2013年5月济南市三模拟理科数学试题(含答案)
- 格式:doc
- 大小:785.00 KB
- 文档页数:10
山东省济南市槐荫区2013年中考数学三模试卷一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)2.(3分)(2013•槐荫区三模)如图是由5个底面直径与高度相等的大小相同的圆柱搭成的几何体,其左视图是()B3.(3分)(2013•槐荫区三模)某产业转移示范区一季度完成固定资产投资23800万元,238006.(3分)(2013•槐荫区三模)不等式组的解集为()7.(3分)(2013•槐荫区三模)若菱形两条对角线的长分别为6和8,则这个菱形的周长为8.(3分)(2013•槐荫区三模)计算结果是()9.(3分)(2013•槐荫区三模)阳光公司销售一种进价为21元的电子产品,按标价的九折10.(3分)(2013•槐荫区三模)如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC 的长是()AB=211.(3分)(2013•槐荫区三模)若一次函数y=kx+b的函数值y随x的增大而减小,且图象12.(3分)(2013•槐荫区三模)如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(1,2),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在双曲线y=(x>0)上,则k的值为()13.(3分)(2013•槐荫区三模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac>0;②a﹣b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.其中错误的结论有()14.(3分)(2013•槐荫区三模)用棋子摆出下列一组“口”字,按照这种方法白下区,则摆第n个“口”字需用旗子()15.(3分)(2013•槐荫区三模2010•内江)如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为()BBE=BE=二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.)16.(3分)(2013•槐荫区三模)分解因式:a2﹣4a+4=(a﹣2)2.17.(3分)(2013•槐荫区三模)点Q与点P(1,2)关于x轴对称,则点Q的坐标为(1,﹣2).18.(3分)(2013•槐荫区三模)如图,直线AB、CD相交于点O.OE平分∠AOD,若∠BOD=100°,则∠AOE=40度.19.(3分)(2013•槐荫区三模)为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15~20包括15,不包括20,以下同),请根据统计图计算成绩在20~30次的频率是0.7.,计算可得答案.20.(3分)(2013•槐荫区三模)如图,∠BAC位于6×6的方格纸中,则tan∠BAC=.BAC=.21.(3分)(2013•槐荫区三模)如图,已知⊙P的半径为2,圆心P在抛物线y=﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为(,2),(﹣,2).时,x±x点坐标为()或(﹣,三、解答题(本大题共7个小题.共57分.解答应写出文字说明、证明过程或演算步骤.)22.(7分)(2013•槐荫区三模)(1)计算:°;(2)解方程:.1+1+23.(7分)(2013•槐荫区三模)(1)如图1,点A、E、F、C在同一条直线上,AD∥BC,AD=CB,AE=CF,求证:△ADF≌△CBE.(2)如图2,AB是⊙O的直径,BC是一条弦,∠BOC=60°,延长OC至P点,并使PC=BC.求证:PB是⊙O的切线.∠∠24.(8分)(2013•槐荫区三模)某镇2007年财政净收入为5000万元,预计两年后实现财政净收入翻一番,那么该镇这两年中财政净收入的平均年增长率应为多少?(精确到0.1%)(参考数据:≈1.414,≈1.732,≈2.236),或﹣25.(8分)(2013•槐荫区三模)分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.种情况,所以欢欢胜的概率是;﹣,两人获胜的概率相同,所以游戏公平.26.(9分)(2013•槐荫区三模)如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D,连接BC,BC与抛物线的对称轴交于点E.(1)求点B、点C的坐标和抛物线的对称轴;(2)求直线BC的函数关系式;(3)点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F.设点P的横坐标为m;用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?﹣)分别代入得:27.(9分)(2013•槐荫区三模)如图,过点P(﹣4,3)作x轴,y轴的垂线,分别交x轴,y轴于A、B两点,交双曲线y=(k≥2)于E、F两点.(1)点E的坐标是(﹣4,﹣),点F的坐标是(,3);(均用含k的式子表示)(2)判断EF与AB的位置关系,并证明你的结论;(3)记S=S△PEF﹣S△OEF,S是否有最小值?若有,求出其最小值;若没有,请你说明理由.,求出对应的)()PE=3+,PF=PAB=,)=.)(28.(9分)(2013•槐荫区三模)如图,已知直线l的解析式为y=﹣x+6,直线l与x轴、y 轴分别相交于A、B两点,平行于直线l的直线n从原点出发,沿x轴正方向以每秒1个单位长度的速度运动,设运动时间为t秒,运动过程中始终保持n∥l,当直线n与直线l重合时,运动结束.直线n与x轴,y轴分别相交于C、D两点,以线段CD的中点P为圆心、CD为直径,在CD上方作半圆,半圆面积为S.(1)求A、B两点的坐标;(2)当t为何值时,半圆与直线l相切?(3)直线n在运动过程中,①求S与t的函数关系式;②是否存在这样的t值,使得半圆面积S=S梯形ABCD?若存在,求出t值;若不存在,说明理由.SEAD=,PF=DE=t==PD=CD==(π∴;=t﹣.S=,S=。
【解析版】山东省实验中学2013届高三第三次诊断性测试理科数学(2012.12)注意事项:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共两卷。
其中第Ⅰ卷为第1页至第2页,共60分;第Ⅱ卷为第3页至第6页,共90分;两卷合计150分。
考试时间为120分钟。
本科考试不允许使用计算器。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1、设}{}2,1{2a N M ==,,则”“1=a 是”“M N ⊆的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件【答案】A【解析】若”“M N ⊆,则有21a =或22a =,解得1a =±或a =”“1=a 是”“M N ⊆充分不必要条件,选A.2、下列函数中,在其定义域内,既是奇函数又是减函数的是( ) A.xx f 1)(= B.x x f -=)( C.x x x f 22)(-=- D.x x f tan )(-= 【答案】C 【解析】xx f 1)(=在定义域上是奇函数,但不单调。
x x f -=)(为非奇非偶函数。
x x f tan )(-=在定义域上是奇函数,但不单调。
所以选C.3.若3)4tan(=-απ,则αcot 等于( )A.2B.21- C.21D.-2【答案】D 【解析】由3)4tan(=-απ得,tant a n ()13144tan tan[()]441321tan()4ππαππααπα---=--===-++-,所以1cot 2tan αα==-选D.4.函数x x x f ln )1()(+=的零点有( )A.0个B.1个C.2个D.3个 【答案】B【解析】由()(1)ln 0f x x x =+=得1ln 1x x =+,做出函数1ln ,1y x y x ==+的图象,如图由图象中可知交点个数为1个,即函数的零点个数为1个,选B.5.已知两条直线2-=ax y 和01)2(3=++-y a x 互相平行,则a 等于( ) A.1或-3 B.-1或3 C.1或3 D.-1或3【答案】A【解析】因为直线2-=ax y 的斜率存在且为a ,所以(2)0a -+≠,所以01)2(3=++-y a x 的斜截式方程为3122y x a a =+++,因为两直线平行,所以32a a =+且122a ≠-+,解得1a =-或3a =,选A. 6.设命题p :曲线x e y -=在点),(e 1-处的切线方程是:ex y -=;命题q :b a ,是任意实数,若b a >,则1111+<+b a ,则( ) A.“p 或q ”为真 B.“p 且q ”为真 C.p 假q 真 D.p ,q 均为假命题【答案】A【解析】'()'x xy e e --==-,所以切线斜率为e -,切线方程为(1)y e e x -=-+,即y e x =-,所以P 为真。
2013年中考山东济南卷模拟试题一、选择题:本大题共12个小题.每小题4分;共48分. 1.计算:29= ( )A.-1 B.-3 C.3 D.52.我市深入实施环境污染整治,某经济开发区的40家化工企业中已关停、整改32家,每年排放的污水减少了167000吨.将167000用科学记数法表示为 ( )A .316710⨯B .416.710⨯C .51.6710⨯D .60.16710⨯3.已知,如图,AD 与BC 相交于点O ,AB ∥CD ,如果∠B =20°,∠D=400,那么∠BOD 为( )A. 40°B. 50°C. 60°D. 70° 4.已知2243a b x y x y x y -+=-,则a +b 的值为( ).A. 1B. 2C. 3D. 4 5.因式分解()219x --的结果是( )A. ()()24x x +-B. ()()81x x ++C. ()()24x x -+D. ()()108x x -+6.如图,DE 是ABC △的中位线,则ADE △与ABC △的面积之比是( )A .1:1B .1:2C .1:3D .1:4 7.在下列命题中,正确的是( )A .一组对边平行的四边形是平行四边形B .有一个角是直角的四边形是矩形C .有一组邻边相等的平行四边形是菱形D .对角线互相垂直平分的四边形是正方形8.如图,是由一些相同的小正方体搭成的几何体的三视图,搭成这个几 何体的小正方体的个数有( )A. 2个B. 3个C. 4个D. 6个9.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是( )A.掷一枚正六面体的骰子,出现1点的概率B .从一个装有2个白球和1个红球的袋子中任取一球,取 到红球的概率C .抛一枚硬币,出现正面的概率D .任意写一个整数,它能被2整除的概率10.若二次函数222y ax bx a =++-(a b ,为常数)的图象如下,则a 的值为( )A .2- B .2- C .1 D 211.如图,AB 是⊙O 的直径,AB =4,AC 是弦,AC =23AOC 为( )(第10题) y O A x BACE D A DOACBOACDO12.甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰。
