单容水箱液位控制报告
- 格式:doc
- 大小:343.88 KB
- 文档页数:27
单容水箱液位pid控制实验报告实验报告:单容水箱液位PID控制实验实验目的:本实验旨在通过PID控制器对单容水箱的液位进行控制,验证PID控制算法在液位控制中的应用效果,并了解PID控制器参数调节的方法和影响因素。
实验装置和仪器:1. 单容水箱:用于存放水并模拟液位变化。
2. 液位传感器:用于实时监测水箱的液位。
3. 控制器:采用PID控制器,用于调节水箱液位。
4. 电源和信号线:提供电力和信号传输。
实验步骤:1. 将水箱与液位传感器连接,并确保传感器能够准确测量液位。
2. 将PID控制器与液位传感器连接,建立控制回路。
3. 设置PID控制器的参数,包括比例系数(P)、积分时间(I)和微分时间(D)。
4. 将控制器调至手动模式,并将控制器输出设定值调整为合适的初始值。
5. 开始实验,记录初始液位和控制器输出设定值。
6. 观察液位的变化,并记录实时液位值。
7. 根据液位变化情况,调整PID控制器的参数,使液位尽可能接近设定值。
8. 结束实验,记录最终液位和控制器参数。
实验结果:通过实验,我们得到了如下的结果和观察:1. PID控制器的参数调节对液位控制有重要影响,不同的参数组合会导致液位的不同响应和稳定性。
2. 比例系数P的增大可以增加控制器对液位误差的敏感程度,但过大的P值可能引起震荡或超调。
3. 积分时间I的增大可以减小稳态误差,但过大的I值可能导致震荡或系统不稳定。
4. 微分时间D的增大可以提高系统的动态响应速度,但过大的D值可能引起噪声干扰或导致系统不稳定。
5. 通过逐步调整PID控制器的参数,我们可以实现较好的液位控制效果,使液位尽可能接近设定值并保持稳定。
结论:本实验通过PID控制器对单容水箱的液位进行控制,验证了PID控制算法在液位控制中的应用效果。
通过逐步调整PID控制器的参数,我们可以实现较好的液位控制效果,并使液位保持稳定。
实验结果表明,PID控制器的参数调节对液位控制有重要影响,需要根据实际情况进行调整和优化。
单容量水箱液位pid控制实验报告一、实验目的本实验旨在通过单容量水箱液位pid控制实验,掌握PID控制器的基本原理及其在工程中的应用,熟悉液位传感器的使用方法,了解单容量水箱液位pid控制系统的组成和工作原理。
二、实验原理1. PID控制器PID控制器是一种用于工业过程自动化控制的常见算法。
PID是Proportional-Integral-Derivative(比例-积分-微分)三个英文单词的缩写。
PID算法通过对过程变量进行采样和比较,计算出误差,并根据误差大小进行调整。
其中比例项P、积分项I和微分项D分别代表了对过程变量偏差大小、偏差持续时间以及偏差变化率的反馈调整。
2. 液位传感器液位传感器是一种用于测量液体或固体物料高度或深度的设备。
常见的液位传感器有浮球式、压力式、电容式等多种类型。
本实验中采用电容式液位传感器进行测量。
3. 单容量水箱液位pid控制系统单容量水箱液位pid控制系统由水箱、液位传感器、PID控制器和执行机构(如电磁阀)组成。
系统的工作原理是:液位传感器采集水箱内的液位信号,将其转换为电信号并传输给PID控制器;PID控制器通过比较设定值和实际值之间的误差,输出相应的控制信号给执行机构,使其调节水箱内的水流量,从而维持水箱液位稳定在设定值。
三、实验步骤1. 搭建实验装置将单容量水箱与电磁阀、电容式液位传感器等连接起来,组成完整的单容量水箱液位pid控制系统。
2. 设置PID参数根据实际情况,设置合适的PID参数。
其中比例系数Kp、积分系数Ki 和微分系数Kd需要进行适当调整以达到最佳效果。
3. 进行实验测试将设定值设置为一定值,并记录下当前的反馈值。
根据反馈值计算出误差,并通过PID控制器输出相应的调节信号给执行机构。
随着时间的推移,观察液位是否能够稳定在设定值附近。
