2007—2011年湖北省荆门市中考数学试题(含解析答案)
- 格式:doc
- 大小:636.00 KB
- 文档页数:10
荆州市2011年初中升学考试数学试题 (满分120分,考试时间120分钟)一、选择题(本题共10小题,每小题只有唯一正确答案,每小题3分,共30分) 1.(2011湖北荆州,1,3分)如有理数21-的倒数是A .-2B .2C .21 D .21-【答案】A 2.(2011湖北荆州,2,3分)下列四个图案中,轴对称图形的个数是A .1B .2C .3D .4第2题图【答案】C3.(2011湖北荆州,3,3分)将代数式142-+x x 化成q p x ++2)(的形式为 A .3)2(2+-x B .4)2(2-+x C .5)2(2-+x D .4)2(2++x 【答案】C 4.(2011湖北荆州,4,3分)如图,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm ,则投影三角尺的对应边长为 A . 8cm B .20cm C .3.2 cm D .10cm【答案】B 5.(2011湖北荆州,5,3分)有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额,某同学知道自己的比赛分数后,要判断自己能否得奖,在下列13名同学成绩的统计量中只需知道一个量,它是 A .众数 B .方差 C .中位数 D .平均数 【答案】C6.(2011湖北荆州,6,3分)对于非零的两个实数a 、b ,规定ab b a 11-=⊗,若1)1(1=+⊗x ,则x 的值为A .23 B .31 C .21 D . 21-【答案】D 7.(2011湖北荆州,7,3分)如图,P 为线段AB 上一点,AD 与BC 交于E ,∠CPD =∠A =∠B ,BC 交PD 于F ,AD 交PC 于G ,则图中相似三角形有 A .1对 B .2对 C .3对 D .4对A第7题图 【答案】C8.(2011湖北荆州,8,3分)在△ABC 中,∠A =120°,AB =4,AC =2,则B sin 的值是A .1475 B .53 C .721 D .1421【答案】D9.(2011湖北荆州,9,3分)关于x 的方程0)1(2)13(2=+++-a x a ax有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,则a 的值是 A .1 B .-1 C .1或-1 D . 2【答案】B 10.(2011湖北荆州,10,3分)图①是一瓷砖的图案,用这种瓷砖铺设地面,图②铺成了一个2×2的近似正方形,其中完整菱形共有5个;若铺成3×3的近似正方形图案③,其中完整菱形有13个;铺成4×4的近似正方形图案④,其中完整的菱形有25个;如此下去,可铺成一个n n ⨯的近似正方形图案.当得到完整的菱形共有181个时,n 的值为A . 7B .8C . 9D .10【答案】D二、填空题(本大题共6小题,每小题4分,共24分)11.(2011湖北荆州,11,4分)已知x A 2=,B 是多项式,在计算A B +时,小马虎同学把A B +看成了A B ÷,结果得x x 212+,则A B += .【答案】x x x 2223++12.(2011湖北荆州,12,4分)如图,⊙O 是△ABC 的外接圆,CD 是直径,∠B =40°,则∠ACD 的度数是 .A第12题图 【答案】50°13.(2011湖北荆州,13,4分)若等式1)23(=-x 成立,则x 的取值范围是 .【答案】0≥x 且12≠x14.(2011湖北荆州,14,4分)如图,长方体的底面边长分别为2cm 和4cm ,高为5cm ,若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为 cm.第14题图【答案】13 15.(2011湖北荆州,15,4分)请将含60°顶角的菱形分割成至少含一个等腰梯形且面积相等的六部分,用实线画出分割后的图形.【答案】答案不唯一,如16.(2011湖北荆州,16,4分)如图,双曲线)0(2 x xy =经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得到△AB 'C ,B '点落在OA 上,则四边形OABC 的面积是.【答案】2三、解答题(共66分)17.(2011湖北荆州,17,6分)(本题满分6分)计算:|322|21121--⎪⎭⎫⎝⎛--【答案】解:原式=0)232(232=---18.(2011湖北荆州,18,6分)(本题满分6分)解不等式组,并把解集在数轴上表示出来.⎪⎩⎪⎨⎧---+≥+-x x x x 8)1(311323【答案】.8)1(311323⎪⎩⎪⎨⎧---+≥+-②①x x x x 由①得:1≤x ; 由②得:2- x所以此不等式组的解集为1,-x2≤在数轴上表示为19.(2011湖北荆州,19,7分)(本题满分7分)如图,P是矩形ABCD下方一点,将△PCD 绕P点顺时针旋转60°后恰好D点与A点重合,得到△PEA,连接EB,问△ABE是什么特殊三角形?请说明理由.【答案】△ABE是等边三角形,理由如下:因为△PEA是将△PCD绕P点顺时针旋转60°后得到的所以△PEA≌△PCD,且AE与DC所夹的锐角为60°所以AE=DC又因为四边形ABCD是矩形所以DC=AB且DC∥AB所以AE=AB且∠EAB=60°所以△ABE是等边三角形.20.(2011湖北荆州,20,8分)(本题满分8分)2011年国家对“酒后驾车”加大了处罚力度,出台了不准酒后驾车的禁令.某记者在一停车场对开车的司机进行了相关的调查,本次调查结果有四种情况:①偶尔喝点酒后开车;②已戒酒或从来不喝酒;③喝酒后不开车或请专业司机代驾;④平时喝酒,但开车当天不喝酒.将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调查了名司机.(2)求图甲中④所在扇形的圆心角,并补全图乙.(3)在本次调查中,记者随机采访其中的一名司机,求他属于第②种情况的概率.(4)请估计开车的10万名司机中,不违反“酒驾”禁令的人数.【答案】(1)200 (2)12636020070=⨯(3)200-2-18-70=110,则他属于第②种情况的概率P =2011200110=(4)设不违反“酒驾”禁令的人数为x 人,则100000200198x =,解得99000=x即不违反“酒驾”禁令的人数为99000人.21.(2011湖北荆州,21,8分)(本题满分8分)某河道上有一个半圆形的拱桥,河两岸筑有拦水堤坝,其半圆形桥洞的横截面如图所示.已知上、下桥的坡面线ME 、NF 与半圆相切,上、下桥斜面的坡度i =1:3.7,桥下水深OP =5米,水面宽度CD =24米.设半圆的圆心为O ,直径AB 在直角顶点M 、N 的连线上,求从M 点上坡、过桥、下坡到N 点的最短路径长.(参考数据:3≈π,7.13≈,32115tan 0+=)【答案】 解:连结OD 、OE 、OF ,由垂径定理知:PD = 1 2 CD =12(m ) 在Rt △OPD 中,131252222=+=+=OPPDOD (m ),∴OE =OD =13m∵tan ∠EMO=i= 1: 3.7 , 32115tan 0+=≈ 1:3.7∴∠EMO =15°由切线性质知∠OEM =90° ∴∠EOM=75° 同理得∠NOF =75° ∴∠EOF =180°-75°×2=30°在Rt △OEM 中,tan15°=EMOE∴EM =3.7×13=48.1(m )又EF 的弧长=30π×13÷180 =6.5(m ) ∴48.1×2+6.5=102.7(m )即从M 点上坡、过桥、再下坡到N 点的最短路径长为102.7米.22.(2011湖北荆州,22,9分)(本题满分9分)如图,等腰梯形ABCD 的底边AD 在x 轴上,顶点C 在y 轴正半轴是,B (4,2),一次函数1-=kx y 的图象平分它的面积,关于x 的函数k m x k m mxy +++-=2)3(2的图象与坐标轴只有两个交点,求m 的值.第22题图【答案】 解:过B 作BE ⊥AD 于E ,连结OB 、CE 交于 点P ,∵P 为矩形OCBE 的对称中心,则过P 点的直线平分矩形OCBE 的面积. ∵P 为OB 的中点,而B (4,2) ∴P 点坐标为(2,1) 在Rt △ODC 与Rt △EAB 中,OC =BE ,AB =CD ∴Rt △ODC ≌Rt △EAB (HL ), ∴S △ODC =S △EBA∴过点(0,-1)与P (2,1)的直线即可平分等腰梯形面积,这条直线为y=kx-1 ∴2k-1=1,∴k=1 又∵k m x k m mxy +++-=2)3(2的图象与坐标轴只有两个交点,故①当m =0时,y =-x+1,其图象与坐标轴有两个交点(0,1),(1,0) ②当m≠0时,函数k m x k m mx y +++-=2)3(2的图象为抛物线,且与y 轴总有一个交点(0,2m+1)若抛物线过原点时,2m+1=0,即m=21-,此时△=(3m+1)2-4m(2m+1)=41>0∴抛物线与x 轴有两个交点且过原点,符合题意.若抛物线不过原点,且与x 轴只有一个交点,也合题意, 此时△′=(3m+1)2-4m(2m+1)=0 解之得:m 1=m 2=-1 综上所述,m 的值为m=0或21-或-1.23.(2011湖北荆州,23,10分)(本题满分10分)2011年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定民农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ(1)分别求出1y 和2y 的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额. 【答案】解:(1)由题意得:①5k=2,k=52∴x y 521=②⎩⎨⎧=+=+2.34164.224b a b a ,解之得:⎪⎪⎩⎪⎪⎨⎧=-=5851b a ,∴x x y 585122+-=(2)设购Ⅱ型设备投资t 万元,购Ⅰ型设备投资(10-t )万元,共获补贴Q 万元 ∴t t y 524)10(521-=-=,t t y 585122+-=529)3(5158515242221+--=+--=+=t t t t y y Q∴当t=3时,Q 有最大值为529,此时10-t=7(万元)即投资7万元购Ⅰ型设备,投资3万元购Ⅱ型设备,共获最大补贴5.8万元.24.(2011湖北荆州,24,12分)(本题满分12分)如图甲,分别以两个彼此相信的正方形OABC 与CDEF 的边OC 、OA 所在直线不x 轴、y 轴建立平面直角坐标系(O 、C 、F 三点在x 轴正半轴上).若⊙P 过A 、B 、E 三点(圆心在x 轴上),抛物线c bx x y ++=241经过A 、C两点,与x 轴的另一交点为G ,M 是FG 的中点,正方形CDEF 的面积为1. (1)求B 点的坐标;(2)求证:ME 是⊙P 的切线;(3)设直线AC 与抛物线对称轴交于N ,Q 点是此对称轴上不与N 点重合的一动点,①求△ACQ 周长的最小值;②若FQ =t ,S S ACQ =∆,直接写出s 与t 之间的函数关系式.图甲 图乙 【答案】解:(1)如图甲,连接PE 、PB ,设PC =n ∵正方形CDEF 面积为1∴CD =CF =1 根据圆和正方形的对称性知OP =PC =n ∴BC =2PC =2n而PB =PE ,PB 2=BC 2+PC 2=4n 2+n 2=5n 2 又PE 2=PF 2+EF 2=(n+1)2+1 ∴5n 2=(n+1)2+1 解得n 1=1,212-=n (舍去)∴BC =OC =2 ∴B 点坐标为(2,2)(2)如图甲,由(1)知A (0,2),C (2,0) ∵A ,C 在抛物线上∴⎪⎩⎪⎨⎧++⨯==c b o c 224122,解之得:⎪⎩⎪⎨⎧=-=223c b ∴抛物线的解析式为223412+-=x x y∴抛物线的对称轴为x=3,即EF 所在直线 ∵C 与G 关于直线x=3对称,∴CF =FG =1 ∴MF =21FG =21在Rt △PEF 与Rt △EMF 中12=EFPF ,12211==FMEF∴FMEF EFPF =,而∠PFE =∠FEM =90°∴△PEF ∽△EMF∴∠EPF =∠FEM∴∠PEM =∠PEF+∠FEM =∠PEF+∠EPF =90°∴ME 与⊙P 相切(3)①如图乙,延长AB 交抛物线于A′,连CA′交对称轴x=3于Q ,连AQ 则有AQ =A′Q ,△ACQ 周长的最小值为(AC+A′C )的长 ∵A 与A′关于直线x=3对称 ∴A (0,2),A′(6,2) ∴A′C =522)26(22=+-,而AC=222222=+∴△ACQ 周长的最小值为2252+ ②当Q 点在F 点上方时,S =t+1 当Q 点在线段FN 上时,S =1-t 当Q 点在N 点下方时,S =t-1.图乙。
湖北省荆门市二O一O年初中毕业生学业考试试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡指定位置.2.选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标好涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效.3.填空题和解答题用0.5毫米的黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.4.考试结束,请将本试题卷和答题卡一并上交.一、选择题(本大题共12小题,每小题只有唯一正确答案,每小题3分,共36分)1sin45°的结果等于( )122.101()(2π--++( )(A)-1 (B)-3 (C)1 (D)03.今年某市约有108000名应届初中毕业生参加中考,按四舍五入保留两位有效数字,108000用科学计数法表示为( )(A)0.10×106 (B)1.08×105 (C)0.11×106 (D)1.1×1054.若a、b为实数,且满足|a-2|=0,则b-a的值为( )(A)2 (B)0 (C)-2 (D)以上都不对5.有一组数据3、5、7、a、4,如果它们的平均数是5,那么这组数据的方差是( ) (A)2 (B)5 (C)6 (D)76.给出以下判断:(1)线段的中点是线段的重心(2)三角形的三条中线交于一点,这一点就是三角形的重心(3)平行四边形的重心是它的两条对角线的交点 (4)三角形的重心是它的中线的一个三等分点 那么以上判断中正确的有( )(A)一个 (B)两个 (C)三个 (D)四个7.在同一直角坐标系中,函数y =kx +1和函数y =k x(k 是常数且k ≠0)的图象只可能是( )8.抛掷一枚质地均匀的硬币,如果每掷一次出现正面与反面的可能性相同,那么连掷三次硬币,出现“一次正面,两次反面”的概率为( ) (A)18(B)14(C)38 (D)129.如图,坐标平面内一点A(2,-1),O 为原点,P 是x 轴上的一个动点,如果以点P 、O 、A 为顶点的三角形是等腰三角形,那么符合条件的动点P 的个数为( ) (A)2 (B)3 (C)4 (D)510.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,P 是直径MN 上一动点,则PA +PB 的最小值为( )(C)1 (D)211.