山东省济南市高考数学模拟试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1.(5分)(2013•济南一模)已知全集∪=R,集合A={x|2x>1},B={x|x2﹣3x﹣4>0},则A∩B2.(5分)(2013•济南一模)已知复数(i是虚数单位),它的实部和虚部的和是()解:∵=3.(5分)(2013•济南一模)某苗圃基地为了解基地内甲、乙两块地种植的同一种树苗的长势情况,从两块地各随机抽取了10株树苗,用茎叶图表示上述两组数据,对两块地抽取树苗的高度的平均甲、乙和中位数y甲、y乙进行比较,下面结论正确的是().甲>乙,y甲>y乙.甲<乙,y甲<y乙.甲<乙,y甲>y乙甲>乙,y甲<y乙4.(5分)(2013•济南一模)已知实数x,y满足,则目标函数z=x﹣y的最小得6.(5分)(2013•济宁一模)函数f(x)=ln(x﹣)的图象是().﹣)的定义域,可排除)>,即>)的定义域为7.(5分)(2013•济南一模)阅读右面的程序框图,运行相应的程序,输出的结果为()...的值,最后输出=故答案为:8.(5分)(2013•济南一模)二项式(﹣)8的展开式中常数项是()﹣•••﹣•9.(5分)(2013•济南一模)已知直线ax+by+c=0与圆O:x2+y2=1相交于A,B两点,且,则的值是()...•,AOC=•=1=10.(5分)(2013•济南一模)图是函数y=Asin(ωx+φ)(x∈R)在区间上的图象,为了得到这个函数的图象,只要将y=sinx(x∈R)的图象上所有的点()向左平移个单位长度,再把所得各点的横坐标缩短到原来的向左平移向左平移个单位长度,再把所得各点的横坐标缩短到原来的向左平移代入(﹣,2x+x+个单位长度,再把所得各11.(5分)(2013•济南一模)一个几何体的三视图如图所示,则它的体积为()..=12.(5分)(2013•济南一模)设a=dx,b=dx,c=dx,则下列关系式成立.<<.<<.<<<<∵∴=ln2,∵,,∴,∴,∴∴∵,,∴∴∴∴.二、填空题:本大题共4个小题,每小题4分,共16分.13.(4分)(2013•济南一模)若点A(1,1)在直线mx+ny﹣2=0上,其中,mn>0,则+的最小值为2.(×=,利∴(×=当且仅当14.(4分)(2013•济南一模)已知抛物线y2=4x的焦点F恰好是双曲线﹣=1(a>0,b>0)的右顶点,且渐近线方程为y=x,则双曲线方程为x2﹣=1.b=双曲线﹣∴=﹣15.(4分)(2013•济南一模)函数y=sin(x+φ)(φ>0)的部分图象如图所示,设P是图象的最高点,A,B是图象与x轴的交点,则tan∠APB﹣2.T=AB==16.(4分)(2013•济南一模)f(x)=|2x﹣1|,f1(x)=f(x),f2(x)=f(f1(x)),…,f n (x)=f(f n﹣1(x)),则函数y=f4(x)的零点个数为8.1|=或=或,,令其等于或,或;或,或,1|=,或;或,或,或;或;或或.三、解答题:本大题共6小题,共74分.17.(12分)(2013•济南一模)已知=(2cosx+2sinx,1),=(cosx,﹣y),且⊥.(1)将y表示为x的函数f(x),并求f(x)的单调增区间;(2)已知a,b,c分别为△ABC的三个内角A,B,C对应的边长,若f()=3,且a=2,b+c=4,求△ABC的面积.≤≤+)A+A=,由余弦定理可得S=2cosx+22cosx+2x+2=1+cos2x+2x+≤≤+﹣,﹣]))A+)A+=,解得A==18.(12分)(2013•济南一模)已知四棱锥P﹣ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC与BD交于O,PO⊥底面ABCD,PO=2,AB=2CD=2,E、F分别是AB、AP的中点.(1)求证:AC⊥EF;(2)求二面角F﹣OE﹣A的余弦值.AB=2CD=2OE=EA=EB=∴,∴)可知:.的法向量为,,得,令∴可取∴==因此,19.(12分)(2013•济南一模)数列{a n}的前n项和为S n,a1=1,a n+1=2S n+1(n∈N*),等差数列{b n}满足b3=3,b5=9.(1)分别求数列{a n},{b n}的通项公式;(2)设C n=(n∈N*),求证C n+1<C n.)由∴.,则,解得)可得.∴=c∴.20.(12分)(2013•济南一模)某学生参加某高校的自主招生考试,须依次参加A、B、C、D、E五项考试,如果前四项中有两项不合格或第五项不合格,则该考生就被淘汰,考试即结束;考生未被淘汰时,一定继续参加后面的考试.已知每一项测试都是相互独立的,该生参加A、B、C、D四项考试不合格的概率均为,参加第五项不合格的概率为,(1)求该生被录取的概率;(2)记该生参加考试的项数为X,求X的分布列和期望.[)C()],×;=C••=;=C••=﹣﹣=×+3×+4×+5×.21.(13分)(2013•济南一模)已知函数f(x)=xe x.(I)求f(x)的单调区间与极值;(II)是否存在实数a使得对于任意的x1,x2∈(a,+∞),且x1<x2,恒有成立?若存在,求a的范围,若不存在,说明理由.﹣22.(13分)(2013•济南一模)已知椭圆+=1(a>b>0)的离心率为,且过点(2,).(1)求椭圆的标准方程;(2)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若k AC•k BD=﹣,(i)求•的最值.(ii)求证:四边形ABCD的面积为定值.)把点代入椭圆的方程,得到,由离心率=,可得,得到,解得椭圆的标准方程为.﹣﹣,∴联立.解得.∴=2时取等号.∴=4=高考资源网版权所有!投稿可联系QQ:1084591801。
山东省实验中学2013年高考数学三模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)(2011•湖南)设集合M={1,2},N={a2},则“a=1”是“N⊆M”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件考点:集合关系中的参数取值问题.专题:压轴题.分析:先由a=1判断是否能推出“N⊆M”;再由“N⊆M”判断是否能推出“a=1”,利用充要条件的定义得到结论.解答:解:当a=1时,M={1,2},N={1}有N⊆M当N⊆M时,a2=1或a2=2有所以“a=1”是“N⊆M”的充分不必要条件故选A点评:本题考查利用充要条件的定义判断一个命题是另一个命题的条件问题.2.(5分)下列函数中,在其定义域内,既是奇函数又是减函数的是()A.f(x)= B.f(x)=C.f(x)=2﹣x﹣2xD.f(x)=﹣tanx考点:奇偶性与单调性的综合.专题:函数的性质及应用.分析:根据函数的解析式及基本初等函数的性质,逐一分析出四个函数的单调性和奇偶性,即可得到答案.解答:解:A中,f(x)=是奇函数,但在定义域内不单调;B中,f(x)=是减函数,但不具备奇偶性;C中,f(x)2﹣x﹣2x既是奇函数又是偶函数;D中,f(x)=﹣tanx是奇函数,但在定义域内不单调;故选C.点评:本题是函数奇偶性和单调性的综合应用,熟练掌握基本初等函数的性质,及函数奇偶性和单调性的定义是解答的关键3.(5分)(2007•江西)若,则cotα等于()A.﹣2 B.C.D. 2考点:三角函数中的恒等变换应用.分析:用两角差的正切公式变形,整理,得到关于tanα的一元一次方程,解方程,得到正切值,根据正切和余切之间的关系,求出余切值.解答:解:由得,∴cotα=﹣2,故选A点评:在三角函数中除了诱导公式和作八个基本恒等式之外,还有两角和与差公式、倍角公式、半角公式、积化和差公式、和差化化积公式,此外,还有万能公式,在一般的求值或证明三角函数的题中,只要熟练的掌握以上公式,就能解决我们的问题.4.(5分)函数f(x)=(x+1)lnx的零点有()A.0个B.1个C.2个D. 3个考点:函数的零点.专题:函数的性质及应用.分析:函数f(x)=(x+1)lnx的零点即方程f(x)=0的解,可转化为方程解的个数问题.解答:解:f(x)=(x+1)lnx的定义域为(0,+∞).令(x+1)lnx=0,则x=1,所以函数f(x)=(x+1)lnx的零点只有一个.故选B.点评:本题考查函数的零点问题,属基础题,往往与方程的解互相转化.5.(5分)已知两条直线y=ax﹣2和3x﹣(a+2)y+1=0互相平行,则a等于()A.1或﹣3 B.﹣1或3 C.1或3 D.﹣1或﹣3考点:两条直线平行的判定.专题:计算题.分析:应用平行关系的判定方法,直接求解即可.解答:解:两条直线y=ax﹣2和3x﹣(a+2)y+1=0互相平行,所以解得a=﹣3,或a=1故选A.点评:本题考查两条直线平行的判定,是基础题.6.(5分)(2009•海珠区二模)设命题p:曲线y=e﹣x在点(﹣1,e)处的切线方程是:y=﹣ex;命题q:a,b是任意实数,若a>b,则.则()A.“p或q”为真B.“p且q”为真C.p假q真D. p,q 均为假命题考点:复合命题的真假.专题:常规题型.分析:先求出曲线y=e﹣x在点(﹣1,e)处的切线方程,判定命题p的真假,然后利用列举法说明命题q是假命题,最后根据复合命题的真值表可得结论.=﹣e解答:解:命题p:y′=﹣e﹣x则y′|x=﹣1∴曲线y=e﹣x在点(﹣1,e)处的切线方程是y﹣e=﹣e(x+1)即y=﹣ex故命题p为真命题命题q:2>﹣2而,故命题q是假命题根据复合命题的真假的真值表可知“p或q”为真,“p且q”为假故选A.点评:本题主要考查了复合命题的真假,以及曲线的切线和不等式的应用,同时考查了分析问题的能力,属于基础题.7.(5分)已知函数f(x)=x2+sinx,则y=f′(x)的大致图象是()A.B. C.D.考点:函数的单调性与导数的关系.专题:计算题.分析:求出函数的导函数,求出导函数在x=0处的函数值f′(0),根据f′(0)的符号判断出选项A错;求出f(x)的二阶导数,根据二阶导数的符号判断出导函数的单调性,判断出选项C错;根据二阶导数的单调性,判断出导函数在上递增的快慢,判断出B对D错.解答:解:f′(x)=x+cosx∵f′(0)=1∴选项A错∵f′′(x)=1﹣sinx≥0∴f′(x)递增∴选项C错在上,f′′(x)=1﹣sinx递减∴增的越来越慢∴选项B对D错故选B点评:解决已知函数的解析式选择图象的题目,一般先研究函数的性质,性质有:特殊点、单调性、对称性、周期性等,再根据性质选择图象.8.(5分)在等差数列{a n}中,a1=﹣2013,其前n项和为S n,若,则S2013的值等于()A.﹣2012 B.﹣2013 C.2012 D. 2013考点:等差数列的前n项和;等差数列的性质.专题:计算题;等差数列与等比数列.分析:设等差数列前n项和为S n=An2+Bn,根据=An+B,可知{}成等差数列,然后求出的值,从而可求出S 2013的值.解答:解:设等差数列前n项和为S n=An2+Bn则=An+B,∴{}成等差数列,∵,=a 1=﹣2013,∴{}是首项为﹣2013,公差为1的等差数列,∴=﹣2013+(2013﹣1)×1=﹣1,即S 2013=﹣2013.故选B.点评:本题主要考查了等差数列的性质,以及构造法的应用,同时考查了转化的思想,属于基础题.9.(5分)(2011•甘肃一模)已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA,PB是圆C:x2+y2﹣2y=0的两条切线,A,B是切点,若四边形PACB的最小面积是2,则k的值为()A. 3 B.C.D. 2考点:直线和圆的方程的应用.专题:计算题;转化思想.分析:先求圆的半径,四边形PACB的最小面积是2,转化为三角形PBC的面积是1,求出切线长,再求PC的距离也就是圆心到直线的距离,可解k的值.解答:解:圆C:x2+y2﹣2y=0的圆心(0,1),半径是r=1,=2S△PBC,四边形PACB的最小面积是2,由圆的性质知:S四边形PACB=2∴S△PBC的最小值=1=rd(d是切线长)∴d最小值圆心到直线的距离就是PC的最小值,∵k>0,∴k=2故选D.点评:本题考查直线和圆的方程的应用,点到直线的距离公式等知识,是中档题.10.(5分)已知等差数列{a n}的公差d不为0,等比数列{b n}的公比q是小于1的正有理数.若a 1=d,b1=d2,且是正整数,则q等于()A.B.C.D.考点:数列的应用.专题:综合题;等差数列与等比数列.分析:确定的表达式,利用是正整数,q是小于1的正有理数,即可求得结论.解答:解:根据题意:a2=a1+d=2d,a3=a1+2d=3d,b2=b1q=d2q,b3=b1q2=d2q2∴=∵是正整数,q是小于1的正有理数.令=t,t是正整数,则有q2+q+1=∴q=对t赋值,验证知,当t=8时,有q=符合题意故选C.点评:本题主要考查等差数列和等比数列的通项公式的应用,特别是等比数列混合题,两者的内在联系很重要.11.(5分)(2007•江苏)已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x都有f(x)≥0,则的最小值为()A. 3 B.C. 2 D.考点:导数的运算.专题:综合题;压轴题.分析:先求导,由f′(0)>0可得b>0,因为对于任意实数x都有f(x)≥0,所以结合二次函数的图象可得a>0且b2﹣4ac≤0,又因为,利用均值不等式即可求解.解答:解:∵f'(x)=2ax+b,∴f'(0)=b>0;∵对于任意实数x都有f(x)≥0,∴a>0且b2﹣4ac≤0,∴b2≤4ac,∴c>0;∴,当a=c时取等号.故选C.点评:本题考查了求导公式,二次函数恒成立问题以及均值不等式,综合性较强.12.(5分)已知椭圆的左、右焦点分别为F 1(﹣c,0),F2(c,0),若椭圆上存在点P使,则该椭圆的离心率的取值范围为()A.(0,)B.()C.(0,)D.(,1)考点:正弦定理;椭圆的简单性质.专题:压轴题;圆锥曲线中的最值与范围问题.分析:由“”的结构特征,联想到在△PF1F2中运用由正弦定理得:两者结合起来,可得到,再由焦点半径公式,代入可得到:a(a+ex0)=c(a﹣ex0)解出x0,由椭圆的范围,建立关于离心率的不等式求解.要注意椭圆离心率的范围.