4. 调整PID参数如果发现液位不能够稳定地保持在设定值附近,需要对PID参数进行适当调整。
可以通过增大或减小比例系数、积分系数和微分系数来调整系统的响应速度和稳定性。
单容液位定值控制系统一、实验目的1.了解单容液位定值控制系统的结构与组成。
2.掌握单容液位定值控制系统调节器参数的整定和投运方法。
3.研究调节器相关参数的变化对系统静、动态性能的影响。
4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。
5.掌握同一控制系统采用不同控制方案的实现过程。
二、实验设备THPCAT-2型现场总线过程控制对象系统实验装置、AT-1智能仪表挂件一个、RS485/232转换器一个、RS485通讯线一根、计算机一台、万用表一个、软管若干。
三、实验原理图3-6 中水箱单容液位定值控制系统(a)结构图 (b)方框图本实验系统结构图和方框图如图3-6所示。
被控量为上小水箱(也可采用上大水箱或下水箱)的液位高度,实验要求中水箱的液位稳定在给定值。
将压力传感器LT1检测到的上小水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制水箱液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。
四、实验内容与步骤本实验选择上小水箱作为被测对象(也可选择上大水箱或下水箱)。
以上小水箱为例叙述实验步骤如下:1. 实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-3、F1-4、F1-6全开,将上小水箱出水阀门F1-10开至适当开度(30%~80%),其余阀门均关闭。
2. 管路连接:将工频泵出水口和支路1进水口连接起来;将支路1出水口和上小水箱进水口连接起来;将上小水箱出水口和储水箱进水口连接起来。
3. 采用智能仪表控制:1)将“AT-1智能调节仪控制”挂件挂到网孔板上,并将挂件的通讯线插头通过RS485通讯线与RS485/232转换器连接到计算机串口1。
2)强电连线:单相I电源L、N端对应接到AT-1挂件电源输入L、N端。
3)弱电连线:上小水箱液位LT1的1-5V+、-端对应接到智能调节仪I的1-5V电压输入1、2端;智能调节I输出7、5对应接到电动调节阀控控制输入+ 、-端。
单容水箱液位过程控制综合报告自动化专业实验单容水箱液位过程控制综合报告I. 实验目的一、 了解单容水箱液位控制系统的结构与组成。
二、 掌握单容水箱液位控制系统调节器参数的整定方法。
三、 研究调节器相关参数的变化对系统静、动态性能的影响。
四、 了解P 、PI 、PD 和PID 四种调节器分别对液位控制的作用。
II. 单容水箱系统模型一、单容水箱物理模型单容水箱的结构图如下:由图2-1可知,对象的被控制量为水箱的液位H ,控制量(输入量)是流入水箱中的流量Q 1,手动阀V 1和V 2的开度都为定值,Q 2为水箱中流出的流量。
根据物料平衡关系,在平衡状态时10200Q Q -= (1)动态时,则有12d V Q Q d t-=(2)式中V 为水箱的贮水容积,dtdV 为水贮存量的变化率,它与H 的关系为Adh dV =,即d V d h Ad td t= (3)A 为水箱的底面积。
把式(3)代入式(2)得12d h Q Q Ad t-= (4)基于Q 2=SR h ,R S 为阀V2的液阻,则上式可改写为1Sh d h Q AR d t-=即1sd h A R h K Qd t+=或写作1()()1H s K Q s T S =+ (5)式中s T A R =,它与水箱的底积A 和V 2的R S 有关;s K R =。
二、 电动调节阀流量特性物理模型电动调节阀包括执行机构和阀两个部分,它是过程控制系统中的一个重要环节。
电动调节阀接受调节器输出4~20mADC 的信号,并将其转换为相应输出轴的角位移,以改变阀节流面积S 的大小。
图2-9为电动调节阀与管道的连接图。