如图是一个包装纸盒的三视图(单位:cm),则制作一个纸盒所需纸板的面积是( )第12题图第11题图第10题图N第9题图(A)75(12 (B)75(1+122(C)75(22 (D)75(2+12212.二次函数y =ax 2+bx +c 的图象如图所示,下列结论错误..的是( ) (A)ab <0 (B)ac <0(C)当x <2时,函数值随x 增大而增大;当x >2时,函数值随x 增大而减小 (D)二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标就是方程ax 2+bx +c =0的根二、填空题(本大题共5小题,每小题3分,共15分)1314.函数y =k(x -1)的图象向左平移一个单位后与反比例函数y =2x的图象的交点为A 、B ,若A 点坐标为(1,2),则B 点的坐标为___▲___.15.如果方程ax 2+2x +1=0有两个不等实根,则实数a 的取值范围是___▲___.16.在⊙O 中直径为4,弦AB =,点C 是圆上不同于A 、B 的点,那么∠ACB 度数为___▲___.17.观察下列计算:111122=-⨯1112323=-⨯1113434=-⨯1114545=-⨯… …从计算结果中找规律,利用规律性计算111111223344520092010++++⨯⨯⨯⨯⨯L =___▲___.三、解答题(本大题共7个小题,满分69分)18.(本题满分8分)已知a =2b =2,试求a b ba-的值.19.(本题满分9分)将三角形纸片ABC(AB >AC)沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展平纸片,如图(1);再次折叠该三角形纸片,使得点A 与点D 重合,折痕为EF ,再次展平后连接DE 、DF ,如图2,证明:四边形AEDF 是菱形.20.(本题满分10分)试确定实数a 的取值范围,使不等式组10,23544(1)33x x a x x a+⎧+>⎪⎨+⎪+>++⎩恰有两个整数解. 21.(本题满分10分)吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康.有消息称,我国准备从2020年元月一日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:根据统计图解答:(1)同学们一共随机调查了多少人? (2)请你把统计图补充完整;(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是多少?假定该社区有1万人,请估计该地区大约有多少人支持“警示戒烟”这种方式.第21题图戒烟戒烟戒烟戒烟15%10%强制戒烟警示戒烟替代品戒烟药物戒烟(1) (2) 第19题图ABDCCDF AE22.(本题满分10分)某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售价每降低1元,平均每天就可以多售出100件(1)假定每件商品降价x 元,商店每天销售这种小商品的利润是y 元,请写出y 与x 间的函数关系式,并注明x 的取值范围.(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入-购进成本)23.(本题满分10分)如图,圆O 的直径为5,在圆O 上位于直径AB 的异侧有定点C 和动点P ,已知BC ∶CA =4∶3,点P 在半圆弧AB 上运动(不与A 、B 重合),过C 作CP 的垂线CD 交PB 的延长线于D 点 (1)求证:AC ·CD =PC ·BC ;(2)当点P 运动到AB 弧中点时,求CD 的长;(3)当点P 运动到什么位置时,△PCD 的面积最大?并求这个最大面积S .24.(本题满分12分)已知:如图一次函数y =12x +1的图象与x 轴交于点A ,与y 轴交于点B ;二次函数y =12x 2+bx +c 的图象与一次函数y =12x +1的图象交于B 、C 两点,与x 轴交于D 、E 两点且D 点坐标为(1,0) (1)求二次函数的解析式; (2)求四边形BDEC 的面积S ;(3)在x 轴上是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出所有的点P ,若不存在,请说明理由.第23题图湖北省荆门市二O 一O 年初中毕业生学业考试试卷 数学参考答案及评分说明说明:除本答案给出的解法外,如有其它正确解法,可按步骤相应给分. 一、选择题(本大题共12小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案B C D C A D B C C B C B二、填空题(本大题共5小题,每小题3分,共15分)第24题图13.0; 14.(-1,-2); 15.a <1且a ≠0;16.60°或120° 17.20092010.三、解答题(本大题共7个小题,满分69分)18.解:∵ a =2b =2,∴a +b =4,a -b =ab =1…………………3分而a b b a -=22()()a b a b a b ab ab+--=…………………………………………………………6分 ∴a b ba-=()()a b a b ab+-=…………………………………………………8分 19.证明:由第一次折叠可知:AD 为∠CAB 的平分线,∴∠1=∠2……………………2分由第二次折叠可知:∠CAB =∠EDF ,从而,∠3=∠4………………………………4分∵AD 是△AED 和△AFD 的公共边,∴△AED ≌△AFD(ASA)………………………6分 ∴AE =AF ,DE =DF又由第二次折叠可知:AE =ED ,AF =DF∴AE =ED =DF =AF …………………………………………………………………………8分故四边形AEDF 是菱形.……………………………………………………………………9分20.解:由123x x ++>0两边同乘以6得3x +2(x +1)>0,解得x >-25………………图1 图24321EAFBDCCDBA3分由x +543a >43(x +1)+a 两边同乘以3得3x +5a +4>4(x +1)+3a ,解得x <2a ……6分∴原不等式组的解为-25<x <2a .又∵原不等式组恰有2个整数解,∴x =0,1.∴1<2a ≤2………………………………9分 ∴12<a ≤1……………………………………………………………………………………10分21.解:设调查的人数为x ,则根据题意: x ·10%=30,∴x =300 ∴一共调查了300人…………………………………………………………………………3分35%40% 戒烟戒烟戒烟戒烟15%10%强制戒烟警示戒烟替代品戒烟药物戒烟(2)由(1)可知,完整的统计图如图所示………………………………………………………6分(3)设该市发支持“强制戒烟”的概率为P ,由(1)可知,P =40%=0.4……………………8分支持“强制戒烟”这种方式的人有10000·35%=3500(人).…………10分 22.(1)解:设降价x 元时利润最大.依题意:y =(13.5-x -2.5)(500+100x)……………2分整理得:y =100(-x 2+6x +55)(0<x ≤1)…………5分(2)由(1)可知,当x =3时y 取最大值,最大值是6400…………7分即降价3元时利润最大,∴销售单价为10.5元时,最大利润6400元.…………………9分答:销售单价为10.5元时利润最大,最大利润为6400元…………10分 23.解:(1)∵AB 为直径,∴∠ACB =90°.又∵PC ⊥CD ,∴∠PCD =90°. 而∠CAB =∠CPD ,∴△ABC ∽△PCD .∴AC BC CPCD=.∴AC ·CD =PC ·BC ;………………………………………………………………………3分(2)当点P 运动到AB 弧中点时,过点B 作BE ⊥PC 于点E . ∵P 是AB 中点,∴∠PCB =45°,CE =BEBC =.又∠CAB =∠CPB ,∴tan ∠CPB =tan ∠CAB =43.∴PE =tan BECPB ∠=3)4从而PC =PE +EC.由(1)得CD =43PC7分(3)当点P 在AB 上运动时,S △PCD =12PC ·CD .由(1)可知,CD =43PC .∴S △PCD =23PC 2.故PC 最大时,S △PCD 取得最大值;而PC 为直径时最大,∴S △PCD 的最大值S =23×52=503.………………………………10分24.解:(1)将B(0,1),D(1,0)的坐标代入y =12x 2+bx +c 得1,10.2c b c =⎧⎪⎨++=⎪⎩得解析式y =12x 2-32x +第23题图1……………………………………………………3分 (2)设C(x 0,y 0),则有00200011,213 1.22y x y xx ⎧=+⎪⎨⎪=-+⎩解得004,3.x y =⎧⎨=⎩∴C(4,3).……………………………………………6分由图可知:S =S △ACE -S △ABD .又由对称轴为x =32可知E(2,0).∴S =12AE ·y 0-12AD ×OB =12×4×3-12×3×1=92 (8)分(3)设符合条件的点P 存在,令P(a ,0):当P 为直角顶点时,如图:过C 作CF ⊥x 轴于F . ∵Rt△BOP ∽Rt△PFC ,∴BO OP PFCF=.即143a a=-.整理得a 2-4a +3=0.解得a =1或a =3 ∴所求的点P 的坐标为(1,0)或(3,0) 综上所述:满足条件的点P共有二个………………………………………………………12分第24题图。
荆门市初中毕业生学业水平及升学考试数 学 试 题 卷本试题卷共6页。
满分120分,考试时间120分钟。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,将准考证 条形码粘贴在答题卡上的指定位置,并认真核对条形码上的姓名、准考证号是否 正确。
2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。
如需 改动,必须先用橡皮擦干净后,再选涂另一个答案标号。
答案写在试题卷上一律无 效。
3.填空题和解答题用0.5毫米黑色签字笔写在答题卡上每题对应的答题区域内。
答案写在试题卷上一律无效。
3.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12小题,每小题只有唯一正确答案,每小题3分,共36分) 1.-6的倒数是A .6B .-6C .61D .-612.小明上网查得H7N9禽流感病毒的直径大约是0.00000008米,用科学记数法表示为A .0.8×107-米 B .8×107-米C .8×108-米D .8×109-米3.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的 俯视图为A. B.C.D.4.下列运算正确的是A .8a ÷2a =4aB .325)(a a a -=--C .523)(a a a =-⋅D .b a 35+机密★启用前人数5.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名 学生参赛成绩统计如图所示. 对于这10名学生的参赛成 绩,下列说法中错误..的是 A .众数是90B .中位数是90C .平均数是90D .极差是156.若反比例函数y =xk的图象过点(-2, 1)则一次函数k kx y -=的图象过 A .第一、二、四象限 B .第一、三、四象限C .第二、三、四象限D .第一、二、三象限7.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四个条件:①AD ∥BC ②AD=BC ③OA=OC ④OB=OD从中任选两个条件,能使四边形ABCD 为平行四边形的选法有 A .3种B .4种C .5种D .6种8.若圆锥的侧面展开图为半圆,则该圆锥的母线l 与底面半径r 的关系是A .r l 2=B .r l 3=C .r l =D .r l 23=9.若关于x 的一元一次不等式组 有解,则m 的取值范围为A .32->mB .m ≤32 C .32>mD .m ≤ 32-10.在平面直角坐标系中,线段OP 的两个端点坐标分别是O (0,0),P (4,3),将线段OP 绕点O 逆时针旋转90°到OP ′位置,则点P ′的坐标为 A .(3,4)B .(-4,3)C .(-3,4)D .(4,-3)11.如图,在半径为1的⊙O 中,∠AOB =45°,则sin C 的值为A .22B .222- C .222+D .42 12.如右图所示,已知等腰梯形ABCD,AD ∥BC ,若动直 线l 垂直于BC ,且向右平移,设扫过的阴影部分的面 积为S ,BP 为x ,则S 关于x 的函数图象大致是02<-m x 2>+m x 45°OCyADl ss二、填空题(本大题共5小题,每小题3分,共15分) 13.分解因式:=-642x .14.若等腰三角形的一个内角为50°,则它的顶角为 .15.如图,在Rt ∆ABC 中,∠ACB =90°,D 是AB 的中点,过D 点作AB 的垂线 交AC 于点E ,BC =6,53sin =A , 则DE = .16.设1x ,2x 是方程020132=--x x 的两实数根,则=-+20132014231x x . 17.若抛物线c bx x y ++=2与x 轴只有一个交点,且过点)(n m A ,,)6(n m B ,+.则=n .三、解答题(本大题共7小题,共69分) 18.(本题满分8分)⑴计算:︒--++-60tan 3)1(8)5(201330π⑵化简求值:⋅+-÷++-2344922a a a a a 31+a ,其中25-=a19.(本题满分9分)如图,在∆ABC 中,AB =AC ,点DBAC ED是BC 的中点,点E 在AD 上. ⑴求证:BE =CE ;⑵若BE 的延长线交AC 于点F ,且BF ⊥AC ,垂足为 F ,∠BAC =45°,原题设其它条件不变. 求证:∆AEF ≌∆BCF .20.(本题满分10分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时: ⑴求三辆车全部同向而行的概率; ⑵求至少有两辆车向左转的概率;⑶由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时 段对车流量作了统计,发现汽车在此十字路口向右转的频率为52,向左转和直行的频 率均为103.目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿 灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向 的绿灯亮的时间做出合理的调整.21.(本题满分10分)A 、B 两市相距150千米,分别从A 、B 处测得国家级风景区中心C 处的方位角如图所示,风景区区域是以C 为圆心,45千米为半径的圆,tan α=1.627, tan β=1.373.为了开发旅游,有关部门设计修建连接AB 两市的高速公路.问连接AB 高速 公路是否穿过风景区,请说明理由.E AFβα北北CA B22.