解答:解:在△PF1F2中,由正弦定理得:则由已知得:,即:aPF1=cPF2设点P(x0,y0)由焦点半径公式,得:PF1=a+ex0,PF2=a﹣ex0则a(a+ex0)=c(a﹣ex0)解得:x0==由椭圆的几何性质知:x 0>﹣a则>﹣a,整理得e2+2e﹣1>0,解得:e<﹣﹣1或e>﹣1,又e∈(0,1),故椭圆的离心率:e∈(﹣1,1),故选D.点评:本题主要考查椭圆的定义,性质及焦点三角形的应用,特别是离心率应是椭圆考查的一个亮点,多数是用a,b,c转化,用椭圆的范围来求解离心率的范围.二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)若焦点在x轴上的椭圆的离心率为,则m=.考点:椭圆的简单性质.专题:计算题.分析:依题意,2>m>0,由e==即可求得m.解答:解:∵焦点在x轴上的椭圆+=1的离心率为,∴2>m>0,e==,∴m=.故答案为:.点评:本题考查椭圆的简单性质,利用离心率得到关于m的关系式是关键,属于基础题.14.(4分)(2004•湖南)若直线y=2a与函数y=|a x﹣1|(a>0且a≠1)的图象有两个公共点,则a的取值范围是0<a<.考点:指数函数的图像与性质;指数函数综合题.专题:作图题;压轴题;数形结合.分析:先分:①0<a<1和a>1时两种情况,作出函数y=|a x﹣1|图象,再由直线y=2a与函数y=|a x﹣1|(a>0且a≠1)的图象有两个公共点,作出直线,移动直线,用数形结合求解.解答:解:①当0<a<1时,作出函数y=|a x﹣1|图象:若直线y=2a与函数y=|a x﹣1|(a>0且a≠1)的图象有两个公共点由图象可知0<2a<1,∴0<a<.②:当a>1时,作出函数y=|a x﹣1|图象:若直线y=2a与函数y=|a x﹣1|(a>0且a≠1)的图象有两个公共点由图象可知0<2a<1,此时无解.综上:a的取值范围是0<a<.故答案为:0<a<点评:本题主要考查指数函数的图象和性质,主要涉及了函数的图象变换及函数的单调性,同时,还考查了数形结合的思想方法.15.(4分)若不等式组的解集中所含整数解只有﹣2,求k的取值范围[﹣3,2).考点:简单线性规划.专题:不等式的解法及应用.分析:解二次不等式x2﹣x﹣2>0可得x∈(﹣∞,﹣1)∪(2,+∞),由2x2+(5+2k)x+5k=(2x+5)(x+k),分类讨论k与的大小关系,综合讨论结果,可得答案.解答:解:x2﹣x﹣2>0的解集为(﹣∞,﹣1)∪(2,+∞)∵2x2+(5+2k)x+5k=(2x+5)(x+k)<0当k<时,2x2+(5+2k)x+5k<0的解集为(﹣,﹣k),此时若不等式组的解集中所含整数解只有﹣2则,﹣2<﹣k≤3,即﹣3≤k<2当k=时,2x2+(5+2k)x+5k<0的解集为∅,不满足要求当k>时,2x2+(5+2k)x+5k<0的解集为(﹣k,﹣),不满足要求综上k的取值范围为[﹣3,2)故答案为:[﹣3,2)点评:本题考查的知识点是不等式的综合应用,集合的运算,熟练掌握集合运算的结果,是解答的关键.16.(4分)当实数x,y满足约束条件(a为常数)时z=x+3y有最大值为12,则实数a的值为﹣12.考点:简单线性规划的应用.专题:压轴题;数形结合.分析:画出的可行域,将目标函数变形,画出其相应的直线,当直线平移至固定点时,z最大,求出最大值列出方程求出a的值解答:解:画出的平面区域,将目标函数变形为y=﹣x+z,画出其相应的直线,由得当直线y=﹣x+z平移至A(3,3)时z最大为12,将x=3,y=3代入直线2x+2y+a=0得:6+6+a=0a=﹣12故答案为:﹣12.点评:本题考查画不等式组表示的平面区域、结合图求目标函数的最值、考查数形结合的数学数学方法.三、解答题:本大题共6小题,共74分.解答应写出文字说明,演算步骤或证明过程.17.(12分)记f(x)=ax2﹣bx+c,若不等式f(x)>0的解集为(1,3),试解关于t的不等式f(|t|+8)<f(2+t2).考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:由已知不等式的解集及二次函数的性质,得到f(x)=a(x﹣1)(x﹣3),且a小于0,二次函数在[2,+∞)是增函数,由所求不等式自变量都大于等于2,利用增函数的性质列出关于t的不等式,求出不等式的解集即可得到t的范围.解答:解:由题意知f(x)=a(x﹣x1)(x﹣x2)=a(x﹣1)(x﹣3),且a<0,二次函数在区间[2,+∞)是减函数,又因为|t|+8>8,2+t2≥2,故由二次函数的单调性知不等式f(|t|+8)<f(2+t2),等价于|t|+8>2+t2,∴|t|2﹣|t|﹣6<0,即(|t|﹣3)(|t|+2)<0,解得:0<|t|<3解得:﹣3<t<3,且t≠0.点评:此题考查了一元二次不等式的解法,涉及的知识有:二次函数的性质,以及其他不等式的解法,熟练掌握二次函数的性质是解本题的关键.18.(12分)(2010•海淀区二模)在△ABC内,a,b,c分别为角A,B,C所对的边,a,b,c成等差数列,且a=2c.(1)求cosA的值;(2)若,求b的值.考点:余弦定理的应用;等差数列的性质.专题:计算题.分析:(I)根据a,b,c成等差数列及a=2c求得b=c代入余弦定理求得cosA的值.(II)由(I)cosA,求出sinA.根据正弦定理及求得c,进而求出b.解答:解:(I)因为a,b,c成等差数列,所以a+c=2b又a=2c,可得b=c∴cosA==﹣(II)由(I)cosA=,A∈(0,π),∴sinA==因为若,S △ABC=bcsinA,∴S△ABC=bcsinA==得c2=4,即c=2,b=3点评:本题主要考查余弦定理的应用.利用余弦定理,可以判断三角形形状.解三角形时,除了用到余弦定理外还常用正弦定理,故应重点掌握,灵活运用.19.(12分)设函数.(Ⅰ)写出函数的最小正周期及单调递减区间;(Ⅱ)当x∈[]时,函数f(x)的最大值与最小值的和为,求f(x)的解析式;(Ⅲ)将满足(Ⅱ)的函数f(x)的图象向右平移个单位,纵坐标不变横坐标变为原来的2倍,再向下平移,得到函数g(x),求g(x)图象与x轴的正半轴、直线所围成图形的面积.考点:三角函数中的恒等变换应用;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:(I)利用和差角公式,可将函数的解析式化为正弦型函数的形式,根据ω可得函数的周期,将相位角代入正弦函数的单调递减区间,求出x的范围,可得函数f(x)的单调递减区间(II)由x的范围,可求出相位角的范围,进而根据正弦函数的图象和性质,可求出函数的最值,进而得到a值,求出函数的解析式(III)根据函数图象的平移变换法则,伸缩变换法则,求出g(x)的解析式,代入积分公式,可得g(x)图象与x轴的正半轴、直线所围成图形的面积.解答:解(Ⅰ)函数==sin(2x+)+a+.∵ω=2,∴T=π由+2kπ≤2x+≤+2kπ,得+kπ≤x≤+kπ,(k∈Z),故函数f(x)的单调递减区间是[+kπ,+kπ],(k∈Z).(II)∵x∈[]∴2x+∈[]∴sin(2x+)∈[,1]∴当x∈[]时,原函数的最大值与最小值的和+a++1+a+=,解得:a=0∴f(x)=sin(2x+)+(3)将满足(Ⅱ)的函数f(x)sin(2x+)+的图象向右平移个单位,纵坐标不变横坐标变为原来的2倍,再向下平移,得到函数g(x)=sinx的图象∵=﹣cosx=1,即g(x)图象与x轴的正半轴、直线所围成图形的面积为1点评:本题考查的知识点是三角函数的化简,三角函数的周期性,单调性,最值,及函数图象的变换,是三角函数问题的综合应用,难度中档.20.(12分)已知递增等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2和a4的等差中项,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若,S n=b1+b2+…+b n,求使S n+n•2n+1>62成立的正整数n的最小值.考点:数列与不等式的综合;等比数列的通项公式;数列的求和.专题:综合题.分析:(I)由题意,得,由此能求出数列{a n}的通项公式.(Ⅱ),S n=b1+b2+…+b n=﹣(1×2+2×22+…+n×2n),所以数列{b n}的前项和S n=2n+1﹣2﹣n•2n+1,使S n+n•2n+1>62成立的正整数n的最小值.解答:解:(I)由题意,得,…(2分)解得…(4分)由于{a n}是递增数列,所以a1=2,q=2即数列{a n}的通项公式为a n=2•2n﹣1=2n…(6分)(Ⅱ)…(8分)S n=b1+b2+…+b n=﹣(1×2+2×22+…+n×2n)①则2S n=﹣(1×22+2×23+…+n×2n+1)②②﹣①,得S n=(2+22+…+2n)﹣n•2n+1=2n+1﹣2﹣n•2n+1即数列{b n}的前项和S n=2n+1﹣2﹣n•2n+1…(10分)则S n+n•2n+1=2n+1﹣2>62,所以n>5,即n的最小值为6.…(12分)点评:本题考查数列的性质的应用,解题时要认真审题,注意数列与不等式的综合运用,合理地进行等价转化.21.(12分)(2010•延庆县一模)已知矩形ABCD中,,BC=1.以AB的中点O为原点建立如图所示的平面直角坐标系xoy.(1)求以A,B为焦点,且过C,D两点的椭圆的标准方程;(2)过点P(0,2)的直线l与(1)中的椭圆交于M,N两点,是否存在直线l,使得以线段MN为直径的圆恰好过原点?若存在,求出直线l的方程;若不存在,说明理由.考点:椭圆的标准方程;直线的一般式方程;直线与圆相交的性质;直线与圆锥曲线的综合问题.专题:计算题;压轴题.分析:(1)由题意可得点A,B,C的坐标,设出椭圆的标准方程,根据题意知2a=AC+BC,求得a,进而根据b,a和c的关系求得b,则椭圆的方程可得.(2)设直线l的方程为y=kx+2.与椭圆方程联立,根据判别式大于0求得k的范围,设M,N两点坐标分别为(x1,y1),(x2,y2).根据韦达定理求得x1+x2和x1x2,进而根据若以MN为直径的圆恰好过原点,推断则,得知x1x2+y1y2=0,根据x1x2求得y1y2代入即可求得k,最后检验看是否符合题意.解答:解:(1)由题意可得点A,B,C的坐标分别为.设椭圆的标准方程是.则2a=AC+BC,即,所以a=2.所以b2=a2﹣c2=4﹣2=2.所以椭圆的标准方程是.(2)由题意知,直线l的斜率存在,可设直线l的方程为y=kx+2.由得(1+2k2)x2+8kx+4=0.因为M,N在椭圆上,所以△=64k2﹣16(1+2k2)>0.设M,N两点坐标分别为(x1,y1),(x2,y2).则,若以MN为直径的圆恰好过原点,则,所以x1x2+y1y2=0,所以,x1x2+(kx1+2)(kx2+2)=0,即(1+k2)x1x2+2k(x1+x2)+4=0,所以,,即,得k2=2,经验证,此时△=48>0.所以直线l的方程为,或.即所求直线存在,其方程为.点评:本题主要考查了椭圆的标准方程以及直线与椭圆的关系.在设直线方程时一定要看斜率的存在情况,最后还要检验斜率k是否符合题意.22.(14分)已知函数f(x)的导数f′(x)=3x2﹣3ax,f(0)=b.a,b为实数,1<a<2.(Ⅰ)若f(x)在区间[﹣1,1]上的最小值、最大值分别为﹣2、1,求a、b的值;(Ⅱ)在(Ⅰ)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;(Ⅲ)设函数F(x)=(f′(x)+6x+1)•e2x,试判断函数F(x)的极值点个数.考点:导数在最大值、最小值问题中的应用;函数在某点取得极值的条件;利用导数研究曲线上某点切线方程.专题:综合题;压轴题;分类讨论.分析:(Ⅰ)由函数的导数可确定f(x)的表达式,先确定函数在区间[﹣1,1]上的单调性,从而确定了最值建立了关于a,b的方程,即可求得其值.(Ⅱ)由(Ⅰ)得到了函数的解析式,确定点P(2,1)的位置:在函数的图象上,对P是否为切点讨论,利用导数求切线的斜率,可得切线方程.(Ⅲ)先求出F'(x),通过对其符号的探讨得函数的单调性,从而确定极值点的个数.解答:解:(Ⅰ)由已知得,由f'(x)=0,得x1=0,x2=a.∵x∈[﹣1,1],1<a<2,∴当x∈[﹣1,0)时,f'(x)>0,f(x)递增;当x∈(0,1]时,f'(x)<0,f(x)递减.∴f(x)在区间[﹣1,1]上的最大值为f(0)=b,∴b=1.又,,∴f(﹣1)<f(1).,即,得.故,b=1为所求.(Ⅱ)解:由(1)得f(x)=x3﹣2x2+1,f'(x)=3x2﹣4x,点P(2,1)在曲线f(x)上.(1)当切点为P(2,1)时,切线l的斜率k=f'(x)|x=2=4,∴l的方程为y﹣1=4(x﹣2),即4x﹣y﹣7=0.(2)当切点P不是切点时,设切点为Q(x0,y0)(x0≠2),切线l的斜率,∴l的方程为y﹣y0=(3x02﹣4x0)(x﹣x0).又点P(2,1)在l上,∴1﹣y0=(3x02﹣4x0)(2﹣x0),∴1﹣(x03﹣2x02+1)=(3x02﹣4x0)(2﹣x0),∴x02(2﹣x0)=(3x02﹣4x0)(2﹣x0),∴x02=3x02﹣4x0,即2x0(x0﹣2)=0,∴x0=0.∴切线l的方程为y=1.故所求切线l的方程为4x﹣y﹣7=0或y=1.(或者:由(1)知点A(0,1)为极大值点,所以曲线f(x)的点A处的切线为y=1,恰好经过点P(2,1),符合题意.)(Ⅲ)解:F(x)=(3x2﹣3ax+6x+1)•e2x=[3x2﹣3(a﹣2)x+1]•e2x.∴F'(x)=[6x﹣3(a﹣2)]•e2x+2[3x2﹣3(a﹣2)x+1]•e2x=[6x2﹣6(a﹣3)x+8﹣3a]•e2x.二次函数y=6x2﹣6(a﹣3)x+8﹣3a的判别式为△=36(a﹣3)2﹣24(8﹣3a)=12(3a2﹣12a+11)=12[3(a﹣2)2﹣1],令△≤0,得:.令△>0,得.∵e2x>0,1<a<2,∴当时,F'(x)≥0,函数F(x)为单调递增,极值点个数为0;当时,此时方程F'(x)=0有两个不相等的实数根,根据极值点的定义,可知函数F(x)有两个极值点.点评:本题考查导数在最大值,最小值中的应用,学生会利用导数求曲线上过某点切线方程的斜率,会利用导数研究函数的单调区间以及根据函数的增减性得到函数的最值及极值,注意分类讨论思想方法的体现.。