图2-9 电动调节阀与管道的连接图图中:u----来自调节器的控制信号(4~20mADC ) θ---阀的相对开度 s ---阀的截流面积q----液体的流量由过程控制仪表的原理可知,阀的开度θ与控制信号的静态关系是线性的,而开度θ与流量Q 的关系是非线性的。
湖南工程学院系统综合训练报告液位课题名称控制系统专业班级名姓号学指导教师目录一概述 (1)二硬件介绍说明 (4)2.1电动调节阀 (4)2.2扩散硅压力液位变送器 (5)2.2扩散硅压力液位变送器 (5)2.4远程数据采集模块ICP-7017、ICP-7024面板 (5)三.软件介绍说明 (7)3.1工艺流程 (7)3.2制作总体回路 (8)3.2制作总体回路 (9)调试结果与调试说明………………………………………11四.4.1调试说明: (11)4.2调试结果 (12)五.实训心得………………………………………………………12.第章系统总体方案1在工业生产过程中,液位贮槽如进料罐、成品罐、中间缓冲器、水箱等设备应用十分普遍,为了保证生产正常进行,物料进出需均衡,以保证过程的物料平衡。
因此,工艺要求贮槽内的液位需维持在给定值上下,或在某一小范围内变化,并保证物料不产生溢出。
例如,锅炉系统汽包的液位控制,自流水生产系统过滤池、澄清池水位的控制等等。
根据课题要求,设计一个单容水箱的液位过程控制系统,该系统能对一个单容水箱液位的进行恒高度控制。
单容水箱是个比较简单的控制系统,因为在该设计中,只要控制一个液位的高度,初步设计采用水泵恒定抽水,改变电动调节阀的开度来控制水的流量从而控制水箱液位的高度。
本设计选用压力传感器对液位高度进行测量,将测量的值与系统的给定值进行比较,来确定阀的开度。
被控参数的选择1.1根据设计要求可知,水箱的液位要求保持在一恒定值。
所以,可以直接选取水箱的液位作为被控参数。
控制参数的选择1.2影响水箱液位有两个量,一是流入水箱的流量。
二是流出水箱的流量。
调节这两个流量的大小都可以改变液位高低,这样构成液位控制系统就有两种控制方案。
对两种控制方案进行比较,假如系统在停电或者失去控制作用时,第一种通过控制水箱的流入量的方案将出现的情况是:水箱的水将流干;第二种通过控制水箱的流出量的方案则会形成水长流或者水溢出的情况,因此,选择流入量作为控制参数更加合理。
单容量水箱液位pid控制实验报告实验目的:通过单容量水箱液位PID控制实验,学习PID控制器的原理和调节方法,掌握PID控制器在液位控制中的应用。
实验器材:1. 单容量水箱2. 水泵3. 液位传感器4. 控制器5. 电脑实验原理:PID控制器是由比例(P)、积分(I)和微分(D)三个部分组成的控制器。
根据物体的反馈信号与设定值之间的差异,PID控制器会计算出相应的控制量,以使系统的输出信号趋近于设定值,从而实现对物体的控制。
实验步骤:1. 搭建实验装置:将单容量水箱与水泵和液位传感器连接,将控制器与电脑连接。
2. 设置实验参数:根据实验需求,设置控制器的比例增益、积分时间常数和微分时间常数,并将设定值设定为所需的液位。
3. 开始实验:启动水泵,观察水箱液位的变化,并记录在实验报告中。
4. 数据分析:根据液位传感器的反馈信号,计算实际液位与设定值之间的差异,并根据PID控制器的算法计算出相应的控制量。
5. 调整控制参数:根据实验数据分析的结果,调整PID控制器的参数,如增大比例增益、调整积分时间常数和微分时间常数,再次进行实验。
6. 重复步骤3-5,直到达到所需的控制效果。
实验结果与分析:根据实验数据,绘制出液位随时间变化的曲线图。
通过分析曲线形状和数据变化趋势,判断控制系统的稳定性和响应时间。
如果液位在设定值附近波动较小,并且响应时间较短,则说明PID控制系统的参数调节较为合适。
结论:通过单容量水箱液位PID控制实验,我们学习了PID控制器的原理和调节方法,并掌握了PID控制器在液位控制中的应用。