(本题满分10分)为了节约资源,科学指导居民改善居住条件,小王向房管部门提出 了一个购买商品房的政策性方案.人均住房面积(平方米) 单价(万元/平方米)不超过30(平方米)0.3 超过30平方米不超过m (平方米)部分(45≤m ≤60) 0.5 超过m 平方米部分 0.7根据这个购房方案:⑴若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;⑵设该家庭购买商品房的人均面积为x 平方米,缴纳房款y 万元,请求出y 关于x 的 函数关系式;⑶若该家庭购买商品房的人均面积为50平方米,缴纳房款为y 万元,且 57<y ≤60 时, 求m 的取值范围.23.(本题满分10分)如图1,正方形ABCD 的边长为2,点M 是BC 的中点,P 是线段MC 上的一个动点(不与M 、C 重合),以AB 为直径作⊙O ,过点P 作⊙O 的切线, 交AD 于点F ,切点为E .⑴求证:OF ∥BE ;⑵设BP =x ,AF =y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围; ⑶延长DC 、FP 交于点G ,连接OE 并延长交直线DC 与H (图2),问是否存在点P , 使∆EFO ∽∆EHG (E 、F 、O 与E 、H 、G 为对应点),如果存在,试求⑵中x 和y 的 值,如果不存在,请说明理由.24.(本题满分12分)已知关于x 的二次函数m m mx x y ++-=222的图象与关于x 的函数1+=kx y 的图象交于两点),(11y x A 、),(22y x B ;)(21x x <⑴当==m k ,10,1时,求AB 的长;C A ED C BOMF OMPEH (图1) (图2)⑵当m k ,1=为任何值时,猜想AB 的长是否不变?并证明你的猜想. ⑶当m =0,无论k 为何值时,猜想∆AOB 的形状. 证明你的猜想. (平面内两点间的距离公式212212)()(y y x x AB -+-=).荆门市初中毕业生学业水平及升学考试数学参考答案及评分标准一、 选择题(每小题3分,共36分) 1~6 DCBCCA 7~12 BACCBA 二、 填空题(每小题3分,共15分) 13、(x -8)•(x +8) 14、50°或80° 15、41516、 17、9 三、 解答题(本题包括7个小题,共69分) 18、(共8分)解:(1)原式=1+2-1-3×3 = -1 ………………………4' (2)原式=21+a 代入a 值得原式=55………………………4'19、证明:(1)∵AB =AC ,D 是BC 的中点∴∠BAE =∠EAC 在∆ABE 和∆ACE 中, ∵AB =AC , ∠BAE =∠EAC ,AE =AE ∴∆ABE ≌∆ACE∴BE =CE ………………………5' (2) ∵∠BAC =45°,BF ⊥AF∴∆ABF 为等腰直角三角形,∴AF =BF , 由(1)知AD ⊥BC ∴∠EAF =∠CBF在∆AEF 和∆BCF 中,AF =BF , ∠AFE =∠BFC =90°∠EAF =∠CBF ∴∆AEF ≌∆BCF ………………………4'20、根据题意,画出树形图直左右 左 直 直右 左 直 右右左 直 左左右 左 直 直右 左 直 右右 左 直 右左左 左 直 直右 左 直 右右左 直P (三车全部同向而行)=91………………………4' (2)P (至少两辆车向左转)=277………………………3'(3)由于汽车向右转、向左转、直行的概率分别为103,103,52,在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下:左转绿灯亮时间为90×3/10=27(秒),直行绿灯亮时间为90×3/10=27(秒) 右转绿灯亮的时间为90×2/5=36(秒) ………………………3'21、AB 不穿过风景区.如图,过C 作CD ⊥AB 与D ,AD =CD ·tan α;BD =CD ·tan β ………………………4' 由AD +DB =AB ,得CD ·tan α+CD ·tan β=AB ………………………2' CD =βαtan tan +AB =503150373.1627.1150==+(千米) ……………………3'∵CD =50>45 ∴高速公路AB 不穿过风景区. ………………………1'22、解:(1)三口之家应缴购房款为0.3×90+0.5×30=42(万元)…………………4' (2)①当0≤x ≤30时,y=0.3×3x=0.9x②当30<x ≤m 时,y=0.9×30+0.5×3×(x-30)=1.5x-18 ③当x >m 时,y=1.5m-18+0.7×3×(x-m)=2.1x-18-0.6m0.9x (0≤x ≤30)1.5x-18 ( 30<x ≤m ) (45≤m ≤60) ………3'2.1x -18-0.6m (x >m )(3) ①当50≤m ≤60时,y=1.5×50-18=57(舍)②当45≤m ﹤50时,y=2.1×50-0.6m-18=87-0.6m ∵57<87-0.6m ≤60 ∴45≤m <50综合①②得45≤m <50. ……………3'23、(1)证明:连接OEFE 、FA 是⊙O 的两条切线 ∴∠FA O =∠FEO =90° FO =FO ,OA =EO ∴Rt △FAO ≌Rt △FEO ∴∠AOF =∠EOF=21∠AOE ∴∠AOF =∠ABE∴OF ∥BE ………………4'(2)、过F 作FQ ⊥BC 于Q∴PQ =BP -BQ =x -yy=PF =EF +EP =FA +BP =x +y ∵在Rt △PFQ 中 ∴2FQ +22PF QP=∴222)()(2y x y x +=-+化简得xy 1=,(1<x <2) ………………3' (3)、存在这样的P 点∵∠EOF =∠AOF∴∠EHG =∠EOA =2∠EOF 当∠EFO =∠EHG =2∠EOF 时即∠EOF =30°时,Rt △EFO ∽Rt △EHG 此时Rt △AFO 中,y =AF =OA ·tan30°=33 31==y x ∴当33,3x ==y 时,△EFO ∽△EHG ………………3'24、解:(1)当m=0时,2x y =联立得012=--x x∴x 1+x 2=1 x 1·x 2=-1AB =2AC =2| x 2- x 1|=2212124)(x x x x -+=10同理,当k =1,m =1时,AB =10 ………………4'(2)猜想:当k =1,m 为任何值时,AB 的长不变,即AB =10 下面证明: 联立 y =x 2-2mx +m 2+my =x +1消y 整理得 x2-(2m +1)x +m 2+m -1=0∴x 1+x 2=2m+1 ,x 1·x 2= m2+m -1AB =2AC =2| x 2- x 1|=2212124)(x x x x -+=10, ………………4'(3)当m =0,k 为任意常数时,三角形AOB 为直角三角形,y =x 2y =x +1①当k=0时,则函数的图像为直线y=1, 则由y=x2y=1得A(-1,1),B(1,1)显然∆AOB为直角三角形②当k=1时,则一次函数为直线y=x+1,则由y=x2y=x+1x2-x-1=0x1+x2=1 x1·x2=-1AB=2AC=2| x2- x1|=2212124)(xxxx-+=10A(x1,y1) 、B(x2,y2)∴AB²=10OA²+OB²=x1²+ y1²+x2²+ y2²=10∴AB²=OA²+OB²(3)当k为任意实数,∆AOB仍为直角三角形联立y=x2y=kx+1得x2-kx-1=0x1+x2=k x1·x2= -1AB²=(x1-x2)²-+ (y1-y2)²=k4+5k ²+4OA ²+OB ²=x1²+ y1²+x2²+ y2²=k4+5k ²+4∴AB²=OA²+OB ²∴∆AOB为直角三角形……………4'。
2011年中考数学试题样题一.选择题(每题3分,共36分) 1.今年是中国共产党建党90周年,据最新统计中共党员总人数已接近7600万名,用科学记数法表示76000000的结果是( ) A . 760×105 B .76×108 C .7.6×108 D .7.6×107 2. 一组数据2、1、5、4的方差是( )A .10B .3C .2.5D .0.753. 函数y中,自变量x 的取值范围是( ) A .x ≥1且x ≠-2 B .x ≥1且x ≠2 C .x >1且x ≠-2 D .x ≠1 4.下列运算正确的是( )A .22a a a =⋅B .33)(ab ab =C .632)(a a =D .5210a a a =÷5y 的值为( )A .-2B .-5C .-3D .-76. 26y +-z 2+z -14= 0,则z 的值为( ) A .-5 B .-10 C .10 D .57. 在同一坐标系中,一次函数y =kx+k 和反比例函数y =2k的图象大致位置可能是下图中的( )8. 关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( ) A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5 9. 将一副三角板按图中的方式叠放,则角α等于A .75°B .60°C .45°D .30°第12题图第10题图第9题图ABCO E DCBA10.如图,点A 、B 、C 在⊙O 上,AB ∥CO ,∠B =22°,则∠A 为( )A .46°B .45°C .44°D . 40°11.关于对位似图形的表述,下列命题正确的是( )①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.A .①②B .②③C .②③④D .③④ 12. 如图,梯形ABCD 中,AD ∥BC ,∠A =90°,E 为AB 上一点,DE 平分∠ADC ,CE 平分∠BCD ,①E 为AB 中点;②AD +BC =CD ;③DE ⊥CE ;④以CD 为直径的圆与AB 相切;⑤以AB 为直径的圆与CD 相切。
荆门中考数学试题及答案一、选择题(每题3分,共30分)1. 已知函数y=2x+3,当x=1时,y的值为:A. 5B. 4C. 3D. 22. 以下哪个选项是完全平方数?A. 16B. 18C. 20D. 223. 一个等腰三角形的两边长分别为3和5,那么第三边的长度为:A. 2B. 3C. 4D. 54. 计算下列有理数的乘积:(-2) × (-3) × 4:A. -24B. 24C. -12D. 125. 如果一个数的平方等于9,那么这个数可能是:B. -3C. 3或-3D. 以上都不是6. 一个圆的直径为10厘米,那么它的周长为:A. 31.4厘米B. 62.8厘米C. 15.7厘米D. 31.8厘米7. 以下哪个选项是不等式2x-3>5的解?A. x>4B. x<4C. x>1D. x<18. 一个长方体的长、宽、高分别为2、3、4,那么它的体积为:A. 24立方单位B. 12立方单位C. 8立方单位D. 6立方单位9. 已知一个角的补角是120°,那么这个角的度数为:A. 60°B. 30°C. 90°D. 120°10. 计算下列表达式的值:(3+2)^2 - 2^2:A. 9C. 7D. 5二、填空题(每题2分,共20分)11. 一个数的立方根是2,那么这个数是______。
12. 一个数除以-1/3等于它本身,这个数是______。
13. 一个三角形的内角和为______度。
14. 一个直角三角形的两条直角边长分别为3和4,那么斜边的长度为______。
15. 一个数的相反数是-5,那么这个数是______。
16. 一个圆的半径为5厘米,那么它的面积为______平方厘米。
17. 一个数的绝对值是7,这个数可能是______。
18. 一个长方体的体积是60立方厘米,长宽高比为2:3:5,那么它的高为______厘米。
荆门市2011年初中毕业考试数学试题精选2.下列四个图案中,轴对称图形的个数是( )A.1B.2C.3D.44.如图,位似图形由三角尺与其灯光 照射下的中心投影组成,相似比为 2∶5,且三角尺的一边长为8cm ,则 投影三角形的对应边长为( ) A.8cm B.20cm C.3.2cm D.10cm5.有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额.某同学知道自己的比赛分数后,要判断自己能否获奖,在下列13名同学成绩的统计量中只需知道一个量,它是( )A.众数B.方差C.中位数D.平均数 7. 如图,P 为线段AB 上一点,AD 与 BC 交于E ,∠CPD =∠A =∠B ,BC 交 PD 于F ,AD 交PC 于G ,则图中 相似三角形有( ) A.1对 B.2对 C.3对 D.4对 8.在△ABC 中,∠A =120°,AB =4,AC =2,则sin B 的值是( )A.14175 B. 53 C. 721 D. 142110.图①是一瓷砖的图案,用这种 瓷砖铺设地面,图② 铺成了一个 2×2的近似正方形,其中完整菱形 共有5个; 若铺成3×3的近似正 方形图案③,其中完整的菱形有PC ADBEFG 第7题图第2题图第4题图第10题图第2题图13个;铺成4×4的近似正方形图案④,其中完整的菱形 有25个;如此下去,可铺成一个n n ⨯的近似正方形图案. 当得到完整的菱形共181个时,n 的值为( )A.7B.8C.9D.10 12.如图,⊙O 是△ABC 的外接圆,CD 是直径, ∠B =40°,则∠ACD 的度数是 .14.如图,长方体的底面边长分别为2cm 和4cm , 高为5cm . 若一只蚂蚁从P 点开始经过4个侧面 爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为 cm .15.请将含60°顶角的菱形分割成至少含一个等腰梯形且面积相等的六部分,用实线画出分割后的图形.一、选择题 (每选对一题得3分,共30分)1.A2.C3.C4.B5.C6.D7.C8. D9. B 10.D.二、填空题(每填对一题得3分,共15分)11.x x x 2223++;12.50°;13.x≥0且x≠12 ;14.13;15. 方法很多,参照给分;16.2.第15题图OCADB第12题图4cm 2cm5cmP Q第14题图。