2013年济南中考数学模拟试题一、选择题:本大题共12个小题.每小题4分;共48分.1.3-的倒数是()A.1 3 -B.13C.3- D.32.2007年我市初中毕业生约为3.94万人,把3.94万用科学记数表示且保留两个有效数字为()A.44.010⨯B.43.910⨯C.43910⨯D.4.0万3.将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行.那么,在形成的这个图中与α∠互余的角共有()A.4个B.3个C.2个D.1个4.计算:11|5|20072-⎛⎫-+-⎪⎝⎭的结果是()A. 5 B.6 C.7 D.85.在平面直角坐标系中,若点()2P x x-,在第二象限,则x的取值范围为()A.0x>B.2x<C.02x<<D.2x>6.如图是一个风筝的图案,它是轴对称图形,量得∠B=30°,则∠E的大小为()A. 30°B. 35°C. 40°D. 45°7.三角形两边长分别为3和6,第三边是方程2680x x-+=的解,则此三角形的周长是()A. 11B. 13C. 11或13D. 不能确定8.在下面的四个几何体中,它们各自的左视图与主视图不一样的是()A. B. C. D.ABCF(第06题图)EDα9.北京奥组委从4月15日起分三个阶段向境内公众销售门票,开幕式门票分为五个档次,票价分别为人民币5000元、3000元、1500元、800元和200元.某网点第一周内开幕式门票的销售情况见统计图,那么第一周售出的门票票价..的众数是( ) A .1500元 B .11张C .5张D .200元10.已知方程组42ax by ax by -=⎧⎨+=⎩,的解为21x y =⎧⎨=⎩,,则23a b -的 值为( ) A.4 B.6 C.6- D.4- 11.抛物线c bx x y ++-=2的部分图象如图所示,若0>y ,则x 的取值范围是( )A. 14<<-xB. 13<<-xC. 4-<x 或1>xD. 3-<x 或1>x12.如图,在ABC △中,10AB =,8AC =,6BC =,经过点C 且与边AB 相切的动圆与CA ,CB 分别相交于点P ,Q ,则线段PQ 长度的最小值 是( ) A .4.75B .4.8C .5D .42二、填空题:本大题共5个小题.每小题3分;共15分.把答案填在题中横线上.13.分解因式:2233ax ay -= .14.袋中装有除颜色外其余都相同的红球和黄球共25个,小明通过多次模拟实验后,发现摸到的红球、黄球的概率分别是25和35,则袋中黄球有 个.(第12题)ABCQPy–1 13Ox(第11题图)2 46 8101202511 5 6 5000 3000 1500 800 200 档(元)第一周开幕式门票销售情况统计图数量(张)第8题A 215.若分式11x x +-的值为零,则x 的值为 .16.如图,已知△ABC 中,∠A =40°,剪去∠A 后成四边形,则∠1+∠2=__________. 17.如图,已知双曲线xky =(x >0)经过矩形OABC 边AB 的中点F ,交 BC 于点E ,且四边形OEBF 的面积为2,则k =______________.三、解答题: 7个小题,57分.解答应写出文字说明、演算步骤. 18.(本小题满分7分) (1)解方程121x x =- (2)解不等式组:212(1)1x x x -⎧⎨+-⎩≤≥,.19.(本小题满分7分)如图,在ABCD Y 中,E 为BC 边上一点,且AB AE =.(1)求证:ABC EAD △≌△.(2)若AE 平分DAB ∠,25EAC =o∠,求AED ∠的度数.20.(本小题满分8分)亲爱的同学,下面我们来做一个猜颜色的游戏:一个不透明的小盒中,装有A 、B 、C 三张除颜色以外完全相同的卡片,卡片A 两面均为红,卡片B 两面均为绿,卡片C 一面为红,一面为绿.(1)从小盒中任意抽出一张卡片放到桌面上,朝上一面恰好是绿色,请你猜猜,抽出哪张卡片的概率为0?(2)若要你猜(1)中抽出的卡片朝下一面是什么颜色,猜哪种颜色正确率可能高一些?请你列出表格,用概率的知识予以说明.AB CEOFxy (第17题图)ABC(第16题图)21.(本小题满分8分)某县在实施“村村通”工程中,决定在A 、B 两村之间修筑一条公路,甲、乙两个工程队分别从A 、B 两村同时相向开始修筑.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到道路修通.下图是甲、乙两个工程队所修道路的长度y (米)与修筑时间x (天)之间的函数图象,请根据图象所提供的信息,求该公路的总长度.22.(本小题满分9分)如图,在ABC △中,AB AC =,以AB 为直径的圆O 交BC 于点D ,交AC 于点E ,过点D 作DF AC ⊥,垂足为F . (1)求证:DF 为O e 的切线;(2)若过A 点且与BC 平行的直线交BE 的延长线于G 点,连结CG .当ABC △是等边三角形时,求AGC ∠的度数. AG F E CBO(第23题)D 第21题图y (米)x (天840360168412023.如图,所示的直角坐标系中,若ABC △是等腰直角三角形,82AB AC ==,D 为斜边BC 的中点.点P 由点A 出发沿线段AB 作匀速运动,P '是P 关于AD 的对称点;点Q 由点D 出发沿射线DC 方向作匀速运动,且满足四边形QDPP '是平行四边形.设平行四边形QDPP '的面积为y ,DQ x =. (1)求出y 关于x 的函数解析式;(5分)(2)求当y 取最大值时,过点P A P ',,的二次函数解析式;(4分)(3)能否在(2)中所求的二次函数图象上找一点E 使EPP '△的面积为20,若存在,求出E 点坐标;若不存在,说明理由.(4分)24.(本小题满分9分)如图,四边形OABC 是一张放在平面直角坐标系中的矩形纸片,点A 在x 轴上,点C 在y 轴上,将边BC 折叠,使点B 落在边OA 的点D 处.已知折叠55CE =,且3tan 4EDA ∠=. (1)判断OCD △与ADE △是否相似?请说明理由; (2)求直线CE 与x 轴交点P 的坐标;(3)是否存在过点D 的直线l ,使直线l 、直线CE 与x 轴所围成的三角形和直线l 、直线CE 与y 轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由. 23题xy A P BDF P 'Q C OxyCBED A2013年济南市中考数学模拟试题参考答案一、选择题:1. A2. B3. C4. B5. C6. A7. B8. D9. A 10. B 11. B 12. B 二、填空题:13. 3a (x +y )(x -y ) 14. 15 15. -1 16. 220° 17. 2 三、解答题:18.(1)解:去分母,得2(1)x x =- 去括号,得22x x =- 整理,得2x -=- 2x =.经检验:2x =是原方程的根. ∴原方程的根是2x =. (2)解:由①,得1x ≤,由②,得32x -≥. 所以原不等式组的解集为312x -≤≤. 19.(1)证明Q 四边形ABCD 为平行四边形,∴AD BC AD BC =∥,. ∴DAE AEB =∠∠.AB AE =Q ∴AEB B =∠∠∴B DAE =∠∠.∴ABC EAD △≌△.(2)DAE BAE DAE AEB ==Q ∠∠,∠∠,∴BAE AEB B ==∠∠∠.∴ABE △为等边三角形.∴60BAE =o ∠.25EAC =o Q ∠∴85BAC =o ∠ABC EAD Q △≌△,∴85AED BAC ==o ∠∠.20.解:(1)依题意可知:抽出卡片A 的概率为0;(2)由(1)知,一定不会抽出卡片A ,只会抽出卡片B 或C ,且抽出的卡片朝上的一面是绿色,那么可列下表:朝上 B (绿 1) B (绿 2) C (绿 )朝下B (绿 2) B (绿 1)C (红 )可见朝下一面的颜色有绿、绿、红三种可能,即:P (绿)=32,P (红)=31,所以猜绿色正确率可能高一些.21.解:设y 乙=kx (0≤x ≤12),∵840=12,∴k =70.∴y 乙=70x .当x =8时,y 乙=560.设y 甲=mx +n (4≤x ≤16),∴4360,8560.m n m n +=⎧⎨+=⎩∴50,160.m n =⎧⎨=⎩∴y 甲=50x +160.当x =16时,y 甲=50×16+160=960.∴840+960=1800米.故该公路全长为1800米. 22.(1)证明:连结AD OD ,AB Q 是⊙O 的直径 AD BC ∴⊥ABC Q △是等腰三角形 BD DC ∴=又AO BO =OD AC ∴∥ DF AC ⊥Q OF OD ∴⊥ DF OD ∴⊥DF ∴是⊙O 的切线(2)AB Q 是⊙O 的直径BG AC ∴⊥ABC Q △是等边三角形 BG ∴是AC 的垂直平分线 GA GC ∴=又AG BC Q ∥,60ACB ∠=o60CAG ACB ∴∠=∠=oACG ∴△是等边三角形60AGC ∴∠=o第21题图960560乙甲y (米)x (天8403601684120AGFE CBO(第22题)D23.解:(1)∵△ABC 是等腰直角三角形,AB=AC=28,∴AD=BD=CD=8∵四边形QDPP ′是平行四边形,且DQ =x ,∴PP ′=DQ =x ,且PP ′∥DQ 。
启用前绝密高三针对训练 理 科 数 学本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页. 考试时间120分钟。
满分150分,考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不 能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第I 卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1. 已知全集U R =,集合{}Z x x x A ∈≤=,1|, {}02|2=-=x x x B ,则图中的阴影部分表示的集合为A.{}1-B.{}2C.{}2,1D. {}2,02.已知复数1211,1z i z i=+=+在复平面内对应的点分别为12,P P O 、为坐标原点,则向量12OP OP 、所成的角为 A .6πB .4πC .3πD .2π3.“4πϕ=”是“函数sin(2)y x ϕ=+是偶函数”的A .充要条件B .充分不必要条件C .必要不充分条件 D.既不充分又不必要条件 (第1题图)(第6题图)4.已知3sin 0()(1)1x x f x f x x π⎧≤⎪=⎨-+>⎪⎩,则2()3f 的值为A .12 B .12- C .1 D .1- 5.已知2~(3,)N ξσ,若(2)0.2P ξ≤=,则ξ≤P(4)等于A .2.0B .3.0C .7.0D .8.0 6.执行如图所示的程序框图,输出的S 是A .10B .15 C.20 D .357.变量x y ,满足20170x y x x y -+⎧⎪⎨⎪+-⎩≤,≥,≤,则y x 的取值范围是A . 9[,6]5B . 9(,][6,)5-∞⋃+∞ C. 9[,3]5 D . [3,6]8. 函数sin(2)xy x =,(,0)(0,)22x ππ∈- 的图象可能是下列图象中的9.九个人排成三行三列的方阵,从中任选三人,则至少有两人位于同行或同列的概率为A .37 B. 47 C . 114 D . 131410.已知实数4,m ,1构成一个等比数列,则圆锥曲线122=+y mx 的离心率为 A .22 B.3 C .22或3 D .12或311. 给定两个长度为1的平面向量OA 和OB ,它们的夹角为60. 