同时,我们还了解到PID控制器的参数调节对控制系统的稳定性和响应时间有很大影响,需要通过实验数据的分析来进行参数调整。
这些知识和技能对于后续的控制系统设计和实施有着重要的指导意义。
4 单容水箱液位组态控制实验报告学院:自动化学院班级:学号:姓名:单容水箱液位组态一.实验目的:1.熟悉单容水箱液位调节阀PID 控制系统工作原理2.熟悉单用户项目组态过程3.掌握WINCC 画面组态设计方法4.掌握WINCC 过程值归档的组态过程5.掌握WINCC 消息系统的组态过程6.掌握WINCC 报表系统的组态过程二:单容水箱实验原理1、实验结构介绍水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过闸板开度来改变.被调量为水位H.分析水位在调节阀开度扰动下的动态特性.直接在调节阀上加定值电流,从而使得调节阀具有固定的开度。
(可以通过智能调节仪手动给定,或者AO 模块直接输出电流。
)调整水箱出口到一定的开度。
突然加大调节阀上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型。
通过物料平衡推导出的公式:μμk Q H k Q i O ==,那么 )(1H k k Fdt dH -=μμ, 其中,F 是水槽横截面积。
在一定液位下,考虑稳态起算点,公式可以转换成μμR k H dtdH RC =+。
公式等价于一个RC 电路的响应函数,C=F 就是水容,k H R 02=就是水阻.给定值 图4-1单容水箱液位数学模型的测定实验如果通过对纯延迟惯性系统进行分析,则单容水箱液位数学模型可以使用以下S 函数表示: )1()(0+=TS S KR S G 。
相关理论计算可以参考清华大学出版社1993年出版的《过程控制》,金以慧编著。
2、控制系统接线表测量或控制量 测量或控制量标号使用PLC 端口 使用ADAM 端口下水箱液位 LT103 AI0 AI0调节阀FV101 AO0 AO03参考结果单容水箱水位阶跃响应曲线,如图4—2所示:图4—2 单容水箱液位飞升特性此时液位测量高度184。
5 mm,实际高度184.5 mm -3。
5 mm =181 mm 。
实际开口面积5.5x49.5=272.25 mm²。
目录前言一.过程控制概述 (2)二.THJ-2型高级过程控制实验装置 (3)三.系统组成与工作原理 (5)(一)外部组成 (5)(二)输入模块ICP-7033和ICP-7024模块 (5)(三)其它模块和功能 (8)四.调试过程 (9)(一)P调节 (9)(二)PI调节 (10)(三)PID调节 (11)五.心得体会 (13)前言现代高等教育对高校大学生的实际动手能力、创新能力以及专业技能等方面提出了很高的要求,工程实训中心的建设应紧紧围绕这一思想进行。
首先工程实训首先应面向学生主体群,建设一个有较宽适应面的基础训练基地。
通过对基础训练设施的集中投入,面向全校相关专业,形成一定的规模优势,建立科学规范的训练和管理方法,使训练对象获得机械、电子基本生产过程和生产工艺的认识,并具备一定的实践动手能力。
其次,工程实训的内容应一定程度地体现技术发展的时代特征。
为了适应现代化工业技术综合性和多学科交叉的特点,工程实训的内容应充分体现机与电结合、技术与非技术因素结合,贯穿计算机技术应用,以适应科学技术高速发展的要求。
应以一定的专项投入,建设多层次的综合训练基地,使不同的训练对象在获得对现代工业生产方式认识的同时,熟悉综合技术内容,初步建立起“大工程”的意识,受到工业工程和环境保护方面的训练,并具备一定的实用技能。
第三,以创新训练计划为主线,依靠必要的软硬件环境,建设创新教育基地。
以产品的设计、制造、控制乃至管理为载体,把对学生的创新意识和创新能力的培养,贯穿于问题的观测和判断、创造和评价、建模和设计、仿真和建造的整个过程中。
本次工程实践就是针对单容水箱液位进行恒高度控制通过调试,来熟悉THJ-2型高级过程控制实验装置。