荆州市2011年初中升学考试数 学 试 题注意事项:1.本卷满分为120分,考试时间为120分钟.2.本卷是试题卷,不能答题,答题必须写在答题卡上,解题中的辅助线和标注角的字母、符号等务必添在答题卡的图形上.3.在答题卡上答题,选择题必须用2B..铅笔填涂,非选择题必须用0.5毫米黑色..签字笔或黑色墨水..钢笔作答. ★ 祝 考 试 顺 利 ★一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分)1.有理数21-的倒数是( ) A.-2 B.2 C. 21 D. 21- 2.下列四个图案中,轴对称图形的个数是( )A.1B.2C.3D.43.将代数式142-+x x 化成q p x ++2)(的形式为( )A.3)2(2+-xB. 4)2(2-+xC.5)2(2-+xD.4)4(2++x4.如图,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2∶5,且三角尺的一边长为8cm ,则投影三角形的对应边长为( )A.8cmB.20cmC.3.2cmD.10cm5.有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额.某同学知道自己的比赛分数后,要判断自己能否获奖,在下列13名同学成绩的统计量中只需知道一个量,它是( )A.众数B.方差C.中位数D.平均数6.对于非零的两个实数a 、b ,规定a ※b=ab 11-.若1※(x+1)=1,则x 的值为( )A. 23B. 31C. 21D. 21- 7. 如图,p 为线段AB 上一点,AD 与BC 交于E ,∠CPD=∠A =∠B ,BC 交PD 于F ,AD 交PC 于G ,则图中相似三角 形有( )A.1对B.2对C.3对D.4对8.在△ABC 中,∠A =120°,AB =4,AC =2,则sinB 的值是( )A. 14175B. 53C. 721D. 1421 9.关于x 的方程0)1(2)13(2=+++-a x a ax 有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,则a 的值是( )A.1B.-1C.1或-1D.210.图①是一瓷砖的图案,用这种瓷砖铺设地面,图②铺成了一个2×2的近似正方形,其中完整菱形共有5个;若铺成3×3的近似正方形图案③,其中完整的菱形有13个;铺成4×4的近似正方形图案④,其中完整的菱形有25个;如此下去,可铺成一个n×n 的近似正方形图案.当得到完整的菱形共181个时,n 的值为( )A.7B.8C.9D.10二、填空题(本大题共6小题,每小题4分,共24分)11.已知A =2x ,B 是多项式,在计算B+A 时,小马虎同学把B+A 看成了B÷A,结果得x x 212+,则B+A = ▲. 12.如图,⊙O 是△ABC 的外接圆,CD 是直径,∠B =40°,则∠ACD 的度数是▲.13.若等式1)23(0=-x 成立,则x 的取值范围是 ▲. 14.如图,长方体的底面边长分别为2cm 和4cm ,高为5cm.若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为 ▲cm.15.请将含60°顶角的菱形分割成至少含一个等腰梯形且面积相等的六部分,用实线画出分割后的图形.16.如图,双曲线xy 2=(x >0)经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得△C B A ',B '点落在OA 上,则四边形OABC 的面积是 ▲.三、解答题(共66分)17.(本题满分6分)计算:322)21(121----18.(本题满分6分)解不等式组,并把解集在数轴上表示出来.⎪⎩⎪⎨⎧---+≥+-x ②x ①x x 8)1(31132319.(本题满分7分)如图,P 是矩形ABCD 下方一点,将△PCD 绕P 点顺时针旋转60°后恰好D 点与A 点重合,得到△PEA ,连结EB ,问△ABE 是什么特殊三角形?请说明理由.P EDCB A20.(本题满分8分)2011年国家对“酒后驾车”加大了处罚力度,出台了不准酒后驾车的禁令.某记者在一停车场对开车的司机进行了相关的调查,本次调查结果有四种情况:①偶尔喝点酒后开车;②已戒酒或从来不喝酒;③喝酒后不开车或请专业司机代驾;④平时喝酒,但开车当天不喝酒.将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调查了 ▲名司机.(2)求图甲中④所在扇形的圆心角,并补全图乙.(3)在本次调查中,记者随机采访其中的一名司机,求他属第②种情况的概率.(4)请估计开车的10万名司机中,不违反“酒驾”禁令的人数.21.(本题满分8分)某河道上有一个半圆形的拱桥,河两岸筑有拦水堤坝,其半圆形桥洞的横截面如图所示.已知上、下桥的坡面线ME 、NF 与半圆相切,上、下桥斜面的坡度i =1∶3.7,桥下水深OP =5米,水面宽度CD =24米.设半圆的圆心为O ,直径AB 在坡角顶点M 、N 的连线上,求从M 点上坡、过桥、下坡到N 点的最短路径长.(参考数据:π≈3,3≈1.7,tan15°=321+22.(本题满分9分)如图,等腰梯形ABCD 的底边AD 在x 轴上,顶点C 在y轴正半轴上,B (4,2),一次函数y=kx-1的图象平分它的面积,关于x 的函数y=m 2x -(3m+k)x+2m+k 的图象与坐标轴只有两个交点,求m 的值.D C A yBO xy=kx -123.(本题满分10分)2011年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额与政府补贴的额度存在下表所示的函数对应 Ⅰ型 Ⅱ型投资金额x (万元) x 5 x 2 4补贴金额y (万元) )0(1≠=k kx y 2 )0(22≠+=a bx ax y 2.4 3.2(1)分别求1y 和2y 的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.24.(本题满分12分)如图甲,分别以两个彼此相邻的正方形OABC 与CDEF 的边OC 、OA 所在直线为x 轴、y 轴建立平面直角坐标系(O 、C 、F 三点在x 轴正半轴上).若⊙P 过A 、B 、E 三点(圆心在x 轴上),抛物线c bx x y ++=241经过A 、C 两点,与x 轴的另一交点为G ,M 是FG 的中点,正方形CDEF 的面积为 1.(1)求B 点坐标;(2)求证:ME 是⊙P 的切线;(3)设直线AC 与抛物线对称轴交于N ,Q 点是此对称轴上不与N 点重合的一动点,①求△ACQ 周长的最小值;②若FQ =t ,S △ACQ =S ,直接写出....S 与t 之间的函数关系式.O B y A C DE xFG ′图乙(备用图)图甲G F x E DC Ay B O数学参考答案及评分标准一、选择题 (每选对一题得3分,共30分)1.A2.C3.C4.B5.C6.D7.C8. D9. B 10.D二、填空题(每填对一题得3分,共15分)11. x x x 2223++ 12.50° 13.x≥0且x≠12 14.1315.方法很多,参照给分 16.2三、解答题(按步骤给分,其它解法参照此评分标准给分)17.解:原式=)232(232---………………………………………………4分 =232232+-- ………………………………………………5分=0 …………………………………………………………………6分18. 解:由①得:x≤1 …………………………………………………………1分由②得:x >-2 …………………………………………………………2分综合得:-2<x≤1 ……………………………………………………4分在数轴上表示这个解集(略) ………………………………………6分 19. 解:△ABE 是等边三角形.理由如下:…………………………………… 1分 由旋转得△PAE ≌△PDC∴CD=AE ,PD=PA,∠1=∠2……………………3分 ∵∠DPA=60°∴△PDA 是等边三角形…………4分∴∠3=∠PAD =60°.由矩形ABCD 知,CD =AB ,∠CDA =∠DAB =90°.∴∠1=∠4=∠2=30°………………………6分4321P E D C B A∴AE =CD =AB ,∠EAB =∠2+∠4=60°,∴△ABE 为等边三角形…………………………7分20. 解:(1)2÷1%=200 …………………………………………………… 1分(2)360°×20070=126°∴④所在扇形的圆心角为126°…… 2分 注:补图②110人,③18人…………………………………4分(3)P (第②种情况)=2011200110= ∴他是第②种情况的概率为2011 ……………………………6分(4)10×(1-1%)=9.9(万人)即:10万名开车的司机中,不违反“酒驾”禁令的人数为9.9万人…8分21. 解:连结OD 、OE 、OF ,由垂径定理知:PD =21CD =12(m )………… 1分在Rt △OPD 中,OD =2222125+=+OP PD =13(m )∴OE =OD =13m …………………………………………………………2分∵tan ∠EMO=i= 1∶3.7 ,tan15°=321+=32-≈1:3.7 ∴∠EMO =15°…………………………………………………………3分由切线性质知∠OEM =90°∴∠EOM=75°同理得∠NOF =75°∴∠EOF =180°-75°×2=30°……………4分在Rt △OEM 中,tan15°=321+=32-≈1∶3.7 ∴EM =3.7×13=48.1(m )…………………………………………6分又EF 的弧长=1801330⋅π=6.5(m )………………………………7分 ∴48.1×2+6.5=102.7(m ),即从M 点上坡、过桥、再下坡到N 点的最短路径长为102.7米…… 8分(注:答案在102.5m —103m 间只要过程正确,不扣分)22. 解:过B 作BE ⊥AD 于E ,连结OB 、CE 交于点P ,∵P 为矩形OCBE 的对称中心,则过P 点的直线平分矩形OCBE 的面积.∵P 为OB 的中点,而B (4,2) ∴P 点坐标为(2,1)……………1分在Rt △ODC 与Rt △EAB 中,OC =BE ,AB =CD∴Rt △ODC ≌Rt △EAB (HL ),∴S △ODC =S △EBA∴过点(0,-1)与P (2,1)的直线平分等腰梯形面积,这条直线为y=kx-1∴2k-1=1 ∴k=1 …………………………………………………3分 ∵y=m 2x -(3m+k)x+2m+k 的图象与坐标轴只有两个交点①当m =0时,y =-x+1,其图象与坐标轴有两个交点(0,1),(1,0)…5分②当m≠0时,函数y=m 2x -(3m+k)x+2m+k 的图象为抛物线,且与y 轴总有一 个交点(0,2m+1)若抛物线过原点时,2m+1=0,即m=21-, 此时△=)12(4)13(2+-+m m m =2)1(+m >0∴抛物线与x 轴有两个交点且过原点,符合题意. ………………………7分若抛物线不过原点,且与x 轴只有一个交点,也合题意,此时△′=)12(4)13(2+-+m m m =0 ∴m 1=m 2=-1综上所述,m 的值为m=0或21-或-1 ………………………………………9分23.解:(1)由题意得:①5k=2,k=52 ∴ x y 521=…………………2分 ②⎩⎨⎧=+=+2.34164.224b a b a ∴a=51- b=58 ∴x x y 585122+-=………4分(2)设购Ⅱ型设备投资t 万元,购Ⅰ型设备投资(10-t )万元,共获补贴Q 万元∴t t y 524)10(521-=-= ,t t y 585122+-= ∴529)3(5145651585152422221+--=++-=+--=+=t t t t t t y y Q ……7分∵51-<0,∴Q 有最大值,即当t=3时,Q 最大=529 ∴10-t=7(万元) ………………………………………………9分 即投资7万元购Ⅰ型设备,投资3万元购Ⅱ型设备,共获最大补贴5.8万元……………10分24.解:(1)如图甲,连接PE 、PB ,设PC =n ∵正方形CDEF 面积为1∴CD =CF =1根据圆和正方形的对称性知OP =PC =n P E D C A y B O x y=kx -1图甲G F xE DCA yB O∴BC =2PC =2n ………1分而PB =PE ,22222254n n n PC BC PB =+=+=1)1(2222++=+=n EF PF PE∴2251)1(n n =++解得n=1 (21-=n 舍去) …………… 2分 ∴BC =OC =2 ∴B 点坐标为(2,2)…………………………3分(2)如图甲,由(1)知A (0,2),C (2,0)∵A ,C 在抛物线上∴2412++=bx x y ∴23-=b ∴抛物线的解析式为223412+-=x x y 即41)3(412--=x y ………………………………………………… 4分 ∴抛物线的对称轴为x=3,即EF 所在直线∵C 与G 关于直线x=3对称, ∴CF =FG =1 ∴FM =21FG =21 在Rt △PEF 与Rt △EMF 中EF PF =2,221:1==FM EF ∴EF PF =FMEF ∴△PEF ∽△EMF……………5分∴∠EPF =∠FEM ∴∠PEM =∠PEF+∠FEM =∠PEF+∠EPF =90°∴ME 与⊙P 相切…………………………………………………………6分(注:其他方法,参照给分)(3)①如图乙,延长AB 交抛物线于A ',连A C '交对称轴x=3于Q ,连AQ则有AQ =A 'Q ,△ACQ 周长的最小值为(AC+A 'C )的长……………………7分 ∵A 与A '关于直线x=3对称∴A (0,2),A '(6,2) ∴A 'C =522)26(22=+-(6-2),而AC=222222=+…………………8分∴△ACQ 周长的最小值为5222+……………………………9分②当Q 点在F 点上方时,S =t+1……10分当Q 点在线段FN 上时,S =1-t……11分当Q 点在N 点下方时,S =t-1……12分′A Q 图乙(备用图)O B y AC D E x F G。