如图所示,点C 在以O为圆心的圆弧上变动. 若,OC xOA yOB =+其中,x y R ∈,则y x 2+的最大值是yxCBOAA .2B .233C .1D .312. 给出定义:若11(,]22x m m ∈-+ (其中m 为整数),则m 叫做与实数x “亲密的整数”, 记作{}x m =,在此基础上给出下列关于函数(){}f x x x =-的四个命题:①函数()y f x =在(0,1)x ∈上是增函数;②函数()y f x =的图象关于直线()2kx k Z =∈对称;③函数()y f x =是周期函数,最小正周期为1;④当(0,2]x ∈时,函数()()ln g x f x x =-有两个零点. 其中正确命题的序号是____________.A. ②③④ B .②③ C .①② D .②④第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题4分,共16分.13. 若ABC ∆的面积为3,O 60,2==C BC ,则边长AB 的长度等于 . 14.若直线x y a 3++=0过圆x y x y 22++2-4=0的圆心,则a 的值为 . 15.已知三棱柱111ABC A B C -的侧棱垂直底面,所有顶点都在球面上,12,AB AA ==1,AC =060BAC ∠=,则球的表面积为 .16.已知0>x ,有下列不等式成立:2121=⋅≥+x x x x ,34223422=⋅⋅≥+xx x x x 1+≥+n x ax n,据此归纳,则=a . 三、解答题:(本大题共6小题,共74分) 17.(本题满分12分) 函数()()03sin 32cos 62>-+=ωωωx xx f 在一个周期内的图像如图所示,A 为图像的最高点,B ,C 为图像与x 轴的交点,且ABC ∆为正三角形.(1)求函数()x f 的解析式;(2)求函数()x f 的单调递增区间和对称中心.18.(本题满分12分)某食品店每天以每瓶2元的价格从厂家购进一种酸奶若干瓶,然后以每瓶3元的价格出售,如果当天卖不完,余下的酸奶变质作垃圾处理。
山东省实验中学2010级第三次诊断性测试数学试题(理科)(2012.12)注意事项:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共两卷。
其中第Ⅰ卷为第1页至第2页,共60分;第Ⅱ卷为第3页至第6页,共90分;两卷合计150分。
考试时间为120分钟。
本科考试不允许使用计算器。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1、设}{}2,1{2a N M ==,,则”“1=a 是”“M N ⊆的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件【答案】A【解析】若”“M N ⊆,则有21a =或22a =,解得1a =±或a =”“1=a 是”“M N ⊆充分不必要条件,选A.2、下列函数中,在其定义域内,既是奇函数又是减函数的是( ) A.xx f 1)(= B.x x f -=)( C.xx x f 22)(-=- D.x x f tan )(-= 【答案】C 【解析】xx f 1)(=在定义域上是奇函数,但不单调。
x x f -=)(为非奇非偶函数。
x x f tan )(-=在定义域上是奇函数,但不单调。
所以选C.3.若3)4tan(=-απ,则αcot 等于( )A.2B.21- C.21D.-2【答案】D【解析】由3)4tan(=-απ得,tantan()13144tan tan[()]441321tan()4ππαππααπα---=--===-++-,所以1cot 2tan αα==-选D. 4.函数x x x f ln )1()(+=的零点有( )A.0个B.1个C.2个D.3个【答案】B【解析】由()(1)ln 0f x x x =+=得1ln 1x x =+,做出函数1ln ,1y x y x ==+的图象,如图由图象中可知交点个数为1个,即函数的零点个数为1个,选B.5.已知两条直线2-=ax y 和01)2(3=++-y a x 互相平行,则a 等于( ) A.1或-3 B.-1或3 C.1或3 D.-1或3【答案】A【解析】因为直线2-=ax y 的斜率存在且为a ,所以(2)0a -+≠,所以01)2(3=++-y a x 的斜截式方程为3122y x a a =+++,因为两直线平行,所以32a a =+且122a ≠-+,解得1a =-或3a =,选A.6.设命题p :曲线xe y -=在点),(e 1-处的切线方程是:ex y -=;命题q :b a ,是任意实数,若b a >,则1111+<+b a ,则( ) A.“p 或q ”为真 B.“p 且q ”为真 C.p 假q 真 D.p ,q 均为假命题【答案】A【解析】'()'xxy e e--==-,所以切线斜率为e -,切线方程为(1)y e e x -=-+,即y e x =-,所以P 为真。
2013年山东省济南市高考数学三模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1. 在复平面内,复数z=1+i3−4i 的共轭复数z¯对应的点位于()A 第一象限B 第二象限C 第三象限D 第四象限2. 已知全集U=R,集合A={x||x|≤1, x∈Z},B={x|x2−2x=0},则图中的阴影部分表示的集合为()A {−1}B {2}C {1, 2}D {0, 2}3. 函数f(x)=x−lg1x−2的零点所在区间为()A (0, 1)B (1, 2)C (2, 3)D (3, 4)4. 若△ABC的三个内角满足sinA:sinB:sinC=4:5:7,则△ABC()A 一定是锐角三角形B 一定是直角三角形C 一定是钝角三角形D 可能是锐角三角形,也可能是钝角三角形5. 一个几何体的三视图如图所示,则该几何体的体积为()A 4B 4+π2 C 8+π D 2+π46. 在边长为a的正方形内随机取一个点,则此点落在该正方形的内切圆内部的概率为()A π4 B π6C 2πD 3π7. 函数f(x)=x3−3e x的图象大致是()A B C D8. 将参加夏令营的600名学生编号为:001,002,⋯,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第I营区,从301到495住在第II营区,从496到600在第III营区,三个营区被抽中的人数依次为( )A 26,16,8B 25,17,8C 25,16,9D 24,17,99. 命题p:∃α∈R,cos(π+α)=cosα;命题q:∀m>0,m+1m≥2.则下面结论正确的是( )A p 是假命题B ¬q 是真命题C p ∧q 是假命题D p ∨q 是真命题10. 若A 为不等式组{x ≤0y ≥0y −x ≤2表示的平面区域,则当实数a 从−2连续变化到0时,动直线x +y =a 扫过A 中部分的区域面积为( )A 34B 12C 2D 1 11. 已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)与抛物线y 2=8x 有一个公共的焦点F ,且两曲线的一个交点为P ,若|PF|=5,则双曲线的离心率为( )A 2B 2√2C √5+12D √6 12. 给定两个长度为1的平面向量OA →和OB →,它们的夹角为90∘,如图所示,点C 在以O 为圆心的圆弧AB 上运动,若CO →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是( )A 1B √2C √3D 2二、填空题:本大题共4个小题,每小题4分,共16分.13. 等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=60,则S 15的值为________.14. 若直线3x +y +a =0过圆x 2+y 2+2x −4y =0的圆心,则a 的值为________.15. 如图所示程序框图若输入x 的值为2011,则输出s 的结果为________.16. 给出定义:若x ∈(m −12, m +12](其中m 为整数),则m 叫做与实数x“亲密的整数”,记作{x}=m ,在此基础上给出下列关于函数f(x)=|x −{x}|的四个命题:①函数y =f(x)在x ∈(0, 1)上是增函数;②函数y=f(x)的图象关于直线x=k2(k∈Z)对称;③函数y=f(x)是周期函数,最小正周期为1;④当x∈(0, 2]时,函数g(x)=f(x)−lnx有两个零点.其中正确命题的序号是________.三、计算题:本大题共6小题,共74分.17. 已知函数f(x)=Asin(ωx+φ)(A>0, ω>0, 0<φ<π)的部分图象如图所示.(1)求f(x)的解析式;(2)求g(x)=f(x)+sin2x的单调递增区间.18. 今年10月在济南举办第十届中国艺术节,届时有很多国际友人参加活动.现有8名“十艺节”志愿者,其中志愿者A1,A2,A3通晓英语,B1,B2,B3通晓俄语,C1,C2通晓韩语.从中选出通晓英语、俄语和韩语的志愿者各1名,组成一个小组.(1)求A1被选中的概率;(2)求B1和C1不全被选中的概率.19. 如图,在四棱锥P−ABCD中,平面PAC⊥平面ABCD,且PA⊥AC,PA=AD=2AB=2BC.BC // AD,AB⊥AD.(1)若点E为PD的中点,求证:CE // 平面PAB;(2)在平面PAC内,AF⊥PC.求证:AF⊥平面PCD.20. 某高校有奖励基金本金1000万元,此基金每年购买银行的两种风险和收益不同的理财产品A和B,把每年产生的收益用来奖励品学兼优的大学生,本金继续购买这两种理财产品.第一年购买理财产品A和B各500万元,为了规避风险以后规定:上一年购买产品A的本金,下一年会有20%购买产品B,而上一年购买产品B的本金,下一年会有30%购买产品A.用a n,b n(n∈N∗)分别表示在第n年购买理财产品A和B的本金数(单位:万元).(1)分别求出a2,b2,a3;(2)①证明数列{a n−600}是等比数列,并求a n;②求数列{b n}的前n项和T n.21. 已知函数f(x)=axlnx+b(a, b∈R)的图象过点(1, 0),且在此点处的切线斜率为1.(1)求函数f(x)的单调递减区间;(2)若g(x)=12x2−mx+32,存在x0∈(0, +∞)使得f(x0)≥g(x0)成立,求实数m的取值范围.22. 已知椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点F1,F2和上下两个顶点B1,B2是一个边长为2且∠F1B1F2为60∘的菱形的四个顶点.(1)求椭圆C的方程;(2)过右焦点F2,斜率为k(k≠0)的直线与椭圆C相交于E,F两点,A为椭圆的右顶点,直线AE,AF分别交直线x=3于点M,N,线段MN的中点为P,记直线PF2的斜率为k′.求证:k⋅k′为定值.2013年山东省济南市高考数学三模试卷(文科)答案1. C2. B3. B4. C5. B6. A7. C8. B9. D10. D11. A12. B13. 18014. 115. 1216. ②③④17. 解:(1)由图知,A=1,T=π,故2πω=π,解得ω=2;又因为函数f(x)过(π12, 1),代入得sin(π12×2+φ)=1,∴ π6+φ=2kπ+π2(k∈Z).又因为0<φ<π,∴ φ=π3,∴ f(x)=sin(2x+π3);(2)∵ g(x)=f(x)+sin2x=sin(2x+π3)+sin2x=12sin2x+√32cos2x+sin2x=32sin2x +√32cos2x =√3(√32sin2x +12cos2x) =√3sin(2x +π6),由2kπ−π2≤2x +π6≤2kπ+π2,k ∈Z , 解得kπ−π3≤x ≤kπ+π6,k ∈Z .∴ g(x)的单调递增区间为[kπ−π3, kπ+π6](k ∈Z).18. 解:(1)从8人中选出英语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A 1,B 1,C 1),(A 1, B 1, C 2),(A 1, B 2, C 1), (A 1, B 2, C 2),(A 1, B 3, C 1),(A 1, B 3, C 2),(A 2, B 1, C 1),(A 2, B 1, C 2),(A 2, B 2, C 1),(A 2, B 2, C 2),(A 2, B 3, C 1),(A 2, B 3, C 2),(A 3, B 1, C 1),(A 3, B 1, C 2),(A 3, B 2, C 1),(A 3, B 2, C 2),(A 3, B 3, C 1),(A 3, B 3, C 2)}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“A 1恰被选中”这一事件,则M ={(A 1,B 1,C 1),(A 1, B 1, C 2),(A 1, B 2, C 1), (A 1, B 2, C 2),(A 1, B 3, C 1),(A 1, B 3, C 2)}事件M 由6个基本事件组成,因而P(M)=618=13. (2)用N 表示“B 1,C 1不全被选中”这一事件,则其对立事件N ¯表示“B 1,C 1全被选中”这一事件,由于N ¯={(A 1, B 1, C 1), (A 2, B 1, C 1), (A 3, B 1, C 1)},事件有3个基本事件组成,所以P(N ¯)=318=16,由对立事件的概率公式得P(N)=1−P(N ¯)=1−16=56 19.