通过本次工程实践,来熟悉工业过程控制的工作流程以及其控制原理。
一过程控制概述在工业生产中,有一类按照一定的工艺流程(或程序)进行连续不间断的生产的工业生产过程,例如电力、石油、化工、冶金等,这些工业在经济发展中占有举足轻重的地位,我们称之为连续过程工业。
过程控制综合实验陈说之蔡仲巾千创作实验名称:单容液位定值控制系统专业:电气工程班级:姓名:学号:实验方案一、实验名称:单容液位定值控制系统二、实验目的1.了解单容液位定值控制系统的结构与组成.2.掌握单容液位定值控制系统调节器参数的整定和投运方法. 3.研究调节器相关参数的变动对系统静、静态性能的影响.4.了解P、PI、PD和PID四种调节器分别对液位控制的作用. 5.掌握同一控制系统采纳分歧控制方案的实现过程.三、实验原理本实验系统结构图和方框图如图1所示.被控量为中水箱的液位高度,实验要求中水箱的液位稳定在给定值.将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比力后的差值通过调节器控制电动调节阀的开度,以到达控制中水箱液位的目的.为了实现系统在阶跃给定和阶跃扰举措用下的无静差控制,系统的调节器应为PI或PID控制(本次实验我组采纳的是PI控制).图1 中水箱单容液位定值控制系统(a)结构图 (b)方框图一、实验目的1.了解单容液位定值控制系统的结构与组成.2.掌握单容液位定值控制系统调节器参数的整定和投运方法. 3.研究调节器相关参数的变动对系统静、静态性能的影响.4.了解P、PI、PD和PID四种调节器分别对液位控制的作用. 5.掌握同一控制系统采纳分歧控制方案的实现过程.二、实验设备1.实验控制水箱;2.实验对象及控制屏、计算机一台、SA-44挂件一个、PC/PPI 通讯电缆一根;3.三相电源输出(~380V/10A)、单相电源输出(~220V/5A)中单相I、单相II端口、三相磁力泵(~380V)、压力变送器LT2、电动调节阀中控制信号(4~20mA输入,~220V输入)、S7-200PLC 中AO端口、AI2端口.三、实验原理本实验系统结构图和方框图如图1所示.被控量为中水箱的液位高度,实验要求中水箱的液位稳定在给定值.将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比力后的差值通过调节器控制电动调节阀的开度,以到达控制中水箱液位的目的.为了实现系统在阶跃给定和阶跃扰举措用下的无静差控制,系统的调节器应为PI或PID控制.图1 中水箱单容液位定值控制系统(a)结构图 (b)方框图四、实验内容与步伐本实验选择中水箱作为被控对象.实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7、F1-11全开,将中水箱出水阀门F1-10开至适当开度,其余阀门均关闭.本次实验采纳的是S7-200控制的方法.图2 S7-200PLC控制单容液位定值控制实验接线图1.将SA-42 S7-200PLC控制挂件挂到屏上,并用PC/PPI通讯电缆线将S7-200PLC连接到计算机串口2,并依照下面的控制屏接线图连接实验系统.将“LT2中水箱液位”钮子开关拨到“ON”的位置.2.接通总电源空气开关和钥匙开关,翻开24V开关电源,给压力变送器上电,按下启动按钮,合上单相Ⅰ、Ⅲ空气开关,给S7-200PLC及电动调节阀上电.3.翻开Step 7-Micro/WIN 32软件,并翻开“S7-200PLC”法式进行下载,然后将S7-200PLC置于运行状态,然后运行MCGS组态环境,翻开“S7-200PLC控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验三、单容液位定值控制”,进入实验三的监控界面.4.在上位机监控界面中点击“启动仪表”.将智能仪表设置为“手动”,并将设定值和输出值设置为一个合适的值,此把持可通过调节仪表实现.5.