湖北省荆门市中考数学试卷第一部分 选择题一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.23-的相反数是( ) A . 32-B . 32C .23D .23- 【答案】C. 【解析】考点:相反数. 2.在函数y =中,自变量x 的取值范围是 ( ) A . 5x > B .5x ≥ C .5x ≠ D .5x < 【答案】A. 【解析】试题分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围. 要使函数解析式y =有意义,则x ﹣5>0,解得:x >5, 故选A .考点:函数自变量的取值范围.3. 在实数227π-中,是无理数的是( )A .227-B .π D .【答案】C. 【解析】试题分析:根据无理数、有理数的定义即可判定选择项.227-π是无理数,故选C . 考点:无理数.4. 下列运算正确的是( )A . 459x y xy +=B .()3710m m m -= C. ()5385x yx y = D .1284a a a ÷=【答案】D. 【解析】考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 5. 已知:如图,//,AB CD BC 平分ABD ∠,且040C ∠=,则D ∠的度数是( )A . 40°B . 80° C. 90° D .100° 【答案】D. 【解析】试题分析:先根据平行线的性质,得出∠ABC 的度数,再根据BC 平分∠ABD ,即可得到∠DBC 的度数,最后根据三角形内角和进行计算即可. ∵AB ∥CD ,∴∠ABC=∠C=40°,又∵BC 平分∠ABD ,∴∠DBC=∠ABC=40°,∴△BCD 中,∠D=180°﹣40°﹣40°=100°, 故选D .考点:平行线的性质.6. 不等式组1224x x -<⎧⎨≥⎩的解集为( )A . 3x <B . 2x ≥ C. 23x ≤< D .23x << 【答案】C. 【解析】考点:解一元一次不等式组.7. 李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:)A.众数是8 B.中位数是3 C.平均数是3 D.方差是0.34【答案】B.【解析】试题分析:A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可.A、由统计表得:众数为3,不是8,所以此选项不正确;B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;C、平均数=122 2.5386 3.5433.3520⨯+⨯+⨯+⨯+⨯=,所以此选项不正确;D、S2=120×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]=5.6520=0.2825,所以此选项不正确;故选B.考点:方差;加权平均数;中位数;众数.8.212-⎛⎫⎪⎝⎭的结果是()A.8 B. 0 C. - D.-8 【答案】C.【解析】考点:实数的运算;负整数指数幂.9.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.4960亿km .用科学计数法表示1个天文单位是 ( )A .714.96010km ⨯B .81.496010km ⨯ C. 91.496010km ⨯ D .90.1496010km ⨯ 【答案】B. 【解析】试题分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n 是正数;当原数的绝对值小于1时,n 是负数. 1.4960亿=1.4960×108,故选B . 考点:科学记数法—表示较大的数.10. 已知:如图,是由若干大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是( )A . 6个B . 7个 C. 8个 D .9个 【答案】B. 【解析】考点:由三视图判断几何体.11.在平面直角坐标系xoy 中,二次函数()20y ax bx c a =++≠的大致图象如图所示,则下列结论正确的是( )A .0,0,0a b c <<>B . 12ba-= C. 0a b c ++< D .关于x 的方程21ax bx c ++=-有两个不相等的实数根 【答案】. 【解析】试题分析:根据二次函数的性质一一判断即可. :A 、错误.a <0,b >0,c <0. B 、错误.12ba->. C 、错误.x=1时,y=a +b +c=0.D 、正确.观察图象可知抛物线y=ax 2+bx +c 与直线y=﹣1有两个交点,所以关于x 的方程x 2+bx +c=﹣1有两个不相等的实数根. 故选D .考点:二次函数图象与系数的关系;根的判别式;抛物线与x 轴的交点.12. 已知:如图,在平面直角坐标系xoy 中,等边AOB ∆的边长为6,点C 在边OA 上,点D 在边AB 上,且3OC BD =.反比例函数()0ky k x=≠的图象恰好经过点C 和点D .则k 的值为 ( )A B . D 【答案】A. 【解析】过点C 作CE ⊥x 轴于点E ,过点D 作DF ⊥x 轴于点F ,如图所示. 设BD=a ,则OC=3a .∵△AOB 为边长为6的等边三角形,∴∠COE=∠DBF=60°,OB=6. 在Rt △COE 中,∠COE=60°,∠CEO=90°,OC=3a ,∴∠OCE=30°,∴OE=32a ,=,∴点C (32a ).同理,可求出点D 的坐标为(6﹣12a a ).∵反比例函数ky x=(k ≠0)的图象恰好经过点C 和点D ,∴k=32a a=(6﹣12a ,∴a=65,. 故选A .考点:反比例函数图象上点的坐标特征;等边三角形的性质;含30度角的直角三角形.第二部分 非选择题二、填空题(本题共5小题,每小题3分,满分15分,将答案填在答题纸上) 13.已知实数,m n 满足0n -=,则2m n +的值为 . 【答案】3. 【解析】考点:非负数的性质;算术平方根;非负数的性质;绝对值.14.计算:211111m m m m ⎛⎫+= ⎪--+⎝⎭ . 【答案】1. 【解析】试题分析:原式括号中两项变形后,利用同分母分式的减法法则计算,约分即可得到结果.原式=()()21111111111m m m m m m m +--⋅=⋅=-+-+.故答案为:1考点:分式的混合运算.15.已知方程2510x x ++=的两个实数根分别为12,x x ,则2212x x += .【答案】23. 【解析】试题分析:由根与系数的关系可得x 1+x 2=﹣5、x 1•x 2=1,将其代入x 12+x 22=(x 1+x 2)2﹣2x 1•x 2中,即可求出结论.∵方程x 2+5x +1=0的两个实数根分别为x 1、x 2,∴x 1+x 2=﹣5,x 1•x 2=1, ∴x 12+x 22=(x 1+x 2)2﹣2x 1•x 2=(﹣5)2﹣2×1=23. 故答案为:23. 考点:根与系数的关系.16.已知:派派的妈妈和派派今年共36岁,再过5年,派派的妈妈的年龄是派派年龄的4倍还大1岁,当派派的妈妈40岁时,则派派的年龄为 岁. 【答案】12. 【解析】根据题意得:36﹣x +5=4(x +5)+1,解得:x=4, ∴36﹣x ﹣x=28,∴40﹣28=12(岁).故答案为:12. 考点:一元一次方程的应用. 17.已知:如图,ABC ∆内接于O ,且半径OC AB ⊥,点D 在半径OB 的延长线上,且030,2A BCD AC ∠=∠==,则由BC ,线段CD 和线段BD 所围成图形的阴影部分的面积为____________.【答案】23π-.【解析】∴AC=BC=6,∴∠ABC=∠A=30°,∴∠OCB=60°,∴∠OCD=90°,∴OC=BC=2,∴∴线段CD 和线段BD 所围成图形的阴影部分的面积=S △OCD ﹣S扇形BOC﹣12×2×2﹣260223603ππ⨯⨯=-,故答案为:23π-.考点:.扇形面积的计算;圆周角定理;垂径定理;等边三角形的判定和性质.三、解答题 (本题共7小题,共69分.解答应写出文字说明、证明过程或演算步骤.)18. 先化简,再求值:()()()2212132x x x +--+-,其中x =.【答案】9. 【解析】试题分析:原式利用完全平方公式,多项式乘以多项式法则计算,去括号合并得到最简结果,把x 的值代入计算即可求出值.试题解析:原式=4x 2+4x +1﹣2x 2﹣4x +6﹣2=2x 2+5,当时,原式=4+5=9. 考点:整式的混合运算—化简求值.19.已知:如图,在Rt ACB ∆中,090ACB ∠=,点D 是AB 的中点,点D 是AB 的中点,点E 是CD 的中点,过点C 作//CF AB 交AE 的延长线于点F .(1)求证:ADE FCE ∆≅∆;(2)若0120,2DCF DE ∠==,求BC 的长. 【答案】(1)见解析;(2)4. 【解析】试题解析:(1)证明:∵点E 是CD 的中点,∴DE=CE . ∵AB ∥CF ,∴∠BAF=∠AFC . 在△ADE 与△FCE 中, ∵,,.BAF AFC AED FEC DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△FCE (AAS ); (2)解:由(1)得,CD=2DE , ∵DE=2,∴CD=4.∵点D 为AB 的中点,∠ACB=90°,∴AB=2CD=8,AD=CD=12AB . ∵AB ∥CF ,∴∠BDC=180°﹣∠DCF=180°﹣120°=60°, ∴∠DAC=∠ACD=12∠BDC=12×60°=30°, ∴BC=12AB=12×8=4. 考点:全等三角形的判定与性质;直角三角形斜边上的中线.20. 荆车中学决定在本校学生中,开展足球、篮球、羽毛球、乒乓球四种活动.为了了解学生对这四种活动的喜爱情况,学校随机调查了该校m 名学生,看他们喜爱哪一种活动(每名学生必选一种且只能从这四种活动中选择一种),现将调查的结果绘制成如下不完整的统计图.(1)m=_____________,n=_______________;(2)请补全上图中的条形图;(3)根据抽样调查的结果,请估算全校1800名学生中,大约有多少人喜爱足球;(4)在抽查的m名学生中,喜爱打乒乓球的有10名同学(其中有4名女生,包括小红、小梅).现将喜爱打乒乓球的同学平均分成两组进行训练,只女生每组分两人.求小红、小梅能分在同一组的概率.【答案】(1)100,15;(2)见解析;(3)720;(4)13.【解析】(4)根据题意可以写出所有的可能性,注意(C,D)和(D,C)在一起都是暗含着(A,B)在一起.试题解析:(1)由题意可得,m=10÷10%=100,n%=15÷100=15%,故答案为:100,15;(2)喜爱篮球的有:100×36%=36(人),补全的条形统计图,如右图所示;(3)由题意可得,全校1800名学生中,喜爱踢足球的有:1800×40100=720(人),答:全校1800名学生中,大约有720人喜爱踢足球;(4)设四名女生分别为:A(小红)、B(小梅)、C、D,则出现的所有可能性是:(A,B)、(A,C)、(A,D)、(B,A)、(B,C)、(B,D)、(C,A)、(C,B)、(C,D)、(D,A)、(D,B)、(D,C),∴小红、小梅能分在同一组的概率是:41 123=.考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.21. (本小题满分12分)金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高.他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°.已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点≈=)E F D在同一条直线上.求旗杆AB的高.(计算结果精确到0.1 1.73 ,,【答案】18.4米.【解析】试题分析:过点C作CM⊥AB于M.则四边形MEDC是矩形,设EF=x,根据AM=DE,列出方程即可解决问题.∴∠MAC=∠ACM=45°,∴MA=MC,∵ED=CM,∴AM=ED,∵AM=AE ﹣ME ,ED=EF +DF ﹣3=x +x=6+∴6+9,∴AB=AE ﹣BE=9+1≈18.4米.答:旗杆AB 的高度约为18.4米.考点:解直角三角形的应用﹣仰角俯角问题;解直角三角形的应用﹣坡度坡角问题.22.已知:如图,在ABC ∆中,090,C BAC ∠=∠的平分线AD 交BC 于点D ,过点D 作DE AD ⊥交AB 于点E ,以AE 为直径作O .(1)求证:BC 是O 的切线;(2)若3,4AC BC ==,求BE 的长.【答案】(1)见解析;(2)54. 【解析】代入数据即可求出r 值,再根据BE=AB ﹣AE 即可求出BE 的长度.试题解析:(1)证明:连接OD ,如图所示.在Rt △ADE 中,点O 为AE 的中心,∴DO=AO=EO=12AE ,∴点D 在⊙O 上,且∠DAO=∠ADO . 又∵AD 平分∠CAB ,∴∠CAD=∠DAO ,∴∠ADO=∠CAD ,∴AC ∥DO .∵∠C=90°,∴∠ODB=90°,即OD ⊥BC .又∵OD 为半径,∴BC 是⊙O 的切线;(2)解:∵在Rt △ACB 中,AC=3,BC=4,∴AB=5.设OD=r ,则BO=5﹣r .∵OD ∥AC ,∴△BDO ∽△BCA , ∴DO BO AC BA =,即535r r -=,解得:r=158, ∴BE=AB ﹣AE=5﹣154=54.考点:切线的判定与性质;相似三角形的判定与性质、平行线的判定与性质以及勾股定理.23. 我市雷雷服饰有限公司生产了一款夏季服装,通过实验商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量1y (百件)与时间(为整数,单位:天)的部分对应值如下表所示;网上商店的日销售量2y (百件)与时间(为整数,单位:天)的关系如下图所示.(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映1y 与的变化规律,并求出1y 与的函数关系式及自变量的取值范围;(2)求2y 与的函数关系式,并写出自变量的取值范围;(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y (百件),求y 与的函数关系式;当为何值时,日销售总量y 达到最大,并求出此时的最大值.【答案】(1)y 1=﹣15-t 2+6t (0≤t ≤30,且为整数);(2)()()24010301030,t t t y t t t ⎧≤≤⎪=⎨+<≤⎪⎩,且为整数且为整数;(3)当0≤t≤10时,y=15-t 2+6t +4t ;当10<t ≤30时,y=15-t 2+6t +t +30.当t=17或18时,y 最大=91.2(百件). 【解析】(3)依题意得y=y 1+y 2,当0≤t ≤10时,得到y 最大=80;当10<t ≤30时,得到y 最大=91.2,于是得到结论. 试题解析:(1)根据观察可设y 1=at 2+bt +c ,将(0,0),(5,25),(10,40)代入得:0,25525,1001040c a b a b =⎧⎪+=⎨⎪+=⎩,解得1,56,0a b c ⎧=-⎪⎪=⎨⎪=⎪⎩, ∴y 1与t 的函数关系式为:y 1=﹣15-t 2+6t (0≤t ≤30,且为整数); (2)当0≤t ≤10时,设y 2=kt ,∵(10,40)在其图象上,∴10k=40,∴k=4,∴y 2与t 的函数关系式为:y 2=4t ,当10≤t ≤30时,设y 2=mt +n ,将(10,40),(30,60)代入得1040,3060m n m n +=⎧⎨+=⎩,解得1,30m n =⎧⎨=⎩, ∴y 2与t 的函数关系式为:y 2=t +30,综上所述,()()24010301030,t t t y t t t ⎧≤≤⎪=⎨+<≤⎪⎩,且为整数且为整数; (3)依题意得y=y 1+y 2,当0≤t ≤10时,y=15-t 2+6t +4t=15-t 2+10t=15-(t ﹣25)2+125, ∴t=10时,y 最大=80;当10<t ≤30时,y=15-t 2+6t +t +30=15-t 2+7t +30=15-(t ﹣352)2+3654, ∵t 为整数,∴t=17或18时,y 最大=91.2,∵91.2>80,∴当t=17或18时,y 最大=91.2(百件).考点:二次函数的应用;一次函数的应用;待定系数法求函数的解析式.24.已知:如图所示,在平面直角坐标系xoy 中,090,25,20C OB OC ∠===.若点M 是边OC 上的一个动点(与点,O C 不重合),过点M 作//MN OB 交BC 于点N .(1)求点C 的坐标;(2)当MCN ∆的周长与四边形OMNB 的周长相等时,求CM 的长;(3)在OB 上是否存在点Q ,使得MNQ ∆为等腰直角三角形?若存在,请求出此时MN 的长;若不存在,请说明理由.【答案】(1)C(16,﹣12);(2)1207;(3)存在,30037.【解析】(2)∵根据相似三角形的性质得到204153CM OCCN BC===,设CM=x,则CN=34x,根据已知条件列方程即可得到结论;(3)如图2,由(2)知,当CM=x,则CN=34x,MN=54x,①当∠OMQ1=90°MN=MQ时,②当∠MNQ2=90°,MN=NQ2时,根据相似三角形的性质即可得到结论.试题解析:(1)如图1,过C作CH⊥OB于H,∵∠C=90°,OB=25,OC=20,∴15==,∵S△OBC=12OB•CH=12OC•BC,∴CH=20151225OC BCOB⋅⨯==,∴16=,∴C(16,﹣12);(2)∵MN∥OB,∴△CNM∽△COB,∴204153 CM OCCN BC===,设CM=x,则CN=34 x,∵△MCN的周长与四边形OMNB的周长相等,∴CM+CN+MN=OM+MN+OB,即x+34x+MN=20﹣x+mn+15﹣34x+25,解得:x=1207,∴CM=1207; (3)如图2,由(2)知,当CM=x ,则CN=34x ,MN=54x , ①当∠OMQ 1=90°MN=MQ 时,∵△OMQ ∽△OBC ,∴1MQ OM BC OB=, ∵MN=MQ ,∴52041525x x -=,∴x=24037, ∴MN=54x=54×24037=30037; ②当∠MNQ 2=90°,MN=NQ 2时,此时,四边形MNQ 2Q 1是正方形,∴NQ 2=MQ 1=MN ,∴MN=30037.考点:相似三角形的判定和性质;正方形的判定和性质;勾股定理;三角形面积公式.。
