△ABC﹣S△ABC=1,解得S△ABC=10.故答案为:10.三、解答题:共8小题,共72分.17.在△ABC中,∠A=∠B﹣10°,∠C=∠B﹣5°,求△ABC的各个内角的度数.【考点】三角形内角和定理.【分析】然后根据三角形的内角和等于180°列式计算求出∠B,然后求解即可.【解答】解:∵∠A=∠B﹣10°,∠C=∠B﹣5°,∴∠B﹣10°+∠B+∠B﹣5°=180°,∴∠B=65°,∴∠A=65°﹣10°=55°,∠C=65°﹣5°=60°,∴△ABC的内角的度数为55°,60°,65°.18.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.【考点】多边形内角与外角;三角形内角和定理.【分析】由五边形ABCDE的内角都相等,先求出五边形的每个内角度数,再求出∠1=∠2=∠3=∠4=36°,从而求出x=108°﹣72°=36度.【解答】解:因为五边形的内角和是540°,则每个内角为540°÷5=108°,∴∠E=∠C=108°,又∵∠1=∠2,∠3=∠4,由三角形内角和定理可知,∠1=∠2=∠3=∠4=÷2=36°,∴x=∠EDC﹣∠1﹣∠3=108°﹣36°﹣36°=36°.19.已知:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【考点】全等三角形的判定与性质.【分析】由BE=CF可证得BC=EF,又有AB=DE,AC=DF,根据SSS证得△ABC≌△DEF⇒∠A=∠D.【解答】证明:∵BE=CF,∴BC=EF,又∵AB=DE,AC=DF,∴△ABC≌△DEF.∴∠A=∠D.20.如图,△ABC中,点D、E分别在AB、AC上,△ABE≌△ACD.(1)求证:△BEC≌△CDB;(2)若∠A=50°,BE⊥AC,求∠BCD的度数.【考点】全等三角形的判定与性质.【分析】(1)根据全等三角形的性质得到AB=AC,AD=AE,BE=CD,根据全等三角形的判定定理即可得到结论;(2)根据等腰三角形的性质和三角形的内角和得到∠ACB=∠ABC=65°,根据垂直的定义得到∠BEC=∠AEB=90°,于是得到结论.【解答】(1)证明:∵△ABE≌△ACD,∴AB=AC,AD=AE,BE=CD,∴BD=CE,在△BEC与△CDB中,,∴△BEC≌△CDB;(2)解:∵AB=AC,∠A=50°,∴∠ACB=∠ABC=65°,∵BE⊥AC,∴∠BEC=∠AEB=90°,∴∠ABE=∠ACD=40°,∴∠BCD=15°.21.如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).(1)画出△ABC及关于y轴对称的△A1B1C1;(2)写出点A的对应点A1的坐标是(1,﹣1),点B的对应点B1的坐标是(﹣4,﹣1),点C的对应点C1的坐标是(﹣3,1);(3)请直接写出以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标(0,﹣3)或(0,1)或(3,﹣3).【考点】作图﹣轴对称变换;坐标确定位置.【分析】(1)根据各点坐标画出三角形即可,再根据轴对称的性质,画出三角形即可;(2)根据△△A1B1C1各顶点的位置写出其坐标即可;(3)根据以AB为公共边且与△ABC全等的三角形的第三个顶点的位置,写出其坐标即可.【解答】解:(1)画图如图所示:(2)由图可得,点A1的坐标是(1,﹣1),点B1的坐标是(﹣4,﹣1),点C1的坐标是(﹣3,1);(3)∵AB为公共边,∴与△ABC全等的三角形的第三个顶点的坐标为(0,﹣3),(0,1)或(3,﹣3).22.如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).(1)如图①,若点C落在AB边上的点E处,求△ADE的周长;(2)如图②,若点C落在AB变下方的点E处,求△ADE的周长的取值范围.【考点】翻折变换(折叠问题);三角形三边关系.【分析】根据翻折变换的性质可得CE=CD,BE=BC,然后求出AE,再求出AD+DE=AC,最后根据三角形的周长公式列式计算即可得解.【解答】解:∵折叠这个三角形顶点C落在AB边上的点E处,∴CE=CD,BE=BC=6,∴AE=AB﹣BE=8﹣6=2,∵AD+DE=AD+CD=AC=5,∴△AED的周长=5+2=7;(2)∵折叠这个三角形顶点C落在AB边上的点E处,∴CE=CD,BE=BC=6,∴在△ADE中,AD+DE=AD+CD=AC=5,∴AE<AD+DE,∴在△ABE中,AE>AB+BE,∴AE<5,AE>2,即2<AE<5,∴7<△AED的周长<1.23.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】(1)先根据条件得出∠ACD=∠BDE,BD=AC,再根据ASA判定△ADC≌△BED,即可得到CD=DE;(2)先根据条件得出∠DCB=∠CDE,进而得到CE=DE,再在DE上取点F,使得FD=BE,进而判定△CDF≌△DBE(SAS),得出CF=DE=CE,再根据CH⊥EF,运用三线合一即可得到FH=HE,最后得出DE﹣BE=DE﹣DF=EF=2HE=2.【解答】解:(1)∵AC=BC,∠CDE=∠A,∴∠A=∠B=∠CDE,∴∠ACD=∠BDE,又∵BC=BD,∴BD=AC,在△ADC和△BED中,,∴△ADC≌△BED(ASA),∴CD=DE;(2)∵CD=BD,∴∠B=∠DCB,又∵∠CDE=∠B,∴∠DCB=∠CDE,∴CE=DE,如图,在DE上取点F,使得FD=BE,在△CDF和△DBE中,,∴△CDF≌△DBE(SAS),∴CF=DE=CE,又∵CH⊥EF,∴FH=HE,∴DE﹣BE=DE﹣DF=EF=2HE=2.24.如图,在平面直角坐标系中,已知A(7a,0),B(0,﹣7a),点C为x轴负半轴上一点,AD⊥AB,∠1=∠2.(1)求∠ABC+∠D的度数;(2)如图①,若点C的坐标为(﹣3a,0),求点D的坐标(结果用含a的式子表示);(3)如图②,在(2)的条件下,若a=1,过点D作DE⊥y轴于点E,DF⊥x轴于点F,点M为线段DF上一点,若第一象限内存在点N(n,2n﹣3),使△EMN 为等腰直角三角形,请直接写出符合条件的N点坐标,并选取一种情况计算说明.【考点】三角形综合题.【分析】(1)如图1中,设CD与y轴交于点E.根据四边形内角和定理,只要证明∠BCD+∠BAD=180°即可解决问题.(2)如图1中,求出直线AB、BC的解析式,再求出直线AD、CD的解析式,利用方程组求交点D坐标.(3)分四种情形,利用全等三角形的性质,列出方程分别求解即可.【解答】解:(1)如图1中,设CD与y轴交于点E.∵AD⊥AB,∴∠BAD=90°,∵∠1+∠BCO=90°,∠1=∠2,∴∠BCO+∠2=90°,∴∠BCD=90°,∴∠BCD+∠BAD=180°,∴∠ABC+∠D=360°﹣(∠BCD+∠BAD)=180°.(2)如图1中,∵A(7a,﹣7a),B(0,﹣7a),∴直线AB的解析式为y=x﹣7a,∵AD⊥AB,∴直线AD的解析式为y=﹣x+7a,∵C(﹣3a,0),B(0,﹣7a),∴直线BC的解析式为y=﹣x﹣7a,∵CD⊥BC,∴直线CD的解析式为y=x+a,由解得,∴点D的坐标为(4a,3a).(3)①如图2中,作NG⊥OE于G,GN的延长线交DF于H.∵△NEM是等腰直角三角形,∴EN=MN,∠ENM=90°,由△ENG≌△NMH,得EG=NH,∵N(n,2n﹣3),D(4,3),∴HN=EG=3﹣(2n﹣3)=6﹣2n∵GH=4,∴n+6﹣2n=4,∴n=2,∴N(2,1).②如图3中,作NG⊥OE于G,MH⊥OE于H.由△ENG≌△MEH,得GE=HM=4,∴OG=7=2n﹣3,∴n=5,∴N(5,7).③如图4中,作NG⊥OE于G,GN的延长线交DF于H.由△ENG≌△NMH得EG=NH=4﹣n,∴3+4﹣n=2n﹣3,∴n=,∴N(,).④如图5中,作MG⊥OE于G,NH⊥GM于H.由△EMG≌△MNH得EG=MH=n﹣4,MG=NH=4∴GH=n,∴3﹣(n﹣4)+4=2n﹣3,∴n=,∴N(,).综上所述,满足条件的点N的坐标为(2,1)或(5,7)或(,)或(,).。
江苏省常州市2023-2024学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.剪纸是中国优秀的传统文化.下列剪纸图案中,是轴对称图形的是()A .B .C .D .2.全等图形是指两个图形()A .面积相等B .形状一样C .能完全重合D .周长相同3.下列各组线段中,能组成直角三角形的是()A .3a =,4b =,6c =B .7a =,24b =,25c =C .6a =,8b =,9c =D .5a =,6b =,7c =4.如图,已知12∠=∠,若用“SAS ”证明BDA ACB ≌,还需加上条件()A .AD BC =B .DC ∠=∠C .BD AC =D .OA OB=5.如图,在由4个相同的小正方形拼成的网格中,21∠-∠=()A .60︒B .75︒C .90︒D .105︒6.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,则CD 的长为()A.3B.4C.5D.67.已知直角三角形的面积为15,两直角边的和为11,则它的斜边长的平方为()A.61B.62C.63D.648.如图,有四个三角形,各有一边长为6,一边长为8,若第三边分别为6,8,10,12,则面积最大的三角形是()A.B.C.D.二、填空题△10.如图,已知ABC≌则CF的长为的高,11.如图,CD是ABC12.等腰三角形的一边长12cm,另一边长13.如图,点E在正方形ABCD的边面积为.14.一个三角形的三边为2、5、x,另一个三角形的三边为全等,则x+y=.15.如图,在△ABC中,AB=AC,∠中,AB=17.在ABC三、计算题19.如图,ABC 中,10,6,8AB BC AC ===,求ABC 的面积.四、解答题20.小明在做数学作业时,遇到这样一个问题:如图,AB CD =,AC BD =,请说明BAC CDB =∠∠的道理.小明动手测量一下,发现确实相等,但不能说明道理,请你帮助说明其中的理由.21.如图,在△ABC 中,AB AC =,AD 为BC 边上的中线,E 为AC 上一点,且AE AD =,50BAD ∠=︒,求∠CDE 的度数.22.已知:如图,点C 、D 、B 、F 在一条直线上,且AB ⊥BD ,DE ⊥BD ,AB =CD ,CE =AF .求证:(1)△ABF≌△CDE;(2)CE⊥AF.五、证明题24.证明“直角三角形中,30A∠=︒.求证:12CB AB=.六、作图题25.如图,已知P是直线l外一点,用两种不同的方法求作一点Q,使得点Q到点P 的距离和点Q到直线l的距离相等.(要求:用直尺和圆规作图,保留作图痕迹.)七、解答题26.定义:若过三角形的一个顶点作射线与其对边相交,将这个三角形分成的两个三角形中有等腰三角形,那么这条射线就叫做原三角形的“等腰分割线”.(1)在Rt ABC △中,90C ∠=︒,8AC =,6BC =.①如图1,若O 为AB 的中点,则射线OC _____ABC 的等腰分割线(填“是”或“不是”)②如图2,已知ABC 的一条等腰分割线BP 交AC 边于点P ,且PB PA =,请求出CP 的长度.(2)如图3,ABC 中,CD 为AB 边上的高,F 为AC 的中点,过点F 的直线l 交AD 于点E ,作CM l ⊥,DN l ⊥,垂足为M ,N ,3BD =,5AC =,且45A ∠<︒.若射线CD 为ABC 的“等腰分割线”,求CM DN +的最大值.参考答案:1.B【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,关键是寻找对称轴,图形两部分折叠后可重合.【详解】解:选项A 、C 、D 均不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;选项B 能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;故选:B .2.C【分析】利用全等图形的定义可得答案.【详解】解:全等图形是指两个图形能完全重合.故选:C .【点睛】本题考查全等图形的概念,理解概念是解答的关键.3.B【分析】根据勾股定理的逆定理依次判断即可.【详解】A 、222346+≠,不能组成直角三角形;B 、22272425+=,能组成直角三角形;C 、222689+≠,不能组成直角三角形;D 、222567+≠,不能组成直角三角形;故选:B .【点睛】本题考查的是勾股定理的逆定理,若一个三角形中两个较短边的平方和等于最长边的平方,则这个三角形是直角三角形.4.C【分析】根据已知12∠=∠,AB BA =,添加条件BD AC =,即可用“SAS ”证明ACB BDA △≌△,即可求解.【详解】解:补充条件BD AC =,在ACB △与BDA △中21BD AC AB BA =⎧⎪∠=∠⎨⎪=⎩∴ACB BDA △≌△()SAS ,故选:C .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定定理是解题的关键.5.C【分析】利用全等三角形的性质解答即可.