证明:(1)取PA 的中点为G ,连接BG 、EG ,则EG // 12AD ,EG =12AD ,------------又BC // AD ,BC =12AD ,所以EG // BC ,EG =BC ,四边形BGEC 为平行四边形.-------------所以EC // BG .----------------------------------------又EC ⊄平面PAB ,BG ⊂平面PAB ,故EC // 平面PAB.----------------------------------------(2)因为AB⊥AD,BC // AD,AB=BC,AD=2BC,易证得CD⊥AC.-----------------------因为PA⊥平面ABCD,所以PA⊥CD,因为PA∩AC=A,所以CD⊥平面PAC.----而AF⊂平面PAC,所以CD⊥AF.又已知AF⊥PC又因为CD∩PC=C,所以AF⊥平面PCD.20. (1)解:由已知a n+b n=1000,又a1=500,b1=500,∴ a2=0.8a1+0.3b1=550,∴ b2=450,∴ a3=0.8a2+0.3b2=440+135=575.(2)①证明:由题意得a n+1=0.8a n+0.3b n,∴ a n+1=0.8a n+0.3(1000−a n)=0.5a n+300,∴ a n+1−600=12(a n−600),∴ 数列{a n−600}是首项为−100,公比为12的等比数列,∴ a n−600=−100×(12)n−1,∴ a n=600−100×(12)n−1.②解:由①知,a n+b n=1000,∴ b n=400+100×(12)n−1,∴ T n=400n+100[1−(12)n]1−12=400n+200−200×12n.21.解:(1)由已知可得f(1)=0,f′(1)=1,得b=0,a=1.f(x)=xlnx,f′(x)=1+lnx(x>0),由f′(x)<0得,0<x<1e,所以函数f(x)的单调递减区间为(0, 1e).(2)存在x0∈(0, +∞)使得f(x0)≥g(x0)成立,即f(x)≥g(x)在(0, +∞)上解集不空.即存在x使得m≥12x+32x−lnx成立,即m≥(12x+32x−lnx)min,设ℎ(x)=12x+32x−lnx(x>0),ℎ′(x)=12−32x2−1x=(x+1)(x−3)2x2,当0<x <3时,ℎ′(x)<0,ℎ(x)单调递减, 当x >3时,ℎ′(x)>0,ℎ(x)单调递增, 所以当x =3时,ℎ(x)取到最小值, 即ℎmin (x)=ℎ(3)=2−ln3,所以实数m 的取值范围m ≥2−ln3.22. 解:(1)由题意可得a =2,b =√3,c =1. ∴ 椭圆C 的方程为x 24+y 23=1.(2)设过点F 2(1, 0)的直线l 的方程为:y =k(x −1).设点E(x 1, y 1),F(x 2, y 2),联立{y =k(x −1)x 24+y 23=1,化为(3+4k 2)x 2−8k 2x +4k 2−12=0. 显然△>0,∴ x 1+x 2=8k 23+4k 2,x 1x 2=4k 2−123+4k 2(∗). 直线AE 的方程为y =y 1x 1−2(x −2),直线AF 的方程为y =y 2x 2−2(x −2), 令x =3,得点M(3,y 1x 1−2),N(3,y 2x 2−2).∴ 点P(3,12(y 1x 1−2+y 2x 2−2)).直线PF 2的斜率为k′=12(y 1x 1−2+y 2x 2−2)−03−1 =14(y 1x 1−2+y 2x 2−2) =14y 2x 1+x 2y 1−2(y 1+y 2)x 1x 2−2(x 1+x 2)+4=142kx 1x 2−3k(x 1+x 2)+4kx 1x 2−2(x 1+x 2)+4. 把(∗)代入得k ′=14⋅2k⋅4k 2−123+4k 2−3k⋅8k 23+4k 2+4k 4k 2−123+4k 2−2⋅8k 23+4k 2+4=−34k . ∴ k ⋅k ′=−34为定值.。
山东省2013届高三高考模拟卷(三)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合P={3,4,5},Q={6,7},定义},|),{(*Q b P a b a Q P ∈∈=,则Q P *的子集个数为A .7B .12C .32D .642.已知20<<a ,复数z 的实部为a ,虚部为1,则||z 的取值范围是 A .(1,5) B .(1,3) C .)5,1( D .)3,1( 3.若命题“p 或q ”与命题“非p ”都是真命题,则A .命题p 不一定是假命题B .命题q 一定是真命题C .命题q 不一定是真命题D .命题p 与命题q 同真同假4.已知数阵⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛333231232221131211aa aa a aa a a中,每行的3个数依次成等差数列,每列的3个数也依次成等差数列,若822=a ,则这9个数的和为A .16B .32C .36D .725.某几何体的三视图如右图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,该几何体的体积为A .63π B .33π C .23π D .π3 6.执行如右图所示的程序框图,如果输入的n 是4,则输出的p的值是 A.8 B .5 C .3 D .2 7.函数()cos(2)f x x x π=-的图象大致为8.连接球面上两点的线段称为球的弦,半径为4的球的两条弦AB 、CD 的长度分别为72、34,M 、N 分别为AB 、CD 的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB 、CD 可能相交于点M ;②弦AB 、CD 可能相交于点N ;③MN 的最大值为5;④MN 的最小值为1.其中真命题的个数为A .1B .2C .3D .49.在直角坐标系中,若不等式组⎪⎩⎪⎨⎧--≤≤≥1)1(,2,0x k y x y y 表示一个三角形区域,则实数k 的取值范围是A .)1,(--∞B .),0(+∞C .),2()2,0(+∞D .),2()2,0()1,(+∞--∞ 10.将“你能HOlD 住吗”8个汉字及英文字母填人5×4的方格内,其中“你”字填入左上角,“吗”字填入右下角,将其余6个汉字及英文字母依次填入方格,要求只能横读或竖读成一句原语,如图所示为一种填法,则共有不同的填法种数是A.35B.15C.20D.7011.过抛物线)0(22>=p px y 的焦点F ,斜率为34的直线交抛物线于A ,B 两点,若)1(>=λλFB AF ,则λ的值为A .5B .4C .34 D .25 12.对任意实数y x ,,定义运算cxy by ax y x ++=*,其中c b a ,,为常数,等号右边的运算是通常意义的加、乘运算.现已知1*2=4,2*3=6,且有一个非零实数m ,使得对任意实数x ,都有x m x =*,则=mA .2B .3C .4D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填写在答题纸的相应位置.13.若非零向量,满足||||=,0)2(=⋅+,则a 与b 的夹角为______. 14.已知26()k x x+(k 是正整数)的展开式中,常数项小于120,则=k _______. 15.若关于x 的不等式3|||1|>++-m x x 的解集为R ,则实数m 的取值范围是_______. 16.过双曲线的一个焦点的直线垂直于一条渐近线,且与双曲线的两支相交,则该双曲线离心率的取值范围是_________.三、解答题:本大题共6个小题,共74分.解答应写文字说明、证明过程或演算步骤,把答案填写在答题纸的相应位置.17.(本小题满分12分)已知函数1)sin (cos cos 2)(+-=x x x x f ,R x ∈. (1)求函数)(x f 的最小正周期;(2)求函数)(x f 在区间]43,8[ππ上的最小值与最大值.18.(本小题满分12分)某学校的一间功能室统一使用某种节能灯管,已知这种灯管的使用寿命ξ(单位:月)服从正态分布),(2σμN ,且使用寿命不少于12个月的概率为0.8,使用寿命不少于24个月的概率为0.2.(1)求这种灯管的平均使用寿命μ;(2)假设一间功能室一次性换上2支这种新灯管,使用12个月时进行一次检查,将已经损坏的灯管换下(中途不更换),设需要更换的灯管数为η,求η的分布列和数学期望. 19.(本小题满分12分)如图甲,△ABC 是边长为6的等边三角形,E ,D 分别为AB ,AC 靠近B ,C 的三等分点,点G 为BC 边的中点,线段AG 交线段ED 于点F .将△AED 沿ED 翻折,使平面AED ⊥平面BCDE ,连接AB ,AC ,AG ,形成如图乙所示的几何体.(1)求证:BC ⊥平面AFG ;(2)求二面角D AE B --的余弦值. 20.(本小题满分12分)已知常数0>p 且1=/p ,数列}{n a 的前n 项和)1(1n n a ppS --=,数列}{n b 满足121l o g -+=-n p n n a b b 且11=b .(1)求证:数列}{n a 是等比数列;(2)若对于在区间[0,1]上的任意实数λ,总存在不小于2的自然数k ,当k n ≥时,)23)(1(--≥n b n λ恒成立,求k 的最小值.21.(本小题满分13分)已知椭圆C :)0(12222>>=+b a b y a x 的长轴长为4,离心率22=e(1)求椭圆的方程;(2)设椭圆C 的左顶点为A ,右顶点为B ,点S 是椭圆C 上位于x 轴上方的动点,直线AS ,BS 与直线l :3=x 分别交于M ,N 两点,求线段MN 的长度的最小值.22.(本小题满分13分)已知函数⎩⎨⎧≥<+++-=)1(ln )1()(23x x a x c bx x x x f ,的图象过点)2,1(-,且在点))1(,1(--f 处的切线与直线-x 015=+y 垂直.(1)求实数c b ,的值;(2)求)(x f 在e e ](,1[-为自然对数的底数)上的最大值;(3)对任意给定的正实数a ,曲线)(x f y =上是否存在两点P ,Q ,使得△POQ 是以O 为直角顶点的直角三角形,且此三角形斜边的中点在y 轴上?山东省2013届高三高考模拟卷(三)数学(理科)参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D 【解析】集合Q P *中的元素为(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)共6个,故Q P *的子集个数为6426=.2.C 【解析】由于复数z 的实部为a ,虚部为1,且20<<a ,故由21||a z +=得5||1<<z . 3.B 【解析】由题可知“非p ”是真命题,所以p 是假命题,又因为“p 或q ”是真命题,所以q 是真命题.故选B .4.D 【解析】依题意得+++++++31232221131211a a a a a a a 3332a a +72933322322212==++=a a a a .5.B 【解析】由三视图可知该几何体是圆锥沿轴截面截成两部分,然后把截面放在平面上,底面相对接的图形(如图).圆锥的底面半径为1,母线长为2,故圆锥的高=h 31222=-.易知该几何体的体积就是整个圆锥体的体积,即3331313122πππ=⨯⨯=h r . 6.C 【解析】由题知,第一次进入循环,满足1<4,循环后1=p ,1=s ,1=t ,2=k ;第二次进入循环,满足2<4,循环后2=p ,=s 1,2=t ,3=k ;第三次进入循环,满足3<4,循环后3=p ,2=s ,3=t ,4=k ,因为4=4,不满足题意,所以循环结束.输出p 的值为3,选C .7.A 【解析】因为()cos(2)cos f x x x x x π=-=,)(cos )cos()()(x f x x x x x f -=-=--=-,所以函数x x x f cos )(=为奇函数,排除B ,C ;又因为当20π<<x 时,=)(x f 0cos >x x ,故选择A .8.C 【解析】设球的球心O 到直线AB 、CD 的距离分别为d d 、',利用勾股定理可求出3='d ,2=d ,所以CD 可以经过M ,而AB 不会经过N ,所以①正确,②不正确;又5='+d d ,1=-'d d ,所以③④正确.