荆门市初中毕业生学业水平考试数学试题说明:1.全卷分两部分,第一部分为选择题,第二部分为非选择题,考试时间为120分钟,满分120分.2.本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效,答题卡必须保持清洁,不能折叠.3.选择题1-12题,每小题选出答案后,用2B 铅笔将答题卡选择题答案区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题13-24题,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡对应的区域内.第一部分 选择题一、选择题(本题共12小题,每小题3分,共36分.每小题给出4个选项,有且只有一个答案是正确的)1.2的绝对值是( ) A .2 B .-2 C .12 D .-122.下列运算正确的是( )A .a +2a =2a 2B .(-2ab 2)2=4a 2b 4C .a 6÷a 3=a 2D .(a -3)2=a 2-9 3有意义,则x 的取值范围是( )A .x >1B .x >-1C .x ≥1D .x ≥-14.如图,△ABC 中,AB =AC ,AD 是∠BAC 的平分线,已知AB =5,AD =3,则BC 的长为( )A .5B .6C .8D .105.在平面直角坐标系中,若点A (a ,-b )在第一象限内,则点B (a ,b )所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.由5个大小相同的正方体拼成的几何体如图所示,则下列说法正确的是( ) A .主视图的面积最小 B .左视图的面积最小 C .俯视图的面积最小 D .三个视图的面积相等 7.化简221xx x ++÷(1-11x +)的结果是( )A .11x + B .1x x+ C .x +1 D .x -1 8.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止.设点P 的运动路程为x (cm),在下列图象中,能表示△ADP 的面积y (cm 2)关于x (cm)的函数关系的图象是( )第6题图D CBA第4题图9.已知3是关于x 的方程x 2-(m +1)x +2m =0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边长,则△ABC 的周长为( ) A .7 B .10 C .11 D .10或1110.若二次函数y =x 2+mx 的对称轴是x =3,则关于x 的方程x 2+mx =7的解为( ) A .x 1=0,x 2=6 B .x 1=0,x 2=6 C .x 1=0,x 2=6 D .x 1=0,x 2=611.如图,在矩形ABCD 中(AD >AB ),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点E .在下列结论中,不一定正确的是( )A .△AFD ≌△DCEB .AF =12AD C .AB =AF D .BE =AD -DF12.如图,从一块直径为24cm 的圆形纸片上剪出一个圆心角为90°的扇形ABC ,使点A ,B ,C 在圆周上.将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是( ) A .12cm B .6cm C .cm D .第二部分 非选择题二、填空题(本题共5小题,每小题3分,共15分)13.分解因式:(m +1)(m -9)+8m =______.14.为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的14还少5台,则购置的笔记本电脑有______台. 15.荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是______. 16.两个全等的三角尺重叠摆放在△ACB 的位置,将其中一个三角尺绕着点C 按逆时针方向旋转到△DCE 的位置,使点A 恰好落在边DE 上,AB 与CE 相交于点F .已知∠ACB =∠DCE =90°,∠B =30°,AB =8cm ,则CF =______cm .CB 第12题图D CF BAE 第11题图PDCBA第8题图A .B .C .D .y17.如图,已知点A (1,2)是反比例函数y =kx图象上的一点,连接AO 并延长交双曲线的另一分支于点B ,点P 是x 轴上一动点,若△P AB 是等腰三角形,则点P 的坐标是______.三、解答题(本题共7小题,共69分)18.(本题满分8分)(1)计算:|1+3sin 30°--5)0-(-13)-1.(2)解不等式组210, 23. 23x x x +>⎧⎪⎨-+⎪⎩①≥②19.(本题满分9分)如图,在Rt △ABC 中,∠ACB =90°,点D ,E 分别在AB ,AC 上,CE =BC ,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CF ,连接EF . (1)补充完成图形;(2)若EF ∥CD ,求证:∠BDC =90°.20.(本题满分10分)秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格.现学校随机选取了部分学生的成绩,整理并制作了如下不完整的图表:请根据上述统计图表,解答下列问题:(1)在表中,a =______,b =______,c =______; (2)补全频数直方图;/分第20题图第19题图第17题图DC FBAE第16题图(3)根据以上选取的数据,计算七年级学生的平均成绩; (4)如果测试成绩不低于80分者为“优秀”,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?21.(本题满分10分)如图,天星山山脚下西端A 处与东端B 处相距800(1)米,小军和小明同学分别从A 处和B 处向山顶匀速行走.已知山的西端的坡角是45°,东端的坡角是30/秒.若小明与小军同时到达山顶C 处,则小明的行走速度是多少?22.(本题满分10分)如图,AB 是⊙O 的直径,AD 是⊙O 的弦,点F 是DA 延长线上的一点,AC 平分∠F AB 交⊙O 于点C .过点C 作CF ⊥DF ,垂足为E . (1)求证:CE 是⊙O 的切线;(2)若AE =1,CE =2,求⊙O 的半径.23.(本题满分10分)A 城有某种农机30台,B 城有农机40台,现要将这些农机全部运往C ,D 两乡,调运任务承包给某运输公司.已知C 乡需要农机34台,D 乡需要农机36台.从A 城往C ,D 两乡运送农机的费用分别为250元/台和200元/台,从B 城运往C ,D 两乡运送农机的费用分别为150元/台和240元/台. (1)设A 城运往C 乡该农机x 台,运送全部农机的总费用为W 元,求W 关于x 的函数关系式,并写出自变量x 的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司对A 城运往C 乡的农机,从运输费中每台减免a 元(a ≤200)作为优惠,其它费用不变.如何调运,使总费用最少?24.(本题满分12分)如图,直线yx +与x 轴,y 轴分别交于点A ,点B ,两动点D ,E 分别从点A ,点B 同时出发向点O 运动(运动到点O 停止),运动速度分别是1个单位长度//秒,设运动时间为t 秒.以点A 为顶点的抛物线经过点E ,过点第22题图CB A30°45°第21题图E作x轴的平行线,与抛物线的另一个交点为点G,与AB交于点F.(1)求点A,B的坐标;(2)用含t的代数式分别表示EF和AF的长;(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由;(4)是否存在t的值,使△ADF是直角三角形?若存在,求出此时抛物线的解析式;若不存在,请说明理由.第24题图。
2011年湖北省荆州市中考数学试题及答案一、选择题(本大题共10小題,每小题只有唯一正确答案,每小题3分,共30分)1、有理数- 12的倒数是()BA、-2B、2C、 12D、- 12考点:倒数.专题:计算题.分析:根据倒数的意义乘积为1的两个数互为倒数,用1除以 12可得.解答:解:有理数- 12的倒数是:1÷(- 12)=-2.故选B.点评:此题考查的知识点为倒数,解答此题可根据倒数的意义乘积为1的两个数互为倒数,用1除以- 12可得.答题:sdwdmxt老师2、下列四个图案中,轴对称图形的个数是()CA、1B、2C、3D、4考点:轴对称图形.分析:根据轴对称图形的定义1得出,图形沿一条直线对着,分成的两部分完全重合及是轴对称图形,分别判断得出即可.解答:解:根据图象,以及轴对称图形的定义可得,第1,2,4个图形是轴对称图形,第3个是中心对称图形,故选:C.点评:此题主要考查了轴对称图形的定义,根据定义判断出图形形状是解决问题的关键.答题:gbl210老师3、将代数式x2+4x-1化成(x+p)2+q的形式()CA、(x-2)2+3B、(x+2)2-4C、(x+2)2-5D、(x+2)2+4考点:配方法的应用.专题:配方法.分析:根据配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算.解答:解:x2+4x-1=x2+4x+4-4-1=x+22-5,故选C.点评:本题考查了学生的应用能力,解题时要注意配方法的步骤,注意在变形的过程中不要改变式子的值,难度适中.答题:冯延鹏老师4、如图.位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm,则投彩三角形的对应边长为()BA、8cmB、20cmC、3.2cmD、10cm考点:位似变换;中心投影.专题:几何图形问题.分析:根据位似图形的性质得出相似比为2:5,对应变得比为2:5,即可得出投彩三角形的对应边长.解答:解:∵位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,三角尺的一边长为8cm,∴投彩三角形的对应边长为:8÷ 25=20cm.故选:B.点评:此题主要考查了位似图形的性质以及中心投影的应用,根据对应变得比为2:5,再得出投彩三角形的对应边长是解决问题的关键.答题:gbl210老师5、有13位同学参加学校组织的才艺表演比赛.已知他们所得的分数互不相同,共设7个获奖名额.某同学知进自己的比赛分数后,要判断自己能否获奖,在下列13名同学成绩的统计量中只需知道一个量,它是()C21世纪教育网A、众数B、方差C、中位数D、平均数考点:统计量的选择;中位数.专题:应用题.分析:由于比赛设置了7个获奖名额,共有13名选手参加,故应根据中位数的意义分析.解答:解:因为7位获奖者的分数肯定是17名参赛选手中最高的,而且13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选C.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.答题:sjzx老师6、对于非零的两个实数a、b,规定a⊗b= 1b-1a.若1⊗(x+1)=1,则x的值为()DA、 32B、 13C、 12D、- 12考点:解分式方程.专题:新定义.分析:根据规定运算,将1⊗(x+1)=1转化为分式方程,解分式方程即可.解答:解:由规定运算,1⊗(x+1)=1可化为, 1x+1-1=1,即 1x+1=2,解得x=- 12,故选D.点评:本题考查了解分式方程的方法:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.答题:zhangCF老师7、如图,P为线段AB上一点,AD与BC交干E,∠CPD=∠A=∠B,BC交PD于E,AD交PC于G,则图中相似三角形有()BA、1对B、2对C、3对D、4对考点:相似三角形的判定.专题:证明题.分析:根据题目提供的相等的角和图形中隐含的相等的角,利用两对应角对应相等的两三角形相似找到相似三角形即可.解答:解:∵∠CPD=∠A=∠B,∴△PCE∽△BCP△APG∽△BFP故选B.点评:本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角.答题:sjzx老师8、在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()DA、5714 B、35 C、217 D 、2114考点:解直角三角形.专题:几何图形问题.分析:根据∠A=120°,得出∠DAC=60°,∠ACD=30°,得出AD=1,CD= 3,再根据BC=2 7,利用解直角三角形求出.解答:解:延长BA做CD⊥BD,∵∠A=120°,AB=4,AC=2,∴∠DAC=60°,∠ACD=30°,∴2AD=AC=2,∴AD=1,CD= 3,∴BD=5,∴BC=2 7,∴sinB= 327= 2114,故选:D.点评:此题主要考查了解直角三角形以及勾股定理的应用,根据题意得出∠DAC=60°,∠ACD=30°是解决问题的关键.答题:gbl210老师9、关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1-x1x2+x2=1-a,则a的值是()CA、1B、-1C、1或-1D、2考点:根与系数的关系;根的判别式.专题:计算题.分析:根据根与系数的关系得出x1+x2=- ba,x1x2= ca,整理原式即可得出关于a的方程求出即可.解答:解:∵关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1-x1x2+x2=1-a,∴x1-x1x2+x2=1-a,∴x1+x2-x1x2=1-a,∴ 3a+1a- 2a+2a=1-a,解得:a=±1,故选:C.点评:此题主要考查了根与系数的关系,由x1-x1x2+x2=1-a,得出x1+x2-x1x2=1-a是解决问题的关键.答题:gbl210老师10、图①是一瓷砖的图案,用这种瓷砖铺设地面,图②铺成了一个2×2的近似正方形,其中完整菱形共有5个;若铺成3×3的近似正方形图案③,其中完整的菱形有13个;铺成4×4的近似正方形图案④,其中完整的菱形有25个;如此下去,可铺成一个n×n的近似正方形图案.