【详解】解:如图所示,连接AD ,在ABD △和ACD 中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩,()SSS ABD ACD ∴ ≌,1ACD ∴∠=∠,290ACD DCE ∠-∠=∠=︒ ,2190∴∠-∠=︒.故选:C .【点睛】本题考查了全等图形,主要利用了网格结构以及全等三角形的判定与性质,准确识图并确定出全等三角形是解题的关键.6.A【分析】过点D 作DE ⊥AB 于E ,根据角平分线上的点到角的两边距离相等可得DE =CD ,然后利用△ABD 的面积列式计算即可得解.【详解】解:如图,过点D 作DE ⊥AB 于E ,∵∠C =90°,AD 平分∠BAC ,【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,是解题的关键.7.A9.140【分析】先根据三角形的内角和定理可得70ACB ∠=︒,再根据轴对称的性质可得70ACD ACB ∠=∠=︒,由此即可得.【详解】解:60BAC ∠=︒ ,50B ∠=︒,18070ACB BAC B ∴∠=︒-∠-∠=︒,∵四边形ABCD 是轴对称图形,直线AC 是它的对称轴,70ACD ACB ∴∠=∠=︒,140BCD ACD ACB ∴∠=∠+∠=︒,故答案为:140.【点睛】本题考查了三角形的内角和定理、轴对称的性质,熟练掌握轴对称的性质是解题关键.10.3【分析】利用全等三角形的性质求解即可.【详解】解:由全等三角形的性质得:8EF BC ==,∴853CF EF CE =-=-=,故答案为:3.【点睛】本题考查全等三角形性质,熟练掌握全等三角形的性质是解答的关键.11.35︒/35度【分析】根据题意,得CD AB ⊥,则90ADC ∠=︒,根据三角形的内角和,则180A ADC ACD ∠+∠+∠=︒,求出ACD ∠的角度,再根据90ACB ACD BCD ∠=∠+∠=︒,即可.【详解】∵CD 是ABC 的高,∴CD AB ⊥,∴90ADC ∠=︒,∵在ACD 中,180A ADC ACD ∠+∠+∠=︒,35A ∠=︒,90ACB ∠=︒,∴55ACD ∠=︒在ABC 和DCB △中,AB CD AC BD BC BC =⎧⎪=⎨⎪=⎩∴()SSS ABC DCB ≌△△,∴BAC CDB =∠∠.【点睛】本题考查全等三角形的判定与性质,添加辅助线证明三角形全等是解答的关键.21.25°【分析】由题意知AD BC ⊥出ADE ∠的值,进而可求出【详解】解:∵AB AC =,∴AD BC ⊥,CAD BAD ∠=∠∵AE AD=∴18050652ADE ︒-︒∠==︒∴CDE ADC ADE ∠=∠-∠∴CDE ∠的值为25°.【点睛】本题考查了等腰三角形的性质,腰三角形的性质.22.(1)见解析;(2)见解析【分析】(1)根据题意由题干条件直接利用(2)由全等三角形的性质可求得∠=90°,即可证得结论.【详解】解:(1)证明:∵ABC 中,90C ∠=60B ∴∠=︒,BCD ∴△是等边三角形,,CB CD BDC ∴=∠=ACD BDC ∴∠=∠-∠ACD A ∴∠=∠,AD CD ∴=,CB AD ∴=,又AB AD BD =+ ,12∴=CB AB .【点睛】本题考查了等边三角形的判定与性质、三角形的判定与性质是解题关键.25.见详解【分析】方法一:过垂足为Q 点;方法二:在直线l 上任意取点BC 于点Q .【详解】如图,点Q 即为所作.证明:方法一:根据作图可知:直线l PA ⊥,PQ QA =,又有:点Q 到直线l 的距离为QA ,点Q 到点P 的距离为PQ ,∴点Q 满足要求;方法二:连接PQ ,如图,根据作图可知:直线l BQ ⊥,PQ QB =,又有:点Q 到直线l 的距离为QB ,点Q 到点P 的距离为PQ ,∴点Q 满足要求.【点睛】本题考查了作图−复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了点到直线的距离.。
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列图形中,是轴对称图形的是()A.B.C.D.2.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或133.若一个多边形的内角和为720°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形4.如图,用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的识别方法是()A.SAS B.SSS C.ASA D.AAS5.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.50°B.60°C.85°D.80°6.如图,∠A=50°,P是等腰△ABC内一点,AB=AC,BP平分∠ABC,CP平分∠ACB,则∠BPC的度数为()A.100°B.115°C.130°D.140°7.如图,△ABC≌△DEF,若BC=12cm,BF=16cm,则下列判断错误的是()A.AB=DE B.BE=CF C.AB//DE D.EC=4cm8.如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长为()A.3B.4C.5D.69.如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等的三角形共有( )A.四对B.三对C.二对D.一对10.如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM//BC交∠ABC的外角平分线于M,交AB、AC于F、E,下列结论:①MB⊥BD;②FD=FB;③MD=2CE,其中一定正确的有()A.0个B.1个C.2个D.3个二、填空题11.已知△ABC中,AB=6,BC=4,那么边AC的长可以是(填一个满足题意的即可). 12.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是_____________.13.点M与点N(-2,-3)关于y轴对称,则点M的坐标为.14.如图,D是AB边上的中点,将△ABC沿过点D的直线折叠,DE为折痕,使点A 落在BC上F处,若∠B=40°,则∠EDF=_____度.15.已知△ABC中,∠A=12∠B=13∠C,则△ABC是_____三角形.16.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,点D是BC边上的点,AB=18,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则BP+EP的最小值是____.三、解答题17.如图,A、F、B、D在一条直线上,AF=DB,BC=EF,AC=DE.求证:∠A=∠D.18.一个多边形,它的内角和比外角和还多180°,求这个多边形的边数.19.如图,已知△ABC,∠C=90°,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹).(2)连接AD,若∠B=35°,则∠CAD=°.20.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积.21.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.22.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求证:AD平分∠BAC;(2)连接EF ,求证:AD 垂直平分EF .23.如图,AD 为△ABC 的中线,BE 为△ABD 的中线.(1)∠ABE=15°,∠BED=55°,求∠BAD 的度数;(2)作△BED 的边BD 边上的高;(3)若△ABC 的面积为20,BD=2.5,求△BDE 中BD 边上的高.24.如图,在△ABC 中,∠BAC=120°,AB=AC=4,AD ⊥BC ,AD 到E ,使AE=2AD ,连接BE .(1)求证:△ABE 为等边三角形;(2)将一块含60°角的直角三角板PMN 如图放置,其中点P 与点E 重合,且∠NEM=60°,边NE 与AB 交于点G ,边ME 与AC 交于点F .求证:BG=AF ;(3)在(2)的条件下,求四边形AGEF 的面积.25.已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.参考答案1.B【详解】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.A【分析】分1是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【详解】①1是腰长时,三角形的三边分别为1、1、6,不能组成三角形,②1是底边时,三角形的三边分别为6、6、1,能组成三角形,周长=6+6+1=13,综上所述,三角形的周长为13.故选A.【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.3.D【分析】利用n边形的内角和可以表示成(n-2)•180°,结合方程即可求出答案.【详解】设这个多边形的边数为n,由题意,得(n-2)180°=720°,解得:n=6,则这个多边形是六边形.故选D.【点睛】本题主要考查多边形的内角和公式,比较容易,熟记n边形的内角和为(n-2)•180°是解题的关键.4.B【分析】根据作图的过程知道:OA=OB,OC=OC,AC=CB,所以由全等三角形的判定定理SSS可以证得△OAC≌△OBC.【详解】连接AC、BC,根据作图方法可得:OA=OB,AC=CB,在△OAC和△OBC中,OA OB OC OC AC CB =⎧⎪=⎨⎪=⎩,∴△OAC ≌△OBC (SSS ).故选:B .【点睛】本题考查了作图-基本作图及全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .5.C【分析】根据三角形角平分线的性质求出∠ACD ,根据三角形外角性质求出∠A 即可.【详解】∵CE 是△ABC 的外角∠ACD 的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A ,∴∠A=∠ACD-∠B=120°-35°=85°,故选C .【点睛】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.6.B【分析】根据等腰三角形两底角相等求出∠ACB ,然后求出∠PCB+∠PBC=∠ACB ,再根据三角形的内角和定理列式计算即可得解.【详解】∵∠A=50°,△ABC 是等腰三角形,∴∠ACB=12(180°-∠A )=12(180°-50)=65°,∵∠PBC=∠PCA ,∴∠PCB+∠PBC=∠PCB+∠PCA=∠ACB=65°,∴∠BPC=180°-(∠PCB+∠PBC )=180°-65°=115°.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,准确识图并求出∠PCB+∠PBC是解题的关键.7.D【分析】根据全等三角形的性质得出AB=DE,BC=EF,∠ACB=∠F,求出AC∥DF,BE=CF,即可判断各个选项.【详解】∵△ABC≌△DEF,∴AB=DE,BC=EF,∠ACB=∠F,∴AC∥DF,BC-EC=EF-EC,∴BE=CF,∵BC=12cm,BF=16cm,∴CF=BE=4cm,∴EC=12cm-4cm=8cm,即只有选项D错误;故选D.【点睛】本题考查了全等三角形的性质,平行线的判定的应用,能正确运用性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.8.B【分析】先根据角平分线的性质,得出DE=DC,再根据BC=9,BD=5,得出DC=9-5=4,即可得到DE=4.【详解】∵∠C=90°,AD平分∠BAC,DE⊥AB于E,∴DE=DC,∵BC=9,BD=5,∴DC=9-5=4,故选B.【点睛】本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等.9.B【分析】找出全等的三角形即可得出选项.【详解】1、因为AB=AC,AD=AE,∠A=∠A,所以△ABE≌△ACD;2、因为BD=AB-AD,CE=AC-AE,所以BD=CE,又因为AB=AC,BC=BC,所以∠B=∠C,所以△BCD≌△CBE;3、当△ABE≌△ACD时,∠ABE=∠ACD,∠OBC=∠OCB,所以OB=OC,又因为BD=CE,所以△OBD≌△OCE,所以答案选择B项.【点睛】本题考查了全等的证明,熟悉掌握SAS,SSS,ASA是解决本题的关键.10.D【分析】如图,由BD分别是∠ABC及其外角的平分线,得到∠MBD=12×180°=90°,故①成立;证明BF=CE、BF=DF,得到FD=FB,故②成立;证明BF为直角△BDM的斜边上的中线,故③成立.【详解】如图,∵BD分别是∠ABC及其外角的平分线,∴∠MBD=12×180°=90°,故MB⊥BD,①成立;∵DF∥BC,∴∠FDB=∠DBC;∵∠FBD=∠DBC,∴∠FBD=∠FDB,∴FD=BF,②成立;∵∠DBM=90°,MF=DF,∴BF=12DM,而CE=BF,∴CE=12DM,即MD=2CE,故③成立.