故选C .9.A 【解析】 由题意可知,直线1)1(--=x k y 过定点)1,1(-.当这条直线的斜率为负值时,如图1所示,若不等式组表示一个三角形区域,则该直线的斜率)1,(--∞∈k ;当这条直线的斜率为正值时,如图2所示,1)1(--≤x k y 所表示的区域是直线1)1(--=x k y 及其右下方的半平面,这个区域和另外两个半平面的交集是一个无界区域,不能构成三角形.因此k 的取值范围是)1,(--∞.10.A 【解析】要把6个汉字及英文字母依次填入6个方格中,按照规则分为两类:一类是4个字横向2个字纵向,有26C 种填法;另一类是3个字横向3个字纵向,有36C 种填法:所以共有3520153626=+=+C C 种填法.11.B 【解析】 根据题意设),(11y x A ,),(22y x B .由FB AF λ=得),2(),2(2211y p x y x p -=--λ,故21y y λ=-,即=λ21y y -.设直线AB 的方程为)2(34p x y -=,联立直线与抛物线方程,消元得02322=--p py y .故p y y 2321=+,=21y y 2p -,492)(122121221-=++=+y y y y y y y y ,即=+--21λλ49-.又1>λ,故4=λ.12.D 【解析】由定义可知,⎩⎨⎧=++==++=66323*24222*1c b a c b a ,解得⎩⎨⎧+=-=226c b ca ,又对任意实数x ,都有x m x =*,即++-=+++-=c x c cm cxm m c cx m x 2()6()22(6*x m =)2恒成立,则⎩⎨⎧=+=-0)22(16m c c cm ,解得⎩⎨⎧=-=51m c 或⎪⎩⎪⎨⎧=-=061m c (舍). 第Ⅱ卷13.︒120【解析】由题意得⋅=+⋅=⋅+22||22)2(a b b a b b a 0,cos 2=+><a b a ,所以21,cos ->=<b a ,所以,的夹角为︒120. 14.1【解析】二项展开式的通项为r rrr xk x C T )()(6261-+=rr r x k C 3126-=,令0312=-r ,得4=r ,故常数项为446k C ,由常数项小于120,即<446k C 120,得84<k .又k 是正整数,故1=k .15.),2()4,(+∞--∞ 【解析】由题意知,不等式+-|1|x 3||>+m x 恒成立,即函数|||1|)(m x x x f ++-=的最小值大于3,根据不等式的性质可得--≥++-)1(||||1|x m x x |1||)(+=+m m x ,故只要3|1|>+m 即可,所以31>+m 或31-<+m ,即得m 的取值范围是),2()4,(+∞--∞ .16. ),2(+∞【解析】不妨设双曲线的方程为)0,0(12222>>=-b a by a x ,焦点,(c F 0),渐近线x ab y =,则过点F 的直线方程为)(c x b ay --=,与双曲线联立,消去y 得02)(42244244=--+-b a c a a x a b α,由⎪⎩⎪⎨⎧<-->∆020444ab c a 得44a b >,即a b >,故2>e . 三、17.【解析】(1)1)sin (cos cos 2)(+-=x x x x f 1sin cos 2cos 22+-=x x x)432sin(2222sin 2cos π++=+-=x x x .(4分) 因此,函数)(x f 的最小正周期为π.(6分) (2)由题易知)432sin(22)(π++=x x f 在区间]83,8[ππ上是减函数, 在区间]43,83(ππ上是增函数,(8分) 又2)8(=πf ,22)83(-=πf ,3)43(=πf ,(10分)所以,函数)(x f 在区间]43,8[ππ上的最大值为3,最小值为22-.(12分) 18.【解析】(1)因为),(~2σμξN ,8.0)12(=≥ξP ,2.0)24(=≥ξP , 所以2.0)12(=<ξP ,显然)24()12(≥=<ξξP P .(3分) 由正态分布密度曲线的对称性可知,1822412=+=μ, 即这种灯管的平均使用寿命是18个月.(6分)(2)这种灯管的使用寿命少于12个月的概率为2.08.01=-. 由题意知,η的可能取值为0,1,2,(8分) 则64.08.02.0)0(22=⨯==C P η,⨯==1122.0)1(C P η32.08.01=,04.08.02.0)2(0222=⨯==C P η.(10分) 所以η的分布列为所以4.004.0232.0164.00=⨯+⨯+⨯=ηE .(12分)19.【解析】(1)在图甲中,由△ABC 是等边三角形,E ,D 分别为AB ,AC 的三等分点,点G为BC 边的中点,易知DE ⊥AF ,DE ⊥GF ,DE//BC .(2分)在图乙中,因为DE ⊥AF ,DE ⊥GF ,AF FG=F ,所以DE ⊥平面AFG . 又DE//BC ,所以BC ⊥平面AFG .(4分)(2)因为平面AED ⊥平面BCDE ,平面AED 平面BCDE=DE ,DE ⊥AF ,DE ⊥GF ,所以FA ,FD ,FG 两两垂直.以点F 为坐标原点,分别以FG ,FD ,FA 所在的直线为z y x ,,轴,建立如图所示的空间直角坐标系xyz F -.则)32,0,0(A ,)0,3,3(-B ,)0,2,0(-E ,所以)32,3,3(--=AB ,,1,3(-=BE 0).(6分) 设平面ABE 的一个法向量为),,(z y x n =.则⎪⎩⎪⎨⎧=⋅=⋅0BE n ,即⎪⎩⎪⎨⎧=+-=--0303233y x z y x ,取1=x ,则3=y ,1-=z ,则)1,3,1(-=n .(8分) 显然)0,0,1(=m 为平面ADE 的一个法向量, 所以55||||,cos =⋅>=<n m n m .(10分) 又由图知二面角D AE B --为钝角,所以二面角D AE B --的余弦值为55-.(12分) 20.【解析】(1)当2≥n 时,-----=-=-1(1)1(11ppa p p S S a n n n n )1-n a ,整理得1-=n n pa a .(3分) 由)1(1111a p p S a --==,得=1a 0>p ,则恒有0>=n n p a ,从而p a an n =-1.所以数列}{n a 为等比数列.(6分)(2)由(1)知nn p a =,则12log 121-==--+n a b b n P n n ,所以=+-++-+-=---112211)()()(b b b b b b b b n n n n n 222+-n n ,(8分)所以)23)(1(222--≥+-n n n λ,则+-+-n n n 5)23(2λ04≥在]1,0[∈λ时恒成立.记45)23()(2+-+-=n n n f λλ,由题意知,⎩⎨⎧≥≥0)1(0)0(f f ,解得4≥n 或1≤n .(11分)又2≥n ,所以4≥n .综上可知,k 的最小值为4.(12分) 21.【解析】(1)由题意得42=a ,故2=a ,(1分) 因为22==a c e ,所以2=c ,2)2(2222=-=b ,(3分) 所以所求的椭圆方程为12422=+y x .(4分) (2)依题意,直线AS 的斜率k 存在,且0>k ,故可设直线AS 的方程为)2(+=x k y ,从而)5,3(k M ,由⎪⎩⎪⎨⎧=++=124)2(22y x x k y 得+1(0488)22222=-++k x k x k .(6分)设),(11y x S ,则2212148)2(k k x +-=⨯-,得2212142k k x +-=,从而21214k ky +=, 即)214,2142(222k kk k S ++-,(8分)又由B(2,0)可得直线SB 的方程为22142202140222-+--=-+-k k x k k y , 化简得)2(21--=x ky , 由⎪⎩⎪⎨⎧=--=3)2(21x x k y 得⎪⎩⎪⎨⎧-==k y x 213,所以)21,3(k N -, 故|215|||kk MN +=,(11分) 又因为0>k ,所以102152215||=∙≥+=kk k k MN , 当且仅当k k 215=,即1010=k 时等号成立, 所以1010=k 时,线段MN 的长度取最小值10.(13分) 22.【解析】(1)当1<x 时,b x x x f ++-='23)(2,(2分)由题意,得⎩⎨⎧-=-'=-,5)1(,2)1(f f 即⎩⎨⎧-=+--=+-,523,22b c b 解得0==c b .(4分)(2)由(1),知⎩⎨⎧≥<+-=),1(ln ),1()(23x x a x x x x f (5分)①当11<≤-x 时,)23()(--='x x x f ,由0)(>'x f ,得320<<x ;由0)(<'x f ,得01<≤-x 或132<<x .所以)(x f 在)0,1[-和)1,32(上单调递减,在)32,0(上单调递增. 因为2)1(=-f ,274)32(=f ,0)0(=f ,所以)(x f 在)1,1[-上的最大值为2.②当e x ≤≤1时,x a x f ln )(=,当0≤a 时,0)(≤x f ;当0>a 时,)(x f 在],1[e 上单调递增.(7分)所以)(x f 在],1[e 上的最大值为a .所以当2≥a 时,)(x f 在],1[e -上的最大值为a ; 当2<a 时,)(x f 在],1[e -上的最大值为2.(8分)(3)假设曲线)(x f y =上存在两点P ,Q 满足题意,则P ,Q 只能在y 轴两侧, 因为△POQ 是以O 为直角顶点的直角三角形,所以0=∙OQ OP ,不妨设)0))((,(>t t f t P ,则由△POQ 斜边的中点在y 轴上知,(t Q -)23t t +,且 1≠t .所以0))((232=++-t t t f t .(*) 是否存在两点P ,Q 满足题意等价于方程(*)是否有解.若10<<t ,则23)(t t t f +-=,代入方程(*),得++-+-3232)((t t t t 0)2=t , 即0124=+-t t ,而此方程无实数解;当1>t 时,则t a t f ln )(=,代入方程(*),得0)(ln 232=+∙+-t t t a t ,即t t aln )1(1+=。
启用前绝密高三针对训练 理 科 数 学本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页. 考试时间120分钟。
满分150分,考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不 能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第I 卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1. 已知全集U R =,集合{}Z x x x A ∈≤=,1|, {}02|2=-=x x x B ,则图中的阴影部分表示的集合为A .{}1-B .{}2C .{}2,1D . {}2,02.已知复数1211,1z i z i=+=+在复平面内对应的点分别为12,P P O 、为坐标原点,则向量12OP OP 、所成的角为 A .6πB .4πC .3πD .2π3.“4πϕ=”是“函数sin(2)y x ϕ=+是偶函数”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件(第1题图)(第6题图)4.已知0()(1)1x x f x f x x π≤=-+>⎪⎩,则2()3f 的值为A .12 B .12- C .1 D .1- 5.已知2~(3,)N ξσ,若(2)0.2P ξ≤=,则ξ≤P(4)等于A .2.0B .3.0C .7.0D .8.0 6.执行如图所示的程序框图,输出的S 是A .10B .15 C.20 D .357.变量x y ,满足20170x y x x y -+⎧⎪⎨⎪+-⎩≤,≥,≤,则y x 的取值范围是A . 9[,6]5B . 9(,][6,)5-∞⋃+∞ C. 9[,3]5 D . [3,6]8. 函数sin(2)xy x =,(,0)(0,)22x ππ∈- 的图象可能是下列图象中的9.九个人排成三行三列的方阵,从中任选三人,则至少有两人位于同行或同列的概率为A .37 B. 47 C . 114 D . 131410.已知实数4,m ,1构成一个等比数列,则圆锥曲线122=+y mx 的离心率为 A.2C.2D .12或311. 给定两个长度为1的平面向量OA 和OB ,它们的夹角为60. 