当得到完整的菱形共181个时,n的值为()DA、7B、8C、9D、10考点:规律型:图形的变化类.专题:规律型.分析:观察图形特点,从中找出数字规律,图①菱形数为,2×12-2×1+1=1,图②为,2×22-2×2+1=5,图③为,2×32-2×3+1=13,图④为,2×42-2×4+1=25,…,据此规律可表示出图n的菱形数,由已知得到关于n的方程,从求出n的值.解答:解:由已知通过观察得:图①菱形数为,2×12-2×1+1=1,图②为,2×22-2×2+1=5,图③为,2×32-2×3+1=13,图④为,2×42-2×4+1=25,…,所以铺成一个n×n的近似正方形图案的菱形个数为:2n2-2n+1,则2n2-2n+1=181,解得:n=10或n=-9(舍去),故选:D.点评:此题考查的知识点是图形数字的变化类问题,解题的关键是先观察分析总结出规律,根据规律列方程求解.答题:sdwdmxt老师二、填空题(本大題共6小題,每小題4分,共24)11、已知A=2x,B是多项式,在计算B+A时,小马虎同学把B+A看成了B÷A,结果得x2+ 12x,则B+A=2x3+x2+2x考点:整式的混合运算.专题:计算题.分析:根据乘除法的互逆性首先求出B,然后再计算B+A.解答:解:∵B÷A=x2+ 12x,∴B=(x2+ 12x)•2x=2x3+x2.∴B+A=2x3+x2+2x,故答案为:2x3+x2+2x,点评:此题主要考查了整式的乘法,以及整式的加法,题目比较基础,基本计算是考试的重点.答题:sd2011老师12、如图,⊙O是△ABC的外接圆,CD是直径,∠B=40°,则∠ACD的度数是50°13、若等式 (x3-2)0=1成立,则x的取值范围是x>6,14、如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂奴爬行的最短路径长为13cm.考点:平面展开-最短路径问题.专题:几何图形问题.分析:要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.解答:解:∵PA=2×(4+2)=12,QA=5∴PQ=13.故答案为:13.点评:本题主要考查两点之间线段最短,以及如何把立体图形转化成平面图形.答题:fengzhanfeng老师15、请将含60°顶角的菱形分割成至少含一个等腰梯形且面积相等的六部分,用实线画出分割后的图形.答案不唯一.考点:作图—应用与设计作图.专题:作图题.分析:整个图形含有36个小菱形,分为面积相等的六部分,则每一个部分含6个小菱形,由此设计分割方案.解答:解:分割后的图形如图所示.本题答案不唯一.点评:本题考查了应用与设计作图.关键是理解题意,根据已知图形设计分割方案.答题:zhangCF老师16、如图,双曲线 y=2x (x>0)经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴.将△ABC沿AC翻折后得AB′C,B′点落在OA上,则四边形OABC的面积是2.考点:反比例函数综合题;翻折变换(折叠问题).专题:计算题.分析:延长BC,交x轴于点D,设点C(x,y),AB=a,由角平分线的性质得,CD=CB′,则△OCD≌△OCB′,再由翻折的性质得,BC=B′C,根据反比例函数的性质,可得出S△OCD= 12xy,则S△OCB′= 12xy,由AB∥x轴,得点A(x-a,2y),由题意得2y(x-a)=2,从而得出三角形ABC的面积等于 12ay,即可得出答案.解答:解:延长BC,交x轴于点D,设点C(x,y),AB=a,∵OC平分OA与x轴正半轴的夹角,∴CD=CB′,△OCD≌△OCB′,再由翻折的性质得,BC=B′C,∵双曲线 y=2x (x>0)经过四边形OABC的顶点A、C,∴S△OCD= 12xy=1,∴S△OCB′= 12xy=1,∵AB∥x轴,∴点A(x-a,2y),∴2y(x-a)=2,∴ay=1,∴S△ABC= 12ay= 12,∴SOABC=S△OCB′+S△ABC+S△ABC=1+ 12+ 12=2.故答案为:2.点评:本题是一道反比例函数的综合题,考查了翻折的性质、反比例函数的性质以及角平分线的性质,是中考压轴题,难度偏大.答题:zhqd老师三、解答题(共66分)17、计算: 12-(12)-1-|2-23|.考点:二次根式的混合运算;负整数指数幂.专题:计算题.分析:将 12化为最简二次根式,利用负整数指数的意义化简( 12)-1,判断2-2 3的符号,去绝对值.解答:解:原式=2 3-2-(2 3-2)=2 3-2-2 3+2=0.点评:本题考查了二次根式的混合运算,负整数指数幂的意义.关键是理解每一个部分运算法则,分别化简.18、解不等式组.并把解集在数轴上表示出来.{x-32+3≥x+1①1-3(x-1)<8-x②.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题;数形结合.分析:先解每一个不等式,再求解集的公共部分即可.解答:解:不等式①去分母,得x-3+6≥2x+2,移项,合并得x≤1,不等式②去括号,得1-3x+3<8-x,移项,合并得x>-2,∴不等式组的解集为:-2<x≤1.数轴表示为:点评:本题考查了解一元一次不等式组,解集的数轴表示法.关键是先解每一个不等式,再求解集的公共部分.19、如图,P是矩形ABCD下方一点,将△PCD绕P点顺时针旋转60°后恰好D点与A点重合,得到△PEA,连接EB,问△ABE是什么特殊三角形?请说明理由.考点:旋转的性质;全等三角形的判定与性质;等边三角形的判定;矩形的性质.专题:几何图形问题.分析:根据旋转的性质,图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变,根据图形求出旋转的角度,即可得出三角形的形状.解答:解:△PCD绕点P顺时针旋转60°得到△PEA,PD的对应边是PA,CD的对应边是EA,线段PD旋转到PA,旋转的角度是60°,因此这次旋转的旋转角为60°,即∠APD为60°,∴△PAD是等边三角形,∴∠DAP=∠PDA=60°,∴∠PDC=∠PAE=30°,∠DAE=30°,∴∠PAB=30°,即∠BAE=60°,又∵CD=AB=EA,∴△ABE是等边三角形,故答案为等边三角形.点评:本题主要考查了图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变,难度适中.20、2011年国家对“酒后驾车”加大了处罚力度,出台了不准酒后驾车的禁令.某记者在一停车场对开车的司机进行了相关的调查,本次调查结果有四种情况:①偶尔喝点酒后开车;②已戒酒或从来不喝酒;③喝酒后不开车或请专业司机代驾;④平时喝酒,但开车当天不喝酒.将这次调查悄况整理并绘制了如下尚不完整的统计图,请根据相关倌息,解答下列问题(1)该记者本次一共调查了 200名司机.(2)求图甲中④所在扇形的圆心角,并补全图乙.(3)在本次调查中,记者随机采访其中的一名司机.求他属第②种情况的概率.(4)请估计开车的10万名司机中,不违反“洒驾“禁令的人数.考点:扇形统计图;用样本估计总体;条形统计图;概率公式.专题:图表型.分析:(1)从扇形图可看出①种情况占1%,从条形图知道有2人,所以可求出总人数.(2)求出④所占的百分比然后乘以360°就可得到圆心角度数,然后求出其他情况的人,补全条形图.(3)②种情况的概率为②中调查的人数除以调查的总人数.(4)2万人数减去第①种情况的人数就是不违反“洒驾“禁令的人数.解答:解:(1) 21%=200(人)总人数是200人.(2)70200×360°=126°.200×9%=18(人)200-18-2-70=110(人)第②种情况110人,第③种情况18人.(3)他属第②种情况的概率为 110200= 1120.在本次调查中,记者随机采访其中的一名司机.求他属第②种情况的概率 1120.(4)20000-20000×1%=19800(人).一共有19800人不违反“洒驾“禁令的人数.点评:本题考查对扇形图和条形图的认知能力,知道扇形图表现的是部分占整体的百分比,条形图告诉我们每组里面的具体数据,从而可求答案.21、某河道上有一个半圆形的拱桥,河两岸筑有拦水堤坝.其半圆形桥洞的横截面如图所示.已知上、下桥的坡面线ME、NF与半圆相切,上、下桥斜面的坡度i=1:3.7,桥下水深=5米.水面宽度CD=24米.设半圆的圆心为O,直径AB在坡角顶点M、N的连线上.求从M 点上坡、过桥、下坡到N点的最短路径长.(参考数据:π≈3,3≈1.7,tan15°= 12+3)考点:解直角三角形的应用-坡度坡角问题.专题:几何图形问题.分析:首先明确从M点上坡、过桥、下坡到N点的最短路径长应为如图ME+ EF︿+FN,连接如图,把实际问题转化为直角三角形问题,由已知求出OD即半径,再由坡度i=1:3.7和tan15°= 12+3=1:3.7,得出∠M=∠N=15°,因此能求出ME和FN,所以求出∠EOM=∠FON=90°-15°=75°,则得出 EF︿所对的圆心角∠EOF,相继求出弧EF的长,从而求出从M点上坡、过桥、下坡到N点的最短路径长.解答:解:已知CD=24,0P=5,∴PD=12,∴OD2=OP2+PD2=52+122=169,∴O D=13,则OE=OF=13,已知坡度i=1:3.7和tan15°= 12+3=1:3.7,∴∠M=∠N=15°,∴cot15°=2+ 3,∴ME=FN=13•cot15°=12×(2+ 3)=24+12 3,∠EOM=∠FON=90°-15°=75°,∴∠EOF=180°-75°-75°=30°,∴ EF︿= 30360×2π×13= 136π,∴ME+ EF︿+FN=24+12 3+ 136π+24+12 3≈95.3.答:从M点上坡、过桥、下坡到N点的最短路径长为95.3米.点评:此题考查的知识点是解直角三角形的应用,解题的关键是由已知先求出半圆的半径和∠M和∠N,再由直角三角形求出MF和FN,求出弧EF的长.考点:解直角三角形的应用-坡度坡角问题.专题:几何图形问题.分析:首先明确从M点上坡、过桥、下坡到N点的最短路径长应为如图ME+ EF^+FN,连接如图,把实际问题转化为直角三角形问题,由已知求出OD即半径,再由坡度i=1:3.7和tan15°= 12+3=1:3.7,得出∠M=∠N=15°,因此能求出ME和FN,所以求出∠EOM=∠FON=90°-15°=75°,则得出 EF^所对的圆心角∠EOF,相继求出弧EF的长,从而求出从M 点上坡、过桥、下坡到N点的最短路径长.解答:解:已知CD=24,0P=5,∴PD=12,∴OD2=OP2+PD2=52+122=169,∴OD=13,则OE=OF=13,已知坡度i=1:3.7和tan15°= 12+3=1:3.7,∴∠M=∠N=15°,∴cot15°=2+ 3,∴ME=FN=13•cot15°=12×(2+ 3)=24+12 3,∠EOM=∠FON=90°-15°=75°,∴∠EOF=180°-75°-75°=30°,∴EF^= 30360×2π×13= 136π,∴ME+ EF^+FN=24+12 3+ 136π+24+12 3≈95.3.答:从M点上坡、过桥、下坡到N点的最短路径长为95.3米.点评:此题考查的知识点是解直角三角形的应用,解题的关键是由已知先求出半圆的半径和∠M和∠N,再由直角三角形求出MF和FN,求出弧EF的长.答题:sdwdmxt老师22、如图,等腰梯形ABCD的底边AD在x轴上,顶点C在y轴正半轴上,B(4,2),一次函数y=kx-1的图象平分它的面积,关于x的函数y=mx2-(3m+k)x+2m+k的图象与坐标轴只有两个交点,求m的值.考点:抛物线与x轴的交点;一次函数的性质;等腰梯形的性质.专题:计算题.分析:过B作BE⊥AD于E,连接OB、CE交于点P,根据矩形OCBE的性质求出B、P坐标,然后再根据相似三角形的性质求出k的值,将解析式y=mx2-(3m+k)x+2m+k中的k化为具体数字,再分m=0和m≠0两种情况讨论,得出m的值.解答:解:过B作BE⊥AD于E,连接OB、CE交于点P,[21世纪教育网∵P为矩形OCBE的对称中心,则过点P的直线平分矩形OCBE的面积.∵P为OB的中点,而B(4,2),P点坐标为(2,1),在Rt△ODC与Rt△EAB中,OC=BE,AB=CD,Rt△ODC≌Rt△EAB(HL),△ODC≌Rt△EBA,过点(0,-1)与P(2,1)的直线平分等腰梯形面积,这条直线为y=kx-1.2k-1=1,则k=1.∵关于x的函数y=mx2-(3m+1)x+2m+1的图象与坐标轴只有两个交点,∴①当m=0时,y=-x+1,其图象与坐标轴有两个交点(0,1),(1,0);②当m≠0时,函数y=mx2-(3m+1)x+2m+1的图象为抛物线,且与y轴总有一个交点(0,2m+1),若抛物线过原点时,2m+1=0,即m=- 12,此时,△=(3m+1)2-4m(2m+1)=(m+1)2>0,故抛物线与x轴有两个交点且过原点,符合题意.若抛物线不过原点,且与x轴只有一个交点,也符合题意.综上所述,m的值为m=0或- 12.点评:此题考查了抛物线与坐标轴的交点,同时结合了梯形的性质和一次函数的性质,要注意数形结合,同时要进行分类讨论,得到不同的m值.考点:抛物线与x轴的交点;一次函数的性质;等腰梯形的性质.专题:计算题.分析:过B作BE⊥AD于E,连接OB、CE交于点P,根据矩形OCBE的性质求出B、P坐标,然后再根据相似三角形的性质求出k的值,将解析式y=mx2-(3m+k)x+2m+k中的k化为具体数字,再分m=0和m≠0两种情况讨论,得出m的值.解答:解:过B作BE⊥AD于E,连接OB、CE交于点P,∵P为矩形OCBE的对称中心,则过点P的直线平分矩形OCBE的面积.∵P为OB的中点,而B(4,2),P点坐标为(2,1),在Rt△ODC与Rt△EAB中,OC=BE,AB=CD,Rt△ODC≌Rt△EAB(HL),△ODC≌Rt△EBA,过点(0,-1)与P(2,1)的直线平分等腰梯形面积,这条直线为y=kx-1.2k-1=1,则k=1.∵关于x的函数y=mx2-(3m+1)x+2m+1的图象与坐标轴只有两个交点,∴①当m=0时,y=-x+1,其图象与坐标轴有两个交点(0,1),(1,0);②当m≠0时,函数y=mx2-(3m+1)x+2m+1的图象为抛物线,且与y轴总有一个交点(0,2m+1),若抛物线过原点时,2m+1=0,即m=- 12,此时,△=(3m+1)2-4m(2m+1)=(m+1)2>0,故抛物线与x轴有两个交点且过原点,符合题意.若抛物线不过原点,且与x轴只有一个交点,也符合题意.综上所述,m的值为m=0或- 12.点评:此题考查了抛物线与坐标轴的交点,同时结合了梯形的性质和一次函数的性质,要注意数形结合,同时要进行分类讨论,得到不同的m值.答题:CJX老师23、2011年长江中下游地区发生了特大早情.为抗旱保丰收,某地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备投资的金额与政府补的额度存在下表所示的函数对应关系.型号金额投资金额x(万元)Ⅰ型设备Ⅱ型设备21世纪教育网X 5 X 2 4补贴金额y(万元)y1=kx(k≠0)2y2=ax2+bx(a≠0)2.43.2(1)分别求y1和y2的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.