故选D.【点睛】该题主要考查了等腰三角形的判定及其性质、直角三角形的性质等几何知识点及其应用问题;应牢固掌握等腰三角形的判定及其性质、直角三角形的性质11.3,4,···(2到10之间的任意一个数)【解析】【分析】直接利用三角形三边关系得出AC的取值范围,进而得出答案.【详解】根据三角形的三边关系可得:AB-BC<AC<AB+BC,∵AB=6,BC=4,∴6-4<AC<6+4,即2<AC<10,∴AC的长可以是3,4,•••(2到10之间的任意一个数).故答案为3,4,•••(2到10之间的任意一个数).【点睛】此题主要考查了三角形三边关系,正确得出AC的取值范围是解题关键.12.60°【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题.【详解】如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°.【点睛】本题考查等边三角形的性质和动点问题,解题的关键是知道当三点共线时PE+PC最小. 13.(2,-3).【分析】根据平面直角坐标系中任意一点P(x,y),关于y轴对称的点的坐标为(-x,y),将M的坐标代入从而得出答案.【详解】根据关于x轴、y轴对称的点的坐标的特点,∴点N(-2,-3)关于y轴对称的点的坐标是(2,-3).故答案为(2,-3).【点睛】本题主要考查了平面直角坐标系中关于y轴对称的点的坐标的特点,注意掌握任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴对称的点的坐标为(-x,y),比较简单.14.40【分析】先根据图形翻折不变的性质可得AD=DF,根据等边对等角的性质可得∠B=∠BFD,再根据三角形的内角和定理列式计算可得∠BDF的解,再根据平角的定义和折叠的性质即可求解.【详解】∵△DEF是△DEA沿直线DE翻折变换而来,∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B=∠BFD,∵∠B=50°,∴∠BDF=180°-∠B-∠BFD=180°-40°-40°=100°,∴∠EDF=(180°-∠BDF)÷2=40°.故答案为40.【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.15.直角【分析】设∠A=x°,则∠B=2x°,∠C=3x°,利用三角形内角和为180°求的x,进而求出∠C为90°,即可得出答案.【详解】设∠A=x°,则∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°∴x°+2x°+3x°=180°∴x°=30°∴∠C=3x°=90°∴△ABC是直角三角形故答案为直角【点睛】本题考查三角形内角和定理的运用以及三角形形状的判定,熟练掌握三角形内角和定理是解题关键.16.9【分析】根据翻折变换的性质可得点C、E关于AD对称,再根据轴对称确定最短路线问题,BC与AD的交点D即为使PB+PE的最小值的点P的位置,然后根据直角三角形两锐角互余求出∠BAC=60°,再求出∠CAD=30°,然后解直角三角形求解即可.【详解】∵将△ACD沿直线AD翻折,点C落在AB边上的点E处,∴点C、E关于AD对称,∴点D即为使PB+PE的最小值的点P的位置,PB+PE=BC,∵∠C=90°,∠BAC=30°,∴BC=12 AB,∴BC=9.∴PB+PE的最小值为9.故答案为9.【点睛】本题考查了轴对称确定最短路线问题,翻折变换的性质,解直角三角形,难点在于判断出PB+PE取得最小值时点P与点D重合.17.详见解析.【分析】已知AF=DB,则AF+FB=DB+FB,可得AB=DF,结合已知AC=DE,BC=FE可证明△ABC≌△DFE,利用全等三角形的性质证明结论.【详解】证明:∵AF=DB,∴AF+FB=DB+FB ,即AB=DF在△ABC 和△DFE 中,AC DE BC FE AB DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS ),∴∠A=∠D【点睛】本题考查了全等三角形的判定与性质.关键是由已知边相等,结合公共线段求对应边相等,证明全等三角形.18.多边形的边数为5【解析】【分析】根据多边形的外角和均为360°,已知该多边形的内角和比外角和还多180°,可以得出内角和为540°,再根据计算多边形内角和的公式(n-2)×180°,即可得出该多边形的边数.【详解】设多边形的边数为n ,则(n-2)×180°=360°+180°解得n=5答:多边形的边数为5【点睛】本题主要考查多边形的内角和和多边形的外角和.19.(1)详见解析;(2)20°.【解析】【分析】(1)线段垂直平分线的尺规作图;(2)通过线段垂直平分线的性质易得AD=BD ,从而∠BAD=∠B ,再求解即可.【详解】(1)如图,点D 即为所求.(2)在Rt△ABC中,∠B=35°,∴∠CAB=55°,又∵AD=BD,∴∠BAD=∠B=35°,∴∠CAD=∠CAB-∠DAB=55°-35°=20°.【点睛】本题主要考查了尺规作图,线段垂直平分线的作法;线段垂直平分线的性质. 20.(1)(-3,2);(2)2.5【解析】试题分析:(1)根据关于与原点对称的点横、纵坐标均为相反数求解即可;(2)△ABC的面积等于矩形的面积减去三个三角形的面积.(1)如图,C1坐标为(-3,2);(2)11123212131222 ABCS=⨯-⨯⨯-⨯⨯-⨯⨯3611 2.52=---=. 21.BE=0.8cm先证明△ACD ≌△CBE ,再求出EC 的长,解决问题.【详解】解:∵BE ⊥CE 于E ,AD ⊥CE 于D∴∠E =∠ADC =90°∵∠BCE +∠ACE =∠DAC +∠ACE =90°∴∠BCE =∠DAC∵AC =BC∴△ACD ≌△CBE∴CE =AD ,BE =CD =2.5﹣1.7=0.8(cm ).【点睛】本题考查全等三角形的性质和判定,准确找到全等条件是解题的关键.22.见解析【解析】【分析】(1)由于D 是BC 的中点,那么BD =CD ,而BE =CF ,DE ⊥AB ,DF ⊥AC ,利用HL 易证Rt Rt BDE CDF ≌,,可得DE =DF ,利用角平分线的判定定理可知点点D 在∠BAC 的平分线上,即AD 平分∠BAC ;(2)根据全等三角形的性质即可得到结论.【详解】(1)∵D 是BC 的中点∴BD =CD ,又∵BE =CF ,DE ⊥AB ,DF ⊥AC ,Rt Rt BDE CDF ≌,∴DE =DF ,∴点D 在∠BAC 的平分线上,∴AD 平分∠BAC ;(2)Rt Rt BDE CDF ≌,∴∠B =∠C ,∴AB =AC ,∴AB−BE=AC−CF,∴AE=AF,∵DE=DF,∴AD垂直平分EF.【点睛】本题考查了角平分线的性质定理:角的内部到角的两边距离相等的点在角平分线上. 23.(1)∠BAD=40°;(2)详见解析;(3)BD=2.5.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;(2)根据高线的定义,过点E作BD的垂线即可得解;(3)根据三角形的中线把三角形分成的两个三角形面积相等,先求出△BDE的面积,再根据三角形的面积公式计算即可.【详解】(1)在△ABE中,∵∠ABE=15°,∠BAD=40°,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)如图,EF为BD边上的高;(3)∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD =12S△ABC,S△BDE=12S△ABD,S△BDE=14S△ABC,∵△ABC的面积为20,BD=2.5,∴S△BDE =12BD•EF=12×5•EF=14×20,解得EF=2.【点睛】本题考查了三角形的外角性质,三角形的面积,利用三角形的中线把三角形分成两个面积相等的三角形是解题的关键.24.(1)见解析;(2)见解析;(3)【解析】【分析】(1)先证明9030ABD BAE ∠=-∠= ,,可知AB =2AD ,因为AE =2AD ,所以AB =AE ,从而可知△ABE 是等边三角形.(2)由(1)可知:60ABE AEB ∠=∠= ,AE =BE ,然后求证BEG AEF ≌,即可得出BG =AF ;(3)由于S 四边形AGEF AEG AEF AEG BEG ABE S S S S S =+=+= 故只需求出△ABE 的面积即可.【详解】(1)AB =AC ,AD ⊥BC ,160,902BAE CAE BAC ADB ∴∠=∠=∠=∠= ,9030ABD BAE ∴∠=-∠= ,∴AB =2AD ,∵AE =2AD ,∴AB =AE ,60BAE ∠= ,∴△ABE 是等边三角形.(2)∵△ABE 是等边三角形,60ABE AEB ∴∠=∠= ,AE =BE ,由(1)60,CAE ∠= ∴∠ABE =∠CAE ,60NEM BEA ∠=∠= ,∴∠NEM −∠AEN =∠BEA −∠AEN ,∴∠AEF =∠BEG ,在△BEG 与△AEF 中,,GBE FAE BE AE BEG AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA).BEG AEF ∴ ≌∴BG =AF ;(3)由(2)可知:BEG AEF ≌,S BEG S AEF ∴= ,∴S 四边形AGEF AEG AEF AEG BEG ABES S S S S =+=+= ∵△ABE 是等边三角形,∴AE =AB =4,11422ABE S AE BD ∴=⋅=⨯⨯= ∴S四边形AGEF =25.见详解【分析】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD 和△CBD 中,AB BC ABD CBD BD BD ⎪∠⎪⎩∠⎧⎨===∴△ABD ≌△CBD (SAS ),∴∠ADB=∠CDB ,∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM=PN .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.。
人教版八年级上学期期中考试数学试卷(一)一、选择题(每小题3分,共36分)1.下列图形中被虚线分成的两部分不是全等形的是()A. B. C D.2.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A.B.C.D.3.下列各式﹣2a,,, a2﹣ b2,,中,分式有()A.1个B.2个C.3个D.4个4.如图,已知AB=AC,AD=AE,欲证△ABD≌△ACE,须补充的条件是()A.∠B=∠C B.∠D=∠E C.∠1=∠2 D.∠CAD=∠DAC5.下面四个图形中,从几何图形的性质考虑,哪一个与其他三个不同?()A.B.C.D.6.当△ABC和△DEF具备()条件时,△ABC≌△DEF.A.所有的角对应相等B.三条边对应相等C.面积相等D.周长相等7.下列分式是最简分式的是()A.B.C.D.8.若点O是△ABC三边垂直平分线的交点,则有()A.OA=OB≠OC B.OB=OC≠OA C.OC=OA≠OB D.OA=OB=OC9.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°10.如图,把两个一样大的含30度的直角三角板,按如图方式拼在一起,其中等腰三角形有()A.1个B.2个C.3个D.4个11.已知两个分式:A=﹣,B=,其中x≠3且x≠0,则A与B的关系是()A.相等B.互为倒数C.互为相反数 D.不能确定12.如图,用尺规作图“过点C作CN∥OA”的实质就是作∠DOM=∠NCE,其作图依据是()A.SAS B.SSS C.ASA D.AAS二、填空题(本大题共8小题,每小题3分,共计24分)13.已知=,则的值为.14.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是.15.分式,,﹣的最简公分母是.16.已知线段a,b,c,d成比例线段,且a=4,b=2,c=2,则d的长为.17.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你再补充一个条件,使△ABC≌△DEF,你补充的条件是.18.已知点A(a﹣1,5)和点B(2,b﹣1)关于x轴成轴对称,则(a+b)2016= .19.若x:y=1:3,且2y=3z,则的值是.20.如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为.三、解答题(本大题满分60分)21.作图题小明不小心在一个三角形上撒一片墨水,请用尺规帮小明重新画一个三角形使它与原来的三角形完全相同.(保留作图痕迹,不写作法)22.已知﹣=4,求的值.23.如图所示,△DEF是等边三角形,且∠1=∠2=∠3,试问:△ABC是等边三角形吗?请说明理由.24.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.25.