如图所示,点C 在以O为圆心的圆弧上变动. 若,OC xOA yOB =+其中,x y R ∈,则y x 2+的最大值是(第17题图)A .2B .3C .1 D12. 给出定义:若11(,]22x m m ∈-+ (其中m 为整数),则m 叫做与实数x “亲密的整数”, 记作{}x m =,在此基础上给出下列关于函数(){}f x x x =-的四个命题:①函数()y f x =在(0,1)x ∈上是增函数;②函数()y f x =的图象关于直线()2kx k Z =∈对称;③函数()y f x =是周期函数,最小正周期为1;④当(0,2]x ∈时,函数()()ln g x f x x =-有两个零点. 其中正确命题的序号是____________.A. ②③④ B .②③ C .①② D .②④第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题4分,共16分.13. 若ABC ∆的面积为3,O 60,2==C BC ,则边长AB 的长度等于 . 14.若直线x y a 3++=0过圆x y x y 22++2-4=0的圆心,则a 的值为 . 15.已知三棱柱111ABC A B C -的侧棱垂直底面,所有顶点都在球面上,12,AB AA ==1,AC =060BAC ∠=,则球的表面积为 .16.已知0>x ,有下列不等式成立:2121=⋅≥+x x x x ,34223422=⋅⋅≥+xx x x x 1+≥+n xax n ,据此归纳,则=a . 三、解答题:(本大题共6小题,共74分) 17.(本题满分12分) 函数()()03sin 32cos 62>-+=ωωωx xx f 在一个周期内的图像如图所示,A 为图像的最高点,B ,C 为图像与x 轴的交点,且ABC ∆为正三角形.(1)求函数()x f 的解析式;(2)求函数()x f 的单调递增区间和对称中心.18.(本题满分12分)19.(本题满分12分)设数列{}n a 的前n 项和为n S ,11=a ,且对任意正整数n ,点()n n S a ,1+在3230x y +-=直线上.(1)求数列{}n a 的通项公式;(2)是否存在实数λ,使得数列3n n S n λλ⎧⎫+⋅+⎨⎬⎩⎭为等差数列?若存在,求出λ的 值;若不存在,则说明理由.20.(本题满分12分)如图:四边形ABCD 是梯形,//AB CD ,AD CD ⊥,三角形ADE 是等边三角形,且平面ABCD ⊥平面ADE ,//EF AB ,2224CD AB AD EF ====,23CG CF =(1)求证://AF 平面BDG ;(2)求二面角C BD G --的余弦值.21.(本题满分13分)已知椭圆()2222:10x y C a b a b+=>>的两个焦点12,F F 和上下两个顶点12,B B 是一个边长 为2且∠F 1B 1F 2为60的菱形的四个顶点. (1)求椭圆C 的方程;(2)过右焦点F 2斜率为k (0k ≠)的直线l 与椭圆C 相交于,E F 两点,A 为椭圆的右顶点,直线AE ,AF 分别交直线3x = 于点M ,N ,线段MN 的中点为P ,记直线2PF 的斜率为k '.求证:k k '⋅为定值. 22.(本题满分13分)C(第20题图)设函数()()1ln 2f x x x x =+- (1)求函数)(x f 的单调区间; (2)设()()1'xh x f x e =+,若()()h x k k z >∈恒成立,求k 的最大值.2013年5月高三针对训练理科数学参考答案一、选择题(每题5分,满分60分)1.B2.D3.B4.B5.D6.D7.A8.D9.D 10.C 11.A 12.A 二、填空题(每题4分,满分16分)13. 2 14. 1 15. 8π 16. nn 三、解答题:本大题共6小题,共74分.17. 解:()x x x f ωωsin 3cos 3+=----------------------------------------------2分()⎪⎭⎫ ⎝⎛+=3sin 32πωx x f ------------------------------------------------------3分又ABC ∆为正三角形,且高为32,则BC=4.所以函数()x f 的最小正周期为8,即4,82πωωπ==--------------------------------------------------------------5分()⎪⎭⎫ ⎝⎛+=34sin 32ππx x f .------------------------------------------------------6分(2) 由22,2432k x k k Z ππππππ-≤+≤+∈,解得10288,33k x k k Z -≤≤+∈. ………………………………………………8分 所以()f x 的单调递增区间为102[8,8]()33k k k Z -+∈ ---------------------9分由,43x k k Z πππ+=∈ ,得44,3x k k Z =-∈ --------------------11分 所以对称中心为4(4,0)3k k Z -∈---------------------------------------12分 18.解:(1)()()2170 (0170)170 170n n n y n --<<⎧⎪=⎨≥⎪⎩-()3340 (0170) y=170 170n n n -<<⎧⎨≥⎩4分(2)X 可取110,140,170.-----------------------------------------------9分0.171100.231400.6170152.9EX =⨯+⨯+⨯=------------------------12分 19.解:(1)由题意可得:13230n n a S ++-= ①2≥n 时, 13230n n a S -+-= ② ………………………………1分①─②得13320n n n a a a +-+=,11(2)3n n a n a +=≥, ………………………………4分121211,330,3a a a a =+-=∴=……………………………5分∴{}n a 是首项为1,公比为13的等比数列,11()3n n a -∴= …………………… 6分(2)由(1)知13[1()]32n n S -=…………………………8分 若3n n S n λλ⎧⎫+⋅+⎨⎬⎩⎭为等差数列,13S λλ+⋅+2223S λλ+⋅+3333S λλ+⋅+则成等差数列, ……………………10分213194822(),9327S S S λλλ+=+++ 得 32λ= 又32λ=时,333(1)2232n n n S n ++⋅+=⋅,显然3(1)2n +⎧⎫⎨⎬⎩⎭成等差数列,故存在实数32λ=,使得数列3n n S n λλ⎧⎫+⋅+⎨⎬⎩⎭成等差数列. ……………………12分20.解:(1)连接AC交BD于H,连接GH --------------------------------------------------------1分12AB CD = FC12AH CH ∴= 即23CH AC ∴= 2CH CG AH GF∴== //GH AF ∴-------------------------------------3分GH ⊆ 平面BDGAF 不在平面BDG//AF ∴平面BDG --------------------------5分(2) 如图建立空间坐标系,(2,2,0),(0,4,0),(1,B C F224(,333CG CF ∴==-2428(0,4,0)(,(,3333DG DC CG ∴=+=+-=(2,2,0)DB =----------------------------------------------------8分设平面BDG 的法向量为1(,,1)n x y =1100DB n DG n ⎧⋅=⎪⎨⋅=⎪⎩1n ∴= ------------------------------------------10分设平面BDC 的法向量为2n ,2(0,0,1)n =121212cos ,n n n n n n ⋅∴<>===⋅所以二面角C BD G --分 21. 解:(1)由条件知a =2,b =3, ------------------------------2分故所求椭圆方程为13422=+y x . -------------------------------------4分 (2)设过点P (1,0)的直线l 方程为:)1(-=x k y ,设点E (x 1,y 1),点F (x 2,y 2), --5分将直线l 方程)1(-=x k y 代入椭圆C : 13422=+y x , 整理得:01248)34(2222=-+-+k x k x k ,-----------------------------6分 因为点P 在椭圆内,所以直线l 和椭圆都相交,0>∆恒成立,且34124,34822212221+-=+=+k k x x k k x x . ----------------------------------7分 直线AE 的方程为:)2(211--=x x y y ,直线AF 的方程为:)2(222--=x x y y ,令x =3,得点)2,3(11-x y M ,)2,3(22-x y N ,所以点P 的坐标12121(3,())222yy x x +--. -----9分 直线PF 2的斜率为)22(41130)22(2122112211/-+-=---+-=x y x y x y x y k4)(24)(32414)(2)(241212121212121211212++-++-⋅=++-+-+⋅=x x x x kx x k x kx x x x x y y y x x y .--------------11分 将34124,34822212221+-=+=+k k x x k k x x 代入上式得:kk k k k k k k k k k k 43348234124434833412424122222222/-=+⋅-+-++⋅-+-⋅⋅=. 所以k k '⋅为定值43-. -------------------------------------13分22. 解: (1)函数的定义域0>x()1'ln 1f x x x =+- ---------------------------------1分不妨令()1ln 1g x x x =+-,()22111x g x x x x -'=-=()1,'0,x g x >>函数)()(x f x g '=递增,又因为()1(1)0,g f '==所以()1,'0,x f x >>().f x 单增-----------------------------------3分()()()()01,'0,()',''10x g x g x f x f x f <<<=>=单减,函数()f x 单增 -------5分所以函数()y f x =在()0,+∞上递增 ---- ----------------------------------6分(2)()()22211111ln 1,'x x x x xxe e x h x x h x x e x x e x e--=+-+=--= 设()()()2,'22x x x xx xe e x x xe x x e ϕϕ=--=-=-----------------------7分()()()()()0,ln2,'0,,010x x x x ϕϕϕϕ∈<<=-<单减 ()()'0,h x h x <单减.()()()ln2,,'0,,x x x ϕϕ∈+∞>单增()()()2ln 22ln 22ln 2x ϕϕ>=--又()()2110,240e ϕϕ=-<=->存在()01,2,x ∈使得()0,x ϕ=在()()()()000,0,,0x x x x ϕϕ<+∞>上,在上,()h x 在()()000,,x x +∞上递减,在上递增()()000011ln 1x h x h x x x e≥=+-+ ----------------------------------10分 又0200111x e x x =-,所以()()000020001121ln 1ln 1x h x h x x x x e x x ≥=+-+=+-- 不妨令112ln )(2--+=xx x x M 当()1,2x ∈时, 322221)112(ln )(xx x x x x x M +-='--+='0)221(1)(2>+-='x x x x M ,0)(>x M 是单增函数,又0)1(=M ,1412ln )2(<-=M1>0020021()ln 10h x x x x =+--> ---------------------12分 所以0k ≤,所以k 的最大值为0. --------------------13分。