考点:二次函数的应用.分析:(1)根据图表得出函数上点的坐标,利用待定系数法求出函数解析式即可;(2)根据y=y1+y2得出关于x的二次函数,求出二次函数最值即可.解答:解:(1)y1=kx,将(5,2)代入得:2=5k,k=0.4,y1=0.4x,y2=ax2+bx,将(2,2.4),(4,3.2)代入得:{2.4=4a+2b3.2=16a+4b,解得:a=-0.2,b=1.6,∴y2=-0.2x2+1.6x;(2)假设投资购买Ⅰ型用x万元、Ⅱ型为(10-x)万元,y=y1+y2=0.4x-0.2(10-x)2+1.6(10-x);=-0.2x 2+2.8x-4,当x=- b2a=7时,y= 4ac-b24a=5.8万元,∴当购买Ⅰ型用7万元、Ⅱ型为3万元时能获得的最大补贴金额.点评:此题主要考查了待定系数法求一次函数和二次函数解析式以及二次函数的最值问题,利用函数解决实际问题是考试的中热点问题,同学们应重点掌握.24、如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA 所在直线为x轴、y 轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y= 14x2+bx+c经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.(1)求B点坐标;(2)求证:ME是⊙P的切线;(3)设直线AC与抛物线对称轴交于N,Q点是此轴称轴上不与N点重合的一动点,①求△ACQ周长的最小值;②若FQ=t,S△ACQ=S,直接写出S与t之间的函数关系式.考点:二次函数综合题.分析:(1)如图甲,连接PE、PB,设PC=n,由正方形CDEF的面积为1,可得CD=CF=1,根据圆和正方形的对称性知:OP=PC=n,由PB=PE,根据勾股定理即可求得n的值,继而求得B 的坐标;(2)由(1)知A(0,2),C(2,0),即可求得抛物线的解析式,然后求得FM的长,则可得△PEF∽△EMF,则可证得∠PEM=90°,即ME是⊙P的切线;(3)①如图乙,延长AB交抛物线于A′,连CA′交对称轴x=3于Q,连AQ,则有AQ=A′Q,△ACQ周长的最小值为AC+A′C的长,利用勾股定理即可求得△ACQ周长的最小值;②分别当Q点在F点上方时,当Q点在线段FN上时,当Q点在N点下方时去分析即可求得答案.解答:解:(1)如图甲,连接PE、PB,设PC=n,∵正方形CDEF的面积为1,∴CD=CF=1,根据圆和正方形的对称性知:OP=PC=n,∴BC=2PC=2n,∵而PB=PE,∴PB2=BC2+PC2=4n2+n2=5n2,PE2=PF2+EF2=(n+1)2+1,∴5n2=(n+1)2+1,解得:n=1或n=- 12(舍去),∴BC=OC=2,∴B点坐标为(2,2);(2)如图甲,由(1)知A(0,2),C(2,0),∵A,C在抛物线上,\∴{c=214×4+2b+c=0,解得: {c=2b=-32,∴抛物线的解析式为:y= 14x2- 32x+2= 14(x-3)2- 14,∴抛物线的对称轴为x=3,即EF所在直线,∵C与G关于直线x=3对称,∴CF=FG=1,∴MF= 12FG= 12,在Rt△PEF与Rt△EMF中,∠EFM=∠EFP,∵ FMEF=121=12, EFPF=12,∴ FMEF=EFPF,∴△PEF∽△EMF,∴∴∠EPF=∠FEM,∴∠PEM=∠PEF+∠FEM=∠PEF+∠EPF=90°,∴ME是⊙P的切线;(3)①如图乙,延长AB交抛物线于A′,连CA′交对称轴x=3于Q,连AQ,则有AQ=A′Q,∴△ACQ周长的最小值为AC+A′C的长,∵A与A′关于直线x=3对称,∴A(0,2),A′(6,2),∴A′C=(6-2)2+22=2 5,而AC=22+22=2 2,∴△ACQ周长的最小值为2 2+2 5;②当Q点在F点上方时,S=t+1,当Q点在线段FN上时,S=1-t,当Q点在N点下方时,S=t-1.点评:此题考查了待定系数法求二次函数的解析式,圆的性质,相似三角形的判定与性质以及勾股定理等知识.此题综合性很强,题目难度较大,解题的关键是方程思想、分类讨论与数形结合思想的应用.。
2011年云南省昆明市中考数学一、选择题(每小题3分,满分27分)1、昆明小学1月份某天的气温为5℃,最低气温为﹣1℃,则昆明这天的气温差为( )A 、4℃B 、6℃C 、﹣4℃D 、﹣6℃答案:B2、如图是一个由相同的小正方体组成的立体图形,它的主视图是( )答案:D3、据2010年全国第六次人口普查数据公布,云南省常住人口为45966239人,45966239用科学记数法表示且保留两个有效数字为( )A 、4.6×107B 、4.6×106C 、4.5×108D 、4.5×107答案;A4、小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为( )A 、91,88B 、85,88C 、85,85D 、85,84.5答案:D5、若x 1,x 2是一元二次方程2x 2﹣7x+4=0的两根,则x 1+x 2与x 1•x 2的值分别是( )A 、﹣72,﹣2B 、﹣72,2C 、72,2D 、72,﹣2 答案:C6、列各式运算中,正确的是( )A 、3a•2a=6aB 22=C 2=D 、(2a+b )(2a ﹣b )=2a 2﹣b 2 答案:B7、(2011•昆明)如图,在 ABCD 中,添加下列条件不能判定 ABCD 是菱形的是( )A 、AB=BCB 、AC ⊥BD C 、BD 平分∠ABC D 、AC=BD答案:D8、抛物线y=ax 2+bx+c (a≠0)的图象如图所示,则下列说法正确的是( )A 、b 2﹣4ac <0B 、abc <0C 、12b a -<-D 、a ﹣b+c <0答案:C9、如图,在Rt △ABC 中,∠ACB=90°,BC=3,AB 的垂直平分线ED 交BC 的延长线与D 点,垂足为E ,则sin ∠CAD=( )A 、14B 、13C 、154D 、1515答案:A二、填空题(每题3分,满分18分.)10、当x 时,二次根式5x -答案x≥511、如图,点D 是△ABC 的边BC 延长线上的一点,∠A=70°,∠ACD=105°,则∠B= .答案:35°.12、若点P (﹣2,2)是反比例函数k y x =的图象上的一点,则此反比例函数的解析式为 . 答案:y=4x13、计算:2()ab a b a a b a b ++÷--= . 答案:a14、如图,在△ABC 中,∠C=120°,AB=4cm ,两等圆⊙A 与⊙B 外切,则图中两个扇形(即阴影部分)的面积之和为 cm 2.(结果保留π).答案:23π 15、某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通汽车的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为 .答案:90%三、简答题(共10题,满分75.)16102011112()(21)(1)2--+-. 答案:解:原式3﹣1﹣317、解方程:31122x x+=--. 答案:解:方程的两边同乘(x ﹣2),得3﹣1=x ﹣2,解得x=4.检验:把x=4代入(x ﹣2)=2≠0. ∴原方程的解为:x=4.18、在 ABCD 中,E ,F 分别是BC 、AD 上的点,且BE=DF .求证:AE=CF .答案:证明:∵四边形ABCD 是平行四边形,∴AB=CD ,∠B=∠D ,∵BE=DF ,∴△ABE ≌△CDF ,∴AE=CF .19、某校在八年级信息技术模拟测试后,八年级(1)班的最高分为99分,最低分为40分,课代表将全班同学的成绩(得分取整数)进行整理后分为6个小组,制成如下不完整的频数分布直方图,其中39.5~59.5的频率为0.08,结合直方图提供的信息,解答下列问题:(1)八年级(1)班共有 50 名学生;(2)补全69.5~79.5的直方图;(3)若80分及80分以上为优秀,优秀人数占全班人数的百分比是多少?(4)若该校八年级共有450人参加测试,请你估计这次模拟测试中,该校成绩优秀的人数大约有多少人?答案:解:(1)4÷0.08=50,(2)69.5~79.5的频数为:50﹣2﹣2﹣8﹣18﹣8=12,如图:(3)18850×100%=52%,(4)450×52%=234(人),答:优秀人数大约有234人.20、在平面直角坐标系中,△ABC的位置如图所示,请解答下列问题:(1)将△ABC向下平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1;(2)将△ABC绕点O顺时针方向旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2,并写出A2点的坐标.答案:解:(1)所画图形如下:(2)所画图形如下:∴A2点的坐标为(2,﹣3).21、如图,在昆明市轨道交通的修建中,规划在A、B两地修建一段地铁,点B在点A的正东方向,由于A、B之间建筑物较多,无法直接测量,现测得古树C在点A的北偏东45°方向上,在点B的北偏西60°方≈≈)向上,BC=400m,请你求出这段地铁AB的长度.(结果精确到1m 1.414 1.732答案:解:过点C 作CD ⊥AB 于D ,由题意知:∠CAB=45°,∠CBA=30°,∴CD=12BC=200, BD=CB•cos (90°﹣60°)=200,AD=CD=200,∴3(m ),答:这段地铁AB 的长度为546m .22、小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.(1)请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;(2)若规定:两次抽出的纸牌数字之和为奇数,则小昆出获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?答案:解:(1)(2)不公平.理由:因为两纸牌上的数字之和有以下几种情况:1+1=2;2+1=3;3+1=4;1+2=3;2+2=4;3+2=5;1+3=4;2+3=5;3+3=6共9种情况,其中5个偶数,4个奇数. 即小坤获胜的概率为为59,而小明的概率为49,∴59>49,∴此游戏不公平. 23、A 市有某种型号的农用车50辆,B 市有40辆,现要将这些农用车全部调往C 、D 两县,C 县需要该种农用车42辆,D 县需要48辆,从A 市运往C 、D 两县农用车的费用分别为每辆300元和150元,从B 市运往C 、D 两县农用车的费用分别为每辆200元和250元.(1)设从A 市运往C 县的农用车为x 辆,此次调运总费为y 元,求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)若此次调运的总费用不超过16000元,有哪几种调运方案?哪种方案的费用最小?并求出最小费用? 答案:解:(1)从A 市运往C 县的农用车为x 辆,此次调运总费为y 元,根据题意得:y=300x+200(42﹣x )+150(50﹣x )+250(x ﹣2),即y=200x+15400,所以y 与x 的函数关系式为:y=200x+15400.又∵042050020x x x x ≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩, 解得:2≤x≤42,且x 为整数,所以自变量x 的取值范围为:2≤x≤42,且x 为整数.(2)∵此次调运的总费用不超过16000元,∴200x+15400≤16000解得:x≤3,∴x 可以取:2或3,方案一:从A 市运往C 县的农用车为2辆,从B 市运往C 县的农用车为40辆,从A 市运往D 县的农用车为48辆,从B 市运往D 县的农用车为0辆,方案二:从A 市运往C 县的农用车为3辆,从B 市运往C 县的农用车为39辆,从A 市运往D 县的农用车为47辆,从B 市运往D 县的农用车为1辆,∵y=200x+154000是一次函数,且k=200>0,y 随x 的增大而增大,∴当x=2时,y 最小,即方案一费用最小,此时,y=200×2+15400=15800,所以最小费用为:15800元.24、如图,已知AB 是⊙O 的直径,点E 在⊙O 上,过点E 的直线EF 与AB 的延长线交与点F ,AC ⊥EF ,垂足为C ,AE 平分∠FAC .(1)求证:CF 是⊙O 的切线;(2)∠F=30°时,求OFES S ∆四边形AOEC 的值?答案:(1)证明:连接OE,∵AE平分∠FAC,∴∠CAE=∠OAE,又∵OA=OE,∠OEA=∠OAE,∠CAE=∠OEA,∴OE∥AC,∴∠OEF=∠ACF,又∵AC⊥EF,∴∠OEF=∠ACF=90°,∴OE⊥CF,又∵点E在⊙O上,∴CF是⊙O的切线;(2)∵∠OEF=90°,∠F=30°,∴OF=2OE又OA=OE,∴AF=3OE,又∵OE∥AC,∴△OFE∽△AFC,∴23OE OFAC AF==,∴49OFEAFCSS∆∆=,∴45OFESS∆=四边形AOEC.25、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长;(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由;(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由.答案:解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC2+BC2=AB2,即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm;(2)①当点Q在边BC上运动时,过点Q作QH⊥AB于H,∵AP=x,∴BP=10﹣x ,BQ=2x ,∵△QHB∽△ACB, ∴QH QB AC AB =,∴QH=85x ,y=12BP•QH=12(10﹣x )•85x=﹣45x 2+8x (0<x≤3), ②当点Q 在边CA 上运动时,过点Q 作QH′⊥AB 于H′,∵AP=x,∴BP=10﹣x ,AQ=14﹣2x ,∵△AQH′∽△ABC, ∴'AQ QH AB BC =,即:'14106x QH -=,解得:QH′=35(14﹣x ), ∴y=12PB•QH′=12(10﹣x )•35(14﹣x )=310x 2﹣365x+42(3<x <7); ∴y 与x 的函数关系式为:y=2248(03)533642(37)105x x x x x x ⎧-+<≤⎪⎪⎨⎪-+<<⎪⎩; (3)∵AP=x,AQ=14﹣x ,∵PQ⊥AB,∴△APQ∽△ACB,∴AP AQ PQ AC AB BC ==,即:148106x x PQ -==, 解得:x=569,PQ=143,∴PB=10﹣x=349,∴1421334179PQ BC PB AC==≠, ∴当点Q 在CA 上运动,使PQ⊥AB 时,以点B 、P 、Q 为定点的三角形与△ABC 不相似;(4)存在.理由:∵AQ=14﹣2x=14﹣10=4,AP=x=5,∵AC=8,AB=10,∴PQ是△ABC的中位线,∴PQ∥AB,∴PQ⊥AC,∴PQ是AC的垂直平分线,∴PC=AP=5,∴当点M与P重合时,△BCM的周长最小,∴△BC M的周长为:MB+BC+MC=PB+BC+PC=5+6+5=16.∴△BCM的周长最小值为16.。