如图,在△ABC中,BD=CD,∠1=∠2,小颖说:“AD⊥BC”,你认为她说的对吗?说明你的理由.26.计算:(1)÷(2)÷(﹣x﹣2)(3)(4)(1﹣)÷.27.已知△ABC的两条高AD,BE相交于点H,且AD=BD,试问:(1)∠DBH与∠DAC相等吗?说明理由.(2)BH与AC相等吗?说明理由.参考答案与试题解析一、选择题(每小题3分,共36分)1.下列图形中被虚线分成的两部分不是全等形的是()A. B.C.D.【考点】K9:全等图形.【分析】根据全等形的概念进行判断即可.【解答】解:长方形被对角线分成的两部分是全等形;平行四边形被对角线分成的两部分是全等形;梯形被对角线分成的两部分不是全等形;圆被对角线分成的两部分是全等形,故选:C.2.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A.B.C.D.【考点】P1:生活中的轴对称现象.【分析】认真观察图形,首先找出对称轴,根据轴对称图形的定义可知只有C 是符合要求的.【解答】解:观察选项可得:只有C是轴对称图形.故选:C.3.下列各式﹣2a,,, a2﹣b2,,中,分式有()A.1个B.2个C.3个D.4个【考点】61:分式的定义.【分析】根据分式的定义,可得答案.【解答】解:,,,是分式,故选:D.4.如图,已知AB=AC,AD=AE,欲证△ABD≌△ACE,须补充的条件是()A.∠B=∠C B.∠D=∠E C.∠1=∠2 D.∠CAD=∠DAC【考点】KB:全等三角形的判定.【分析】已知两边相等,要使两三角形全等必须添加这两边的夹角,即∠BAD=∠CAE,因为∠CAD是公共角,则当∠1=∠2时,即可得到△ABD≌△ACE.【解答】解:∵AB=AC,AD=AE,∠B=∠C不是已知两边的夹角,A不可以;∠D=∠E不是已知两边的夹角,B不可以;由∠1=∠2得∠BAD=∠CAE,符合SAS,可以为补充的条件;∠CAD=∠DAC不是已知两边的夹角,D不可以;故选C.5.下面四个图形中,从几何图形的性质考虑,哪一个与其他三个不同?()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的性质对各选项分析判断即可得解.【解答】解:A、是轴对称图形,B、不是轴对称图形,C、是轴对称图形,D、是轴对称图形,所以,B与其他三个不同.故选B.6.当△ABC和△DEF具备()条件时,△ABC≌△DEF.A.所有的角对应相等B.三条边对应相等C.面积相等D.周长相等【考点】KB:全等三角形的判定.【分析】由SSS证明三角形全等即可.【解答】解:∵三条边对应相等的两个三角形全等,∴B选项正确;故选:B.7.下列分式是最简分式的是()A.B.C.D.【考点】68:最简分式.【分析】根据最简分式的定义分别对每一项进行判断,即可得出答案.【解答】解:A、=,不是最简分式,故本选项错误;B、=,不是最简分式,故本选项错误;C、,是最简分式,故本选项正确;D、=,不是最简分式,故本选项错误;故选C.8.若点O是△ABC三边垂直平分线的交点,则有()A.OA=OB≠OC B.OB=OC≠OA C.OC=OA≠OB D.OA=OB=OC【考点】KG:线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质判断即可.【解答】解:∵点O是△ABC三边垂直平分线的交点,∴OA=OB,OA=OC,∴OA=OB=OC,故选:D.9.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°【考点】K7:三角形内角和定理;K8:三角形的外角性质;PB:翻折变换(折叠问题).【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选:D.10.如图,把两个一样大的含30度的直角三角板,按如图方式拼在一起,其中等腰三角形有()A.1个B.2个C.3个D.4个【考点】KI:等腰三角形的判定.【分析】由于图形是由两个一样大的含30°角的直角三角板按如图的方式拼在一起,故有AB=AE,AD=AC,∠B=∠E=30°,∠ACE=∠ADB=60°,则∠DAE=∠CAB=30°,所以得到等腰三角形△ABE,△ACD,△ACB,△ADE.【解答】解:根据题意△ABE,△ACD都是等腰三角形,又由已知∠ACE=∠ADB=60°,∴∠DAE=∠CAB=30°,已知∠B=∠E=30°,∴又得等腰三角形:△ACB,△ADE,所以等腰三角形4个.故选:D.11.已知两个分式:A=﹣,B=,其中x≠3且x≠0,则A与B的关系是()A.相等B.互为倒数C.互为相反数 D.不能确定【考点】6B:分式的加减法.【分析】将两个分式化简即可判断.【解答】解:A===B故选(A)12.如图,用尺规作图“过点C作CN∥OA”的实质就是作∠DOM=∠NCE,其作图依据是()A.SAS B.SSS C.ASA D.AAS【考点】N3:作图—复杂作图;KB:全等三角形的判定.【分析】直接利用基本作图方法结合全等三角形的判定方法得出答案.【解答】解:用尺规作图“过点C作CN∥OA”的实质就是作∠DOM=∠NCE,其作图依据是,在△DOM和△NCE中,,∴△DOM≌△NCE(SSS),∴∠DOM=∠NCE,∴CN∥OA.故选:B.二、填空题(本大题共8小题,每小题3分,共计24分)13.已知=,则的值为﹣.【考点】S1:比例的性质.【分析】根据两内项之积等于两外项之积可得x=3y,然后代入比例式进行计算即可得解.【解答】解:∵=,∴x=3y,∴==﹣.故答案为:﹣.14.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是(﹣2,0).【考点】KA:全等三角形的性质;D5:坐标与图形性质.【分析】根据全等三角形对应边相等可得OD=OB,然后写出点D的坐标即可.【解答】解:∵△AOB≌△COD,∴OD=OB,∴点D的坐标是(﹣2,0).故答案为:(﹣2,0).15.分式,,﹣的最简公分母是36a4b2.【考点】69:最简公分母.【分析】找出系数的最小公倍数,字母的最高次幂,即可得出答案.【解答】解:分式,,﹣的最简公分母是36a4b2,故答案为36a4b2.16.已知线段a,b,c,d成比例线段,且a=4,b=2,c=2,则d的长为 1 .【考点】S2:比例线段.【分析】根据四条线段成比例,列出比例式,再把a=4,b=2,c=2,代入计算即可.【解答】解:∵线段a、b、c、d是成比例线段,∴=,∵a=4,b=2,c=2,∴=,∴d=1.故答案为:1.17.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你再补充一个条件,使△ABC≌△DEF,你补充的条件是FD=AC(答案不唯一).【考点】KB:全等三角形的判定.【分析】已知△ABC与△DEF中有一组边与一组角相等,根据全等三角形的判定可知,只需要添加一组边或一组角即可全等.【解答】解:添加FD=AC,∵BF=EC,∴BF﹣CF=EC﹣CF∴BC=EF在△ABC与△DEF中,∴△ABC≌△DEF(SAS)故答案为:FD=AC(答案不唯一)18.已知点A(a﹣1,5)和点B(2,b﹣1)关于x轴成轴对称,则(a+b)2016= 1 .【考点】P5:关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:∵点A(a﹣1,5)和点B(2,b﹣1)关于x轴成轴对称,∴a﹣1=2,b﹣1=﹣5,解得a=3,b=﹣4,所以,(a+b)2016=(3﹣4)2016=1.故答案为:1.19.若x:y=1:3,且2y=3z,则的值是﹣5 .【考点】64:分式的值.【分析】用含y的代数式表示x、z,代入分式,计算即可.【解答】解:∵x:y=1:3,2y=3z,∴x=y,z=y,∴==﹣5,故答案为:﹣5.20.如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为7.5 .【考点】KF:角平分线的性质.【分析】如图,过点D作DE⊥BC于点E.利用角平分的性质得到DE=AD=3,然后由三角形的面积公式来求△BCD的面积.【解答】解:如图,过点D作DE⊥BC于点E.∵∠A=90°,∴AD⊥AB.∴AD=DE=3.又∵BC=5,=BC•DE=×5×3=7.5.∴S△BCD故答案为:7.5.三、解答题(本大题满分60分)21.作图题小明不小心在一个三角形上撒一片墨水,请用尺规帮小明重新画一个三角形使它与原来的三角形完全相同.(保留作图痕迹,不写作法)【考点】N4:作图—应用与设计作图;KE:全等三角形的应用.【分析】先画出线段BA,然后从B,A两点,以线段BA为一边作∠A=∠E,∠F=∠B,两角另一边的交点就是就是第三点的位置,顺次连接即可.【解答】解:按尺规作图的要求,正确作出△ABC的图形:22.已知﹣=4,求的值.【考点】6D:分式的化简求值.【分析】先根据﹣=4求出ab与a﹣b之间的关系,再代入原式进行计算即可.【解答】解:∵﹣=4,∴=4,即a﹣b=﹣4ab,∴原式====6.23.如图所示,△DEF是等边三角形,且∠1=∠2=∠3,试问:△ABC是等边三角形吗?请说明理由.【考点】KM:等边三角形的判定与性质.【分析】由△DEF是等边三角形,得到∠DEF=60°,由邻补角的定义得到∠BEC=120°,得到∠BCE+∠2=120°,推出∠ACB=60°,于是得到结论.【解答】解:△ABC是等边三角形,理由:∵△DEF是等边三角形,∴∠DEF=60°,∴∠BEC=120°,∴∠BCE+∠2=120°,∵∠2=∠3,∴∠BCE+∠3=60°,∴∠ACB=60°,同理∠ABC=∠BAC=60°,∴△ABC是等边三角形.24.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.25.如图,在△ABC中,BD=CD,∠1=∠2,小颖说:“AD⊥BC”,你认为她说的对吗?说明你的理由.【考点】KD:全等三角形的判定与性质.【分析】由BD=DC,可得∠DBC=∠DCB,点D在BC的垂直平分线,继而可得AB=BC,则可证得AD是BC的垂直平分线,即可得AD⊥BC.【解答】解:小颖说的对,理由如下:∵BD=DC,∴∠DBC=∠DCB,点D在BC的垂直平分线,∵∠1=∠2,∴∠ABC=∠ACB,∴AB=AC,∴点A在BC的垂直平分线,∴AD是BC的垂直平分线,即AD⊥BC.26.计算:(1)÷(2)÷(﹣x﹣2)(3)(4)(1﹣)÷.【考点】6C:分式的混合运算.【分析】根据因式分解和分式的基本性质即可进行化简运算.【解答】解:(1)原式=•﹣×=﹣==(2)原式=÷=﹣×=﹣(3)原式=﹣==(4)原式=÷=×a(a﹣1)=﹣a27.已知△ABC的两条高AD,BE相交于点H,且AD=BD,试问:(1)∠DBH与∠DAC相等吗?说明理由.(2)BH与AC相等吗?说明理由.【考点】KD:全等三角形的判定与性质.【分析】(1)相等.根据同角的余角相等即可证明.(2)相等.只要证明△BDH≌△ADC即可.【解答】解:(1)相等.理由如下:∵AD、BE是△ABC的高,∴∠ADB=∠AEB=90°,∴∠DBH+∠C=90°,∠DAC+∠C=90°,∠DBH=∠DAC.(2)相等.理由如下:在△BDH和△ADC中,,∴△BDH≌△ADC,∴BH=AC.人教版八年级上学期期中考试数学试卷(二)一、选择题(每小题3分,共24分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.123.点P(4,5)关于x轴对称点的坐标是()A.(﹣4,﹣5)B.(﹣4,5)C.(4,﹣5)D.(5,4)4.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等5.三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形 B.直角三角形 C.锐角三角形 D.等腰三角形6.如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180°D.140°7.如图,O是△ABC的∠ABC,∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若△ODE的周长为10厘米,那么BC的长为()A.8cm B.9cm C.10cm D.11cm8.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:①DF=DN;③AE=CN;③△DMN是等腰三角形;④∠BMD=45°,其中正确的结论个数是()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共21分)9.“三角形任意两边之和大于第三边”,得到这个结论的理由是.10.若正n边形的每个内角都等于150°,则n= ,其内角和为.11.如图,AD=AB,∠C=∠E,∠CDE=55°,则∠ABE= .12.如图△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.14.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM 的周长最短为cm.15.在平面直角坐标系中,O为坐标原点,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数为.三、解答题:(本大题共8个小题,满分75分)16.证明三角形内角和定理:三角形的三个内角的和等于180°.17.如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.19.C、B、E三点在一直线上,AC⊥CB,DE⊥BE,∠ABD=90°,AB=BD,试证明AC+DE=CE.20.如图,三角形ABC中,AB=AC=2,∠B=15°,求AB边上的高.21.如图,在三角形ABC中,AD为中线,AB=4,AC=2,AD为整数,求AD的长.22.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0),C(﹣1,0).(1)将△ABC向右平移5个单位,再向下平移4个单位得△A1B1C1,图中画出△A 1B1C1,平移后点A的对应点A1的坐标是.(2)将△ABC沿x轴翻折△A2BC,图中画出△A2BC,翻折后点A对应点A2坐标是.(3)将△ABC向左平移2个单位,则△ABC扫过的面积为.23.如图①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD和CE相交于点F,若△ABC不动,将△ADE绕点A任意旋转一个角度.(1)求证:△BAD≌△CAE.(2)如图①,若∠BAC=∠DAE=90°,判断线段BD与CE的关系,并说明理由;(3)如图②,若∠BAC=∠DAE=60°,求∠BFC的度数;(4)如图③,若∠BAC=∠DAE=α,直接写出∠BFC的度数(不需说明理由)参考答案与试题解析一、选择题(每小题3分,共24分)1.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各个选项进行判断即可.【解答】解:A、是轴对称图形,A不合题意;B、不是轴对称图形,B符合题意;C、是轴对称图形,C不合题意;D、是轴对称图形,D不合题意;故选:B.2.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【考点】K6:三角形三边关系.【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选:B.3.点P(4,5)关于x轴对称点的坐标是()A.(﹣4,﹣5)B.(﹣4,5)C.(4,﹣5)D.(5,4)【考点】P5:关于x轴、y轴对称的点的坐标.【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:点P(4,5)关于x轴对称点的坐标是:(4,﹣5).故选:C.4.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等【考点】KB:全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理AAS,即能推出两三角形全等,故本选项错误;B、∵△ABC和△A′B′C′是等边三角形,∴AB=BC=AC,A′B′=B′C′=A′C′,∵AB=A′B′,∴AC=A′C′,BC=B′C′,即符合全等三角形的判定定理SSS,即能推出两三角形全等,故本选项错误;C、不符合全等三角形的判定定理,即不能推出两三角形全等,故本选项正确;D、如上图,∵AD、A′D′是三角形的中线,BC=B′C′,∴BD=B′D′,在△ABD和△A′B′D′中,,∴△ABD≌△A′B′D′(SSS),∴∠B=∠B′,在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),故本选项错误;故选C.5.三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形 B.直角三角形 C.锐角三角形 D.等腰三角形【考点】K7:三角形内角和定理.【分析】三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案.【解答】解:设三角形的三个角分别为:a°、b°、c°,则由题意得:,解得:a=90,故这个三角形是直角三角形.故选:B.6.如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180°D.140°【考点】K7:三角形内角和定理;L3:多边形内角与外角.【分析】先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.【解答】解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=70°+180°=250°.故选B.7.如图,O是△ABC的∠ABC,∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若△ODE的周长为10厘米,那么BC的长为()A.8cm B.9cm C.10cm D.11cm【考点】KJ:等腰三角形的判定与性质.【分析】根据角平分线的定义以及平行线的性质,可以证得:∠OBD=∠BOD,则从而求解.依据等角对等边可以证得OD=BD,同理,OE=EC,即可证得BC=C△ODE【解答】解:∵BO是∠ACB的平分线,∴∠ABO=∠OBD,∵OD∥AB,∴∠ABO=∠BOD,∴∠OBD=∠BOD,∴OD=BD,同理,OE=EC,=10cm.BC=BD+DE+EC=OD+DE+OE=C△ODE故选C.8.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:①DF=DN;③AE=CN;③△DMN是等腰三角形;④∠BMD=45°,其中正确的结论个数是()A.1个B.2个C.3个D.4个【考点】KD:全等三角形的判定与性质;KF:角平分线的性质;KI:等腰三角形的判定;KW:等腰直角三角形;M6:圆内接四边形的性质.【分析】求出BD=AD,∠DBF=∠DAN,∠BDF=∠ADN,证△DFB≌△DAN,即可判断①,证△ABF≌△CAN,推出CN=AF=AE,即可判断②;根据A、B、D、M四点共圆求出∠ADM=22.5°,即可判断④,根据三角形外角性质求出∠DNM,求出∠MDN=∠DNM,即可判断③.【解答】解:∵∠BAC=90°,AC=AB,AD⊥BC,∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,∴∠BAD=45°=∠CAD,∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC=22.5°,∴∠BFD=∠AEB=90°﹣22.5°=67.5°,∴∠AFE=∠BFD=∠AEB=67.5°,∴AF=AE,∵M为EF的中点,∴AM⊥BE,∴∠AMF=∠AME=90°,∴∠DAN=90°﹣67.5°=22.5°=∠MBN,在△FBD和△NAD中∴△FBD≌△NAD,∴DF=DN,∴①正确;在△AFB和△△CNA中∴△AFB≌△CAN,∴AF=CN,∵AF=AE,∴AE=CN,∴②正确;∵∠ADB=∠AMB=90°,∴A、B、D、M四点共圆,∴∠ABM=∠ADM=22.5°,∴∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°,∴④正确;∵∠DNA=∠C+∠CAN=45°+22.5°=67.5°,∴∠MDN=180°﹣45°﹣67.5°=67.5°=∠DNM,∴DM=MN,∴△DMN是等腰三角形,∴③正确;即正确的有4个,故选D.二、填空题(每小题3分,共21分)9.“三角形任意两边之和大于第三边”,得到这个结论的理由是两点之间线段最短.【考点】K6:三角形三边关系.【分析】三角形三边关系定理:三角形两边之和大于第三边,可以运用两点之间线段最短的性质进行判断.【解答】解:“三角形任意两边之和大于第三边”,得到这个结论的理由是:两点之间线段最短.故答案为:两点之间线段最短.10.若正n边形的每个内角都等于150°,则n= 12 ,其内角和为1800°.【考点】L3:多边形内角与外角.【分析】先根据多边形的内角和定理求出n,再根据多边形的内角和求出多边形的内角和即可.【解答】解:∵正n边形的每个内角都等于150°,∴=150°,解得,n=12,其内角和为(12﹣2)×180°=1800°.故答案为:12;1800°.11.如图,AD=AB,∠C=∠E,∠CDE=55°,则∠ABE= 125°.【考点】KD:全等三角形的判定与性质.【分析】在△ADC和△ABE中,由∠C=∠E,∠A=∠A和AD=AB证明△ADC≌△ABE,得到∠ADC=∠ABE,由∠CDE=55°,得到∠ADC=125°,即可求出∠ABE的度数.【解答】解:∵在△ADC和△ABE中,,∴△ADC≌△ABE(AAS),∴∠ADC=∠ABE,∵∠CDE=55°,∴∠ADC=125°,∴∠ABE=125°,故答案为125°.12.如图△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是5 .【考点】KF:角平分线的性质;KQ:勾股定理.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,再利用三角形的面积公式列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=2,∴△ABD的面积=AB•DE=×5×2=5.故答案为:5.13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是50°.【考点】KG:线段垂直平分线的性质;KH:等腰三角形的性质.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.14.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM 的周长最短为8 cm.【考点】PA:轴对称﹣最短路线问题;KG:线段垂直平分线的性质;KH:等腰三角形的性质.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=12,解得AD=6cm,∴S△ABC∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8cm.故答案为:8.15.在平面直角坐标系中,O为坐标原点,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数为 4 .【考点】KI:等腰三角形的判定;D5:坐标与图形性质.【分析】本题应该分情况讨论.以OA为腰或底分别讨论.当A是顶角顶点时,P 是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有2个;P是OA的中垂线与x轴的交点,有1个,共有4个.【解答】解:(1)若AO作为腰时,有两种情况,当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有2个;(2)若OA是底边时,P是OA的中垂线与x轴的交点,有1个.以上4个交点没有重合的.故符合条件的点有4个.故填:4.三、解答题:(本大题共8个小题,满分75分)16.证明三角形内角和定理:三角形的三个内角的和等于180°.【考点】K7:三角形内角和定理.【分析】先写出已知、求证,再画图,然后证明.过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.【解答】已知:△ABC,求证:∠BAC+∠B+∠C=180°,证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°.即知三角形内角和等于180°.17.如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.【考点】KD:全等三角形的判定与性质.【分析】易证BC=EF,即可证明△ABC≌△DEF,可得∠A=∠D.即可解题.【解答】证明:∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠A=∠D.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.【考点】K7:三角形内角和定理.【分析】根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.∴∠C=∠ABC=2∠A=72°.∵BD⊥AC,∴∠DBC=90°﹣∠C=18°.19.C、B、E三点在一直线上,AC⊥CB,DE⊥BE,∠ABD=90°,AB=BD,试证明AC+DE=CE.【考点】KD:全等三角形的判定与性质.【分析】可证明△ABC≌△DBE,得到AC=BE DE=BC,即可证明AC+DE=CE.【解答】证明:∵∠ABD=90°,AC⊥CB,DE⊥BE,∴∠ABC+∠DBE=∠ABC+∠A,∴∠A=∠DBE;在△ABC与△DBE中,,∴△ABC≌△DBE(AAS),∴AC=BE,BC=DE,∴AC+DE=CE.20.如图,三角形ABC中,AB=AC=2,∠B=15°,求AB边上的高.【考点】KO:含30度角的直角三角形;KH:等腰三角形的性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CAD的度数,然后根据30°角所对的直角边等于斜边的一半求解即可.【解答】解:过点C作BA的垂线,交BA的延长线于点D,解:∵∠B=∠ACB=15°,∴∠CAD=∠B+∠A CB=15°+15°=30°,∵AC=4cm,CD是AB边上的高,∴CD=AC=×2=1.∴AB边上的高是1.21.如图,在三角形ABC中,AD为中线,AB=4,AC=2,AD为整数,求AD的长.【考点】KD:全等三角形的判定与性质;K6:三角形三边关系.【分析】延长AD到E,使AD=DE,连接BE,证△ADC≌△EDB,推出AC=BE=2,在△ABE中,根据三角形三边关系定理得出AB﹣BE<AE<AB+BE,代入求出即可.【解答】解:延长AD到E,使AD=DE,连接BE,∵AD是BC边上的中线,∴BD=CD,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=BE=2,在△ABE中,AB﹣BE<AE<AB+BE,∴4﹣2<2AD<4+2,∴1<AD<3,∵AD是整数,∴AD=2,22.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0),C(﹣1,0).(1)将△ABC向右平移5个单位,再向下平移4个单位得△A1B1C1,图中画出△A 1B1C1,平移后点A的对应点A1的坐标是(3,﹣1).(2)将△ABC沿x轴翻折△A2BC,图中画出△A2BC,翻折后点A对应点A2坐标是(﹣2,﹣3).(3)将△ABC向左平移2个单位,则△ABC扫过的面积为13.5 .【考点】P7:作图﹣轴对称变换;Q4:作图﹣平移变换.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用关于x轴对称点的性质进而得出对应点位置;(3)利用平移的性质可得△ABC扫过的面积为△A′B′C′+平行四边形A′C′CA的面积.【解答】解:(1)如图所示:△A1B1C1,即为所求,平移后点A的对应点A1的坐标是:(3,﹣1);故答案为:(3,﹣1);(2)如图所示:△A2BC,即为所求,翻折后点A对应点A2坐标是:(﹣2,﹣3);故答案为:(﹣2,﹣3);(3)将△ABC向左平移2个单位,则△ABC扫过的面积为:S△A′B′C′+S平行四边形A′C′CA=×3×5+2×3=13.5.故答案为:13.5.23.如图①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD和CE相交于点F,若△ABC不动,将△ADE绕点A任意旋转一个角度.(1)求证:△BAD≌△CAE.(2)如图①,若∠BAC=∠DAE=90°,判断线段BD与CE的关系,并说明理由;(3)如图②,若∠BAC=∠DAE=60°,求∠BFC的度数;(4)如图③,若∠BAC=∠DAE=α,直接写出∠BFC的度数(不需说明理由)【考点】KY:三角形综合题.【分析】(1)由等边三角形的性质得出AB=AC,AD=AE,∠BAC=∠EAD,从而得出∠BAD=∠CAE,即可得出△BAD≌△CAE.(2)判定BD与CE的关系,可以根据角的大小来判定.由∠BAC=∠DAE可得∠BAD=∠CAE,进而得△BAD≌△CAE,所以∠CBF+∠BCF=∠ABC+∠ACB.再由∠BAC=。
A .B .7.已知一个长方形的长为A .30B .AC BD =A .410.如图,在F ,交AC 的延长线于点A .①②③B .①②④二、填空题(每小题3分,共11.写出一个大于且小于12.若,则ABC 3-2340m n +-=4⨯m20.探究a如图①,边长为的大正方形中有一个边长为②___________,(用含,的等式表示)应用请应用这个公式完成下列各题:(1)已知,,则的值为___________.(2)计算:.拓展(3)计算:.21.如图,在等腰中,,点在线段上运动(不与、重合),连接,作,交线段于点.(1)若,证明:;(2)在点的运动过程中,的形状可以是等腰三角形吗?若可以,请直接写出的度数;若不可以,请说明理由.22.在学习完全平方公式:(a ±b )2=a 2±2ab +b 2后,我们对公式的运用进一步探讨.(1)若ab =30,a +b =10,则a 2+b 2的值为________.(2)“若y 满足(40﹣y )(y ﹣20)=50,求(40﹣y )2+(y ﹣20)2的值”.阅读以下解法,并解决相应问题.解:设40﹣y =a ,y ﹣20=b则a +b =(40﹣y )+(y ﹣20)=20ab =(40﹣y )(y ﹣20)=50a b 22412m n =+24m n +=2m n -2202220232021-⨯222222221009998974321-+-+⋯+-+-ABC ∆36B C ∠=∠=︒D BC D B C AD 36ADE ∠=︒DE AC E AB CD =ABD DCE ∆≅∆D ADE ∆BDA ∠这样就可以利用(1)的方法进行求值了.若x 满足(40﹣x )(x ﹣20)=﹣10,求(40﹣x )2+(x ﹣20)2的值.(3)若x 满足(30+x )(20+x )=10,求(30+x )2+(20+x )2的值.23.八年级(1)班同学上数学活动课,利用角尺平分一个角(如图).设计了如下方案:(Ⅰ)∠AOB 是一个任意角,将角尺的直角顶点P 介于射线OA,OB 之间,移动角尺使角尺两边相同的刻度与M,N 重合,即PM=PN,过角尺顶点P 的射线OP 就是∠AOB 的平分线.(Ⅱ)∠AOB 是一个任意角,在边OA,OB 上分别取OM=ON,将角尺的直角顶点P 介于射线OA,OB 之间,移动角尺使角尺两边相同的刻度与M,N 重合,即PM=PN,过角尺顶点P 的射线OP 就是∠AOB 的平分线.(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由.(2)在方案(Ⅰ)PM=PN 的情况下,继续移动角尺,同时使PM ⊥OA,PN ⊥OB.此方案是否可行?请说明理由.答案与解析1.B 【分析】根据平方根的定义:如果一个数x 的平方等于a ,那么这个数x 叫做a 的平方根,据此判断即可.【详解】解:∵,∴的平方根是:,故选:B .2(9)81±=819±A不符合题意,C 选项错误;D 选项,若两个三角形全等,则对应边所对的角是对应角,故原命题正确,是真命题,符合题意,D 选项正确.故选:D .5.A【分析】先用多项式乘以多项式的法则展开,然后合并同类项,不含x 的一次项,就让x 的一次项的系数等于0.【详解】解:(3x +2)(3x +a )=9x 2+3ax +6x +2a=9x 2+(3a +6)x +2a ,∵不含x 的一次项,∴3a +6=0,∴a =﹣2,故选:A .【点睛】本题主要考查了多项式乘多项式,熟练掌握多项式乘多项式的乘积中不含某一项,就是该项的系数等于0是解题的关键.6.A【分析】根据全等三角形的判定方法逐项判断即得答案.【详解】解:,,,条件为边边角,不能证明,故A 符合题意;,,,条件为边角边,能证明,故B 不符合题意;,,,条件为角角边,能证明,故C 不符合题意;,,,条件为边角边,能证明,故D 不符合题意,故选:A .【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:.注意:不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. ABC BAD ∠=∠AB BA =AC BD =∴ABC BAD ≌ ABC BAD ∠=∠AB BA =CAB DBA ∠=∠∴ABC BAD ≌ ABC BAD ∠=∠AB BA =C D ∠=∠ABC BAD ≌ ABC BAD ∠=∠AB BA =BC AD =ABC BAD ≌SSS SAS ASA AAS HL 、、、、AAA SSA 、7.B【分析】由长方形的周长及面积可得出,,代入中即可求出结论.【详解】解:根据题意得:,,∴.故选:B .【点睛】本题考查了完全平方公式的几何背景、长方形的周长以及长方形的面积,利用长方形的周长及面积公式找出,是解题的关键.8.B【分析】先证明AD =BD ,再证明∠C =∠BFD ,从而利用AAS 证明△BDF ≌△ADC ,利用全等三角形对应边相等就可得到答案【详解】解:∵AD ⊥BC ,∴∠ADB =90°,∵∠ABC =45°,∴∠ABD =∠DAB ,∴BD =AD ,∵∠CAD +∠AFE =90°,∠CAD +∠C =90°,∠AFE =∠BFD ,∴∠AFE =∠C ,∵∠AFE =∠BFD∴∠C =∠BFD在△BDF 和△ADC 中,,∴△BDF ≌△ADC (AAS ),∴DF =CD =4,AF =6-4=2故选:B .【点睛】本题考查全等三角形的判定及全等三角形对应边相等的性质,解题关键在于正确寻6ab =6a b +=()2222a b a b ab +=+-6ab =6a b +=()222224a b a b ab +=+-=6ab =6a b +=C BFD AD BDBDF ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩故答案为:;(2);(3).【点睛】本题考查了平方差公式与几何图形,根据平方差公式进行计算,掌握平方差公式是解题的关键.21.(1)见解析;(2)或【分析】(1)由条件可得∠EDC=∠DAB ,∠B=∠C ,DC=AB ,根据ASA 即可证明结论;(2)若△ADE 是等腰三角形,分为三种情况:①当AD=AE 时,∠ADE=∠AED=36°,根据∠AED>∠C ,得出此时不符合;②当DA=DE 时,求出∠DAE=∠DEA=72°,求出∠BAC 的度数,根据三角形的内角和定理求出∠BAD ,根据三角形的内角和定理求出∠BDA 即可;③当EA=ED 时,求出∠DAC ,求出∠BAD 的度数,根据三角形的内角和定理求出∠BDA 的度数.【详解】解:(1)证明:∵,,∴,,∵,∴.在和中,,32201920202018-⨯()()220192019120191=-+⨯-()22201920191=--22201920191=-+1=222222221009998974321-+-+⋯+-+-()()()()()()()()10099100999897989743432121=+⨯-++⨯-+++⨯-++⨯- 1009998974321=++++⋯++++5050=80︒116︒180EDC ADE ADB ∠+∠+∠=︒180ABD BAD BDA ∠+∠+∠=︒180BAD ABD BDA ∠=︒-∠-∠180CDE ADE BDA ∠=︒-∠-∠ABD ADE ∠=∠BAD CDE ∠=∠ABD ∆DCE ∆BDA CDE AB CDB C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴(40-x )2+(x -20)2=a 2+b 2=(a +b )2-2ab=202-2×(-10)=420.(3)设30+x =a ,20+x =b ,则 (30+x )(20+x )=ab =10,∵a -b =(30+x )-(20+x )=10,∴(30+x )2+(20+x )2=a 2+b 2=(a -b )2+2ab=102+2×10=120.【点睛】本题考查了完全平方公式,涉及到整体思想,解决本题的关键是熟记完全平方公式,进行转化应用.23.(1)方案(Ⅰ)不可行.缺少证明三角形全等的条件;当∠AOB 是直角时,此方案可行.【分析】(1)方案(Ⅰ)中判定并不能判断就是的角平分线,关键是缺少的条件,只有“边边”的条件;(2)可行.此时和都是直角三角形,可以利用证明它们全等,然后利用全等三角形的性质即可证明为的角平分线.【详解】(1)方案(Ⅰ)不可行.缺少证明三角形全等的条件.∵只有OP=OP,PM=PN 不能判断△OPM ≌△OPN;∴就不能判定OP 就是∠AOB 的平分线.方案(Ⅱ)可行.证明:在△OPM 和△OPN 中,∴△OPM ≌△OPN(SSS),∴∠AOP=∠BOP.(2)当∠AOB 是直角时,此方案可行.∵PM ⊥OA,PN ⊥OB,PM PN =P AOB ∠OPM OPN ≅ OPM OPN HL OP AOB ∠,,.OM ON PM PN OP OP =⎧⎪=⎨⎪=⎩∴∠OMP=∠ONP=90°.∵∠MPN=90°,∴∠AOB=360°―∠OMP―∠ONP―∠MPN=90°.∵PM⊥OA,PN⊥OB,且PM=PN,∴OP为∠AOB的平分线(到角两边距离相等的点在这个角的平分线上).当∠AOB不为直角时,此方案不可行.【点睛】此题主要考查了全等三角形的判定与性质,是一个开放性试题,可以提高学生解决实际的能力.。
八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)下列说法中错误的是()A.一个三角形中至少有一个角不小于60°B.直角三角形只有一条高C.三角形的中线不可能在三角形外部D.三角形的中线把三角形分成面积相等的两部分2.(3分)下列说法,正确的有()①七边形有14条对角线②外角和大于内角和的多边形只有三角形③若一个多边形的内角和与外角和的比是4:1,则它是九边形.A.0个 B.1个 C.2个 D.3个3.(3分)如图,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形有()A.1对 B.2对 C.3对 D.4对4.(3分)如图,AB,CD表示两根长度相等的铁条,若O是AB,CD的中点,经测量AC=15cm,则容器的内径长为()A.12cm B.13cm C.14cm D.15cm5.(3分)请你观察下面的四个图形,它们体现了中华民族的传统文化.对称现象无处不在,其中可以看作是轴对称图形的有()A.4个 B.3个 C.2个 D.1个6.(3分)如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.连接ED并延长和AB交于点F,若EF=12,则BD的长度是()A.4 B.6 C.8 D.107.(3分)如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它的三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处8.(3分)如图,△ABC和△AB′C′关于直线l对称,下列结论:(1)∠ABC≌△AB′C′;(2)∠BAC′=∠B′AC;(3)l垂直平分CC′;(4)直线BC和B′C′的交点不一定在l上.其中正确的有()A.4个 B.3个 C.2个 D.1个9.(3分)如图,∠1、∠2、∠3、∠4满足的关系是()A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4﹣∠3 C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2﹣∠310.(3分)如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A.B.C.D.二、填空(每小题3分,共24分)11.(3分)(a﹣b)2•(b﹣a)5=.12.(3分)一副三角板,如图所示叠放在一起,则图中∠α的度数是.13.(3分)将一副三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是cm2.14.(3分)在△ABC中,∠BCA=90°,∠B=2∠A,CD⊥AB于D,若AB=10cm,则BD=cm.15.(3分)如图,AB=AC,BD=BC,若∠A=30°,则∠ABD的度数为.16.(3分)若一个等腰三角形的一个外角等于70°,则这个等腰三角形的顶角应该为.17.(3分)如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为.18.(3分)如图,AD是△ABC的角平分线,DE,DF分别是△BAD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是(填序号).三、解答题(共66分)19.(12分)如图所示,已知A(0,2),B(3,﹣2),C(4,2),请作出△ABC 关于直线AC对称的图形,并写出点B关于AC的对称点B′的坐标.20.(12分)已知如图,在△ABC中,∠ACB=90°,CE⊥AB于E,D为AB上一点,且AD=AC,AF平分∠CAE交CE于F.求证:FD∥BC.21.(12分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板ADE如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC有怎样的数量关系,并证明你的猜想.22.(8分)已知, +(4a﹣b﹣2)2=0,求代数式(﹣3ab2)2的值.23.(7分)先化简,再求值:3x(2x+1)﹣(2x+3)(x﹣5),其中x=﹣2.24.(15分)已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF;(3)CE与BG的大小关系如何?试证明你的结论.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列说法中错误的是()A.一个三角形中至少有一个角不小于60°B.直角三角形只有一条高C.三角形的中线不可能在三角形外部D.三角形的中线把三角形分成面积相等的两部分【解答】解:A、∵三角形的内角和等于180°,∴一个三角形中至少有一个角不少于60°,故本选项正确;B、直角三角形有三条高,故本选项错误;C、三角形的中线一定在三角形的内部,故本选项正确;D、三角形的中线把三角形的面积平均分成相等的两部分,故本选项正确.故选:B.2.(3分)下列说法,正确的有()①七边形有14条对角线②外角和大于内角和的多边形只有三角形③若一个多边形的内角和与外角和的比是4:1,则它是九边形.A.0个 B.1个 C.2个 D.3个【解答】解:①7边形有=14条对角线,故正确;②外角和大于内角和的多边形只有三角形,故正确;③多边形外角和=360°,设这个多边形是n边形,根据题意得(n﹣2)•180°=360°×4,解得n=10.故错误.故选:C.3.(3分)如图,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形有()A.1对 B.2对 C.3对 D.4对【解答】解:∵AB∥CD,∴∠A=∠D,∵AB=CD,AE=FD,∴△ABE≌△DCF(SAS),∴BE=CF,∠BEA=∠CFD,∴∠BEF=∠CFE,∵EF=FE,∴△BEF≌△CFE(SAS),∴BF=CE,∵AE=DF,∴AE+EF=DF+EF,即AF=DE,∴△ABF≌△CDE(SSS),∴全等三角形共有三对.故选:C.4.(3分)如图,AB,CD表示两根长度相等的铁条,若O是AB,CD的中点,经测量AC=15cm,则容器的内径长为()A.12cm B.13cm C.14cm D.15cm【解答】解:∵O是AB,CD的中点,AB=CD,∴OA=OB=OD=OC,在△AOC和△BOD中,,∴△AOC≌△BOD,∴AC=BD=15cm,故选:D.5.(3分)请你观察下面的四个图形,它们体现了中华民族的传统文化.对称现象无处不在,其中可以看作是轴对称图形的有()A.4个 B.3个 C.2个D.1个【解答】解:第一个图形是轴对称图形,第二个图形是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,故选:A.6.(3分)如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.连接ED并延长和AB交于点F,若EF=12,则BD的长度是()A.4 B.6 C.8 D.10【解答】解:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵BD是中线,∴∠ABD=30°,∵CE=CD,∴∠CDE=∠E=30°,∴∠BFE=90°,∴BE=2BF,∵EF=12,∴BE2=BF2+EF2,即4BF2=BF2+144,解得BF=4,在Rt△BDF中,cos30°=,∴BD=BF÷cos30°=4÷=8.故选:C.7.(3分)如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它的三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处【解答】解:作直线l1、l2、l3所围成的三角形的外角平分线和内角平分线,外角平分线相交于点P1、P2、P3,内角平分线相交于点P4,根据角平分线的性质可得到这4个点到三条公路的距离分别相等.故选D.8.(3分)如图,△ABC和△AB′C′关于直线l对称,下列结论:(1)∠ABC≌△AB′C′;(2)∠BAC′=∠B′AC;(3)l垂直平分CC′;(4)直线BC和B′C′的交点不一定在l上.其中正确的有()A.4个 B.3个 C.2个 D.1个【解答】解:∵△ABC和△AB′C′关于直线L对称,∴(1)△ABC≌△AB′C′,正确;(2)∠B′AC=∠B′AC正确;(3)直线L一定垂直平分线段C C′,故本小题正确;(4)根据对应线段或其延长线的交点在对称轴上可知本小题错误;综上所述,正确的结论有3个.故选:B.9.(3分)如图,∠1、∠2、∠3、∠4满足的关系是()A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4﹣∠3 C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2﹣∠3【解答】解:如图,由三角形外角的性质可得∠1+∠4=∠5,∠2=∠5+∠3,∴∠1+∠4=∠2﹣∠3,故选:D.10.(3分)如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A.B.C.D.【解答】解:按照题意,动手操作一下,可知展开后所得的图形是选项B.故选:B.二、填空(每小题3分,共24分)11.(3分)(a﹣b)2•(b﹣a)5=(b﹣a)7.【解答】解:原式=[﹣(b﹣a)]2•(b﹣a)5=(b﹣a)2•(b﹣a)5=(b﹣a)7故答案为:(b﹣a)712.(3分)一副三角板,如图所示叠放在一起,则图中∠α的度数是75°.【解答】解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75°13.(3分)将一副三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是cm2.【解答】解:∵∠B=30°,∠ACB=90°,AB=14cm,∴AC=7cm.由题意可知BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=7cm.=×7×7=(cm2).故S△ACF故答案为:.14.(3分)在△ABC中,∠BCA=90°,∠B=2∠A,CD⊥AB于D,若AB=10cm,则BD= 2.5cm.【解答】解:在△ABC中,∠C=90°,∠B=2∠A,所以,∠A=30°,∠B=60°,BC=sin∠A×AB=×10=5cm;∵CD⊥AB∴∠B+∠BCD=∠A+∠B=90°即:∠BCD=∠A又∵∠CDB=∠ACB=90°∴△ACB∽△CDB∴=即:DB===2.5cm.15.(3分)如图,AB=AC,BD=BC,若∠A=30°,则∠ABD的度数为45°.【解答】解:∵AB=AC,∴∠C=∠ABC,∵BD=BC,∴∠C=∠CBD,∵∠A=30°,∴∠C=∠ABC=∠CBD=75°,∴∠CBD=30°,∴∠ABD=75°﹣30°=45°.故答案为45.16.(3分)若一个等腰三角形的一个外角等于70°,则这个等腰三角形的顶角应该为110°.【解答】解:等腰三角形一个外角为70°,那相邻的内角为110°三角形内角和为180°,如果这个内角为底角,内角和将超过180°,所以110°只可能是顶角.故答案为:110°.17.(3分)如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为6.【解答】解:∵△BDC是等腰三角形,且∠BDC=120°∴∠BCD=∠DBC=30°∵△ABC是边长为3的等边三角形∴∠ABC=∠BAC=∠BCA=60°∴∠DBA=∠DCA=90°延长AB至F,使BF=CN,连接DF,在Rt△BDF和Rt△CND中,BF=CN,DB=DC∴△BDF≌△CND∴∠BDF=∠CDN,DF=DN∵∠MDN=60°∴∠BDM+∠CDN=60°∴∠BDM+∠BDF=60°,∠FDM=60°=∠MDN,DM为公共边∴△DMN≌△DMF,∴MN=MF∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.18.(3分)如图,AD是△ABC的角平分线,DE,DF分别是△BAD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是②③④(填序号).【解答】解:如果OA=OD,则四边形AEDF是矩形,没有说∠A=90°,不符合题意,故①错误;∵AD是△ABC的角平分线,∴∠EAD=∠FAD,在△AED和△AFD中,∴△AED≌△AFD(AAS),∴AE=AF,DE=DF,∴AE+DF=AF+DE,故④正确;∵在△AEO和△AFO中,,∴△AEO≌△AFO(SAS),∴EO=FO,又∵AE=AF,∴AO是EF的中垂线,∴AD⊥EF,故②正确;∵当∠A=90°时,四边形AEDF的四个角都是直角,∴四边形AEDF是矩形,又∵DE=DF,∴四边形AEDF是正方形,故③正确.综上可得:正确的是:②③④,故答案为:②③④.三、解答题(共66分)19.(12分)如图所示,已知A(0,2),B(3,﹣2),C(4,2),请作出△ABC 关于直线AC对称的图形,并写出点B关于AC的对称点B′的坐标.【解答】解:如图所示:点B′即为所求,∵A(0,2),B(3,﹣2),∴B点到AC的距离为4,则B′点到AC的距离也为4,且两点横坐标相等,∴B′(3,6).20.(12分)已知如图,在△ABC中,∠ACB=90°,CE⊥AB于E,D为AB上一点,且AD=AC,AF平分∠CAE交CE于F.求证:FD∥BC.【解答】解:∵AF平分∠CAE,∴∠CAF=∠DAF在△CAF与△DAF中,∴△CAF≌△DAF(SAS)∴∠ACF=∠ADF∵∠ACB=∠CAE=90°,∴∠ACE+∠CAE=∠B+∠CAE=90°∴∠ACE=∠B,∴∠ADF=∠B∴FD∥BC21.(12分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板ADE如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC有怎样的数量关系,并证明你的猜想.【解答】解:数量关系为:BE=EC,位置关系是:BE⊥EC.证明如下:∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°,∴∠EAD=∠EDA=45°,∴AE=DE,∵∠BAC=90°,∴∠EAB=∠EAD+∠BAC=45°+90°=135°,∠EDC=∠ADC﹣∠EDA=180°﹣45°=135°,∴∠EAB=∠EDC,∵D是AC的中点,∴AD=CD=AC,∵AC=2AB,∴AB=AD=DC,∵在△EAB和△EDC中,∴△EAB≌△EDC(SAS),∴EB=EC,且∠AEB=∠DEC,∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=90°,∴BE⊥EC.22.(8分)已知, +(4a﹣b﹣2)2=0,求代数式(﹣3ab2)2的值.【解答】解:∵+(4a﹣b﹣2)2=0,∴≥0,(4a﹣b﹣2)2≥0,∴,解得,∴(﹣3ab2)2=(﹣3×1×4)2=3623.(7分)先化简,再求值:3x(2x+1)﹣(2x+3)(x﹣5),其中x=﹣2.【解答】解:原式=6x2+3x﹣2x2+10x﹣3x+15=4x2+10x+15,当x=﹣2时,原式=16﹣20+15=11.24.(15分)已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF;(3)CE与BG的大小关系如何?试证明你的结论.【解答】(1)证明:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.在Rt△DFB和Rt△DAC中,∵∴Rt△DFB≌Rt△DAC(ASA).∴BF=AC;(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE.在Rt△BEA和Rt△BEC中,∴Rt△BEA≌Rt△BEC(ASA).∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;(3)证明:∠ABC=45°,CD垂直AB于D,则CD=BD.H为BC中点,则DH⊥BC(等腰三角形“三线合一”)连接CG,则BG=CG,∠GCB=∠GBC=∠ABC=×45°=22.5°,∠EGC=45°.又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE.∵△GEC是直角三角形,∴CE2+GE2=CG2,∵DH垂直平分BC,∴BG=CG,∴CE2+GE2=CG2=BG2;即2CE2=BG2,BG=CE,∴BG>CE.21。
八年级数学上册期中测试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)下列线段长能构成三角形的是()A.3、7、5 B.2、3、5C.5、6、11D.1、2、4 2.(3分)下列图形中不是轴对称图形的是()A.B.C.D.3.(3分)下列图形中,不是运用三角形的稳定性的是()A.房屋顶支撑架B.自行车三脚架C.拉闸门D.木门上钉一根木条4.(3分)一个多边形的内角和是它的外角和的2倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形5.(3分)如图所示,△ABC≌△DEF,DF和AC,FE和CB是对应边.若∠A=100°,∠F=47°,则∠B的度数是()A.33°B.47°C.53°D.100°6.(3分)已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2 B.9:4C.2:3D.4:97.(3分)如图,DE是△ABC中AC边的垂直平分线,若BC=8cm,AB=10cm,则△EBC的周长为()A.16cm B.28cm C.26cm D.18cm8.(3分)如图,将矩形纸片ABCD(图1)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E(如图2);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图3);(3)将纸片收展平,那么∠AFE的度数为()A.60°B.67.5°C.72°D.75°9.(3分)如图,在△ABC中,∠B=∠C,D为BC边上的一点,E点在AC边上,∠ADE=∠AED,若∠BAD=20°,则∠CDE =()A.10°B.15°C.20°D.30°10.(3分)如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题(共6小题,每小题3分,共18分)11.(3分)点P(1,3)关于y轴对称点的坐标为.12.(3分)已知△ABC中的∠B=∠A+10°,∠C=∠B+10°,则∠A =,∠B=,∠C=.13.(3分)小华要从长度分别为5cm,6cm,11cm,16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒形成的三角形的周长为cm.14.(3分)如图,点B在AE上,∠CBE=∠DBE,要使△ABC≌△ABD,还需添加一个条件是(填上适当的一个条件即可)15.(3分)如图,已知:∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC =3,则BE=.16.(3分)在△ABC中,AD是高,∠BAD=60°,∠CAD=20°,AE平分∠BAC,则∠EAD的度数为.参考答案与试题解析一、选择题1.A;2.C;3.C;4.B;5.A;6.A;7.D;8.B;9.A;10.A;二、填空题11.(﹣1,3);12.50°;60°;70°; 13.33; 14.BC=BD;15.1.5;16.20°或40°;三、解答题(共8小题,共72分)17.(8分)如图,点C,E,F,B在同一直线上,点A,D在BC 异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.18.(8分)已知等腰三角形的周长是22,一边长为5,求它的另外两边长.19.(8分)如图,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的北偏东82°方向.求∠C的度数.20.(8分)如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(﹣2,﹣2).(1)请在图中作出△ABC关于直线x=﹣1的轴对称图形△DEF (A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;(2)求四边形ABED的面积.21.(8分)如图,在△ABC中,AD是∠BAC平分线,AD的垂直平分线分别交AB、BC延长线于F、E.求证:(1)∠EAD=∠EDA;(2)DF∥AC;(3)∠EAC=∠B.22.(10分)如图,∠ECF=90°,线段AB的端点分别在CE和CF上,BD平分∠CBA,并与∠CAB的外角平分线AG所在的直线交于一点D,(1)∠D与∠C有怎样的数量关系?(直接写出关系及大小)(2)点A在射线CE上运动,(不与点C重合)时,其它条件不变,(1)中结论还成立吗?说说你的理由.23.(10分)在△ABC中,BC=AC,∠BCA=90°,P为直线AC 上一点,过A作AD⊥BP于D,交直线BC于Q.(1)如图1,当P在线段AC上时,求证:BP=AQ.(2)当P在线段AC的延长线上时,请在图2中画出图形,并求∠CPQ.(3)如图3,当P在线段AC的延长线上时,∠DBA=时,AQ=2BD.24.(12分)如图1,A(m,0),B(0,n),且m,n满足(m ﹣2)2+=0.(1)求S△ABO;(2)点C为y轴负半轴上一点,BD⊥CA交CA的延长线于点D,若∠BAD=∠CAO,求的值;(3)点E为y轴负半轴上一点,OH⊥AE于H,HO,AB的延长线交于点F,G为y轴正半轴上一点,且BG=OE,FG,EA的延长线交于点P,求证:点P的纵坐标是定值.参考答案与试题解析三、解答题(共8小题,共72分)17.(8分)【解答】解:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF,∴AB=CD.18.(8分)【解答】解:若底边为5,设腰长为x,则5+2x=22,解得x=8.5,若腰为5,设底边为xcm,则2×5+x=22,解得x=12,∵5+5<12,∴不合题意.所以等腰三角形另外两边长分别为8.5和8.5.19.(8分)【解答】解:过A沿南向做射线AD交BC于D,由题意∠BAD=57°,∠CAD=15°,∠EBC=82°,∵AD∥BE,∴∠EBA=∠BAD=57°.∴∠ABC=∠EBC﹣∠EBA=25°.△ABC中,∠ABC=25°,∠BAC=72°,∴∠C=180°﹣25°﹣72°=83°.即:∠C的度数为83°.20.(8分)【解答】解:(1)D(﹣4,3);E(﹣5,1);F(0,﹣2);(5分)(2)AD=6,BE=8,∴S四边形ABED=(AD+BE)•2=AD+BE=14.(8分)21.(8分)【解答】证明:(1)∵EF是AD的垂直平分线,∴AE=DE,∴∠EAD=∠EDA;(2)∵EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA,∵AD是∠BAC平分线,∴∠FAD=∠CAD,∴∠FDA=∠CAD,∴DF∥AC;(3)∵∠EAC=∠EAD﹣∠CAD,∠B=∠EDA﹣∠BAD,且∠BAD =∠CAD,∠EAD=∠EDA,∴∠EAC=∠B.22.(10分)【解答】解:(1)∠C=2∠D即:∠D=45°,∵BD平分∠CBA,AG平分∠EAB,∴∠EAB=2∠GAB,∠ABC=2∠DBA,∵∠CAB=180°﹣2∠GAB,∠BAC+∠ABC=90°,即180°﹣2∠GAB+2∠DBA=90°,整理得出∠GAB﹣∠DBA=45°,∴∠D=∠C=45°;(2)当A在射线CE上运动(不与点C重合)时,其它条件不变,(1)中结论还成立,∵∠CAB+∠ABC=∠C=90°,不论A在CE上如何运动,只要不与C点重合,这个关系式都是不变的,整理这个式子:∠CAB=180°﹣2∠GAB,∠ABC=2∠DBA,得:180°﹣2∠GAB+2∠DBA=90°,整理得∠GAB﹣∠DBA=45度,恒定不变,即:∠D=45°的结论不变,∴∠C=2∠D恒成立.23.(10分)【解答】(1)证明:∵∠ACB=∠ADB=90°,∠APD=∠BPC,∴∠DAP=∠CBP,在△ACQ和△BCP中,∴△ACQ≌△BCP(ASA),∴BP=AQ;(2)解:如图2所示:∵∠ACQ=∠BDQ=90°,∠AQC=∠BQD,∴∠CAQ=∠DBQ,在△AQC和△BPC中,∴△AQC≌△BPC(ASA),∴QC=CP,∵∠QCD=90°,∴∠CQP=∠CPQ=45°;(3)解:当∠DBA=22.5°时,AQ=2BD;∵AC=BC,∠ACB=90°,∴∠BAC=45°,∴∠P=22.5°,∴∠DBA=∠P,∴AP=AB,∵AD⊥BP,∴AD=DP,∵∠ACQ=∠ADP=90°,∠PAD=∠QAC,∴∠P=∠Q,在△ACQ和△BCP中,∴△ACQ≌△BCP(ASA),∴BP=AQ,∴此时AQ=BP=2BD.故答案为:22.5°.24.(12分)【解答】解:(1)∵(m﹣2)2+=0.∴m=n=2,∴A(2,0),B(0,2),∴OA=2,OB=2,∴S△AOB=OA×OB=2;(2)如图1,在OC上取一点E,使OE=OA=2,由(1)知,OA=OB=2,∴∠OAB=45°,∴AE=2,∵∠BAD=∠CAO,∴∠BAD=∠CAO=67.5°,∵∠ADB=∠AOC=90°,∴∠ABD=∠ACO=22.5°,∴CE=AE=2,∴OC=OE+CE=2(+1),∴AC2=OA2+OC2=4+4(+1)2=8(2+),tan∠ACO==﹣1,在Rt△ABD中,tan∠ABD=tan22.5°=tan∠ACO==﹣1,∴AD=(﹣1)BD,在Rt△AOB中,OA=OB=2,∴AB=2,根据勾股定理得,AD2+BD2=AB2,∴[(﹣1)BD]2+BD2=8,∴BD2=2(2+),==,∴=;(3)如图2,由(1)知,A(2,0),B(0,2),∴直线AB解析式为y=﹣x+2①,设E(0,a),∴OE=|a|=﹣a,∵BG=OE,∴BG=﹣a,∴OG=2﹣a,∴G(0,2﹣a),∵A(0,2),E(0,a),∴直线AE解析式为y=﹣x+a②,∵OH⊥AE,∴直线OH解析式为y=x③,联立①③得,x=,y=,∴F(,),∵G(0,2﹣a),∴直线FG的解析式为y=x+2﹣a④,联立②④得,x=,y=1,∴P(,1),∴点P的纵坐标是定值,定值为1.。