合上三相电源空气开关,磁力驱动泵上电吊水,适当增加/减少智能仪表的输出量,使中水箱的液位平衡于设定值.6.根据经验法或静态特性参数法整定调节器参数,选择PI控制规律,并按整定后的PI参数进行调节器参数设置.7.待液位稳定于给定值后,将调节器切换到“自动”控制状态,待液位平衡后,通过以下几种方式加干扰:(1)突增(或突减)仪表设定值的年夜小,使其有一个正(或负)阶跃增量的变动;(此法推荐,后面三种仅供参考)(2)将电动调节阀的旁路阀F1-3或F1-4(同电磁阀)开至适当开度;(3)将下水箱进水阀F1-8开至适当开度;(改变负载)(4)接上变频器电源,并将变频器输出接至磁力泵,然后翻开阀门F2-1、F2-4,用变频器支路以较小频率给中水箱吊水.以上几种干扰均要求扰动量为控制量的5%~15%,干扰过年夜可能造成水箱中水溢出或系统不稳定.加入干扰后,水箱的液位便离开原平衡状态,经过一段调节时间后,水箱液位稳定至新的设定值(采纳后面三种干扰方法仍稳定在原设定值),记录此时的智能仪表的设定值、输出值和仪表参数,液位的响应过程曲线将如图3所示.图3 单容水箱液位的阶跃响应曲线8.分别适量改变调节仪的P及I参数,重复步伐7,用计算机记录分歧参数时系统的阶跃响应曲线.9.分别用P、PD、PID三种控制规律重复步伐4~8,用计算机记录分歧控制规律下系统的阶跃响应曲线.四、实验结果分析实验刚开始时,输入设定值(SV)为90cm,比例系数(P)、积分时间(I)均设为10,液位波形开始有近似规律的阻尼震荡响应,直至最后波形稳定,得出相应曲线.(如图4、5所示)图4 单容液位控制的系数调节图5 单容液位控制的响应曲线六、实验总结学习了单容液位定值控制系统方法,待液位稳定于给定值后,将调节器切换到“自动”控制状态,待液位平衡后,突减仪表设定值为60,使其有一个负阶跃增量的变动,但由于疏忽,未能将图像保管下来.由于设定值的原因,波位波形曲线趋向正确,可是阻尼震荡时间过长,获得最后结果曲线所需时间较长,说明取值其实不是完美.后经过学长讲解,应将积分时间(I)设为5,这样将年夜年夜提升实验效率.这更要求我们在做实验前可以通过分析法对实验结果进行理论分析,找到近似值,在实验时可以直接在理论值附近进行验证,将有效提高实验效率.。
进程控制分解试验陈述试验名称:单容液位定值控制体系专业:电气工程班级:姓名:学号:试验计划一、试验名称:单容液位定值控制体系二、试验目标1.懂得单容液位定值控制体系的构造与构成.2.控制单容液位定值控制体系调节器参数的整定和投运办法. 3.研讨调节器相干参数的变更对体系静.动态机能的影响.4.懂得P.PI.PD和PID四种调节器分离对液位控制的感化. 5.控制统一控制体系采取不合控制计划的实现进程.三.试验道理本试验体系构造图和方框图如图1所示.被控量为中水箱的液位高度,试验请求中水箱的液位稳固在给定值.将压力传感器LT2检测到的中水箱液位旌旗灯号作为反馈旌旗灯号,在与给定量比较后的差值经由过程调节器控制电动调节阀的开度,以达到控制中水箱液位的目标.为了实现体系在阶跃给定和阶跃扰动感化下的无静差控制,体系的调节器应为PI或PID控制(本次试验我组采取的是PI控制).图1 中水箱单容液位定值控制体系(a)构造图 (b)方框图一.试验目标1.懂得单容液位定值控制体系的构造与构成.2.控制单容液位定值控制体系调节器参数的整定和投运办法. 3.研讨调节器相干参数的变更对体系静.动态机能的影响.4.懂得P.PI.PD和PID四种调节器分离对液位控制的感化.5.控制统一控制体系采取不合控制计划的实现进程.二.试验装备1.试验控制水箱;2.试验对象及控制屏.盘算机一台.SA-44挂件一个.PC/PPI通信电缆一根;3.三相电源输出(~380V/10A).单相电源输出(~220V/5A)中单相I.单相II端口.三相磁力泵(~380V).压力变送器LT2.电动调节阀中控制旌旗灯号(4~20mA输入,~220V输入).S7-200PLC 中AO端口.AI2端口.三.试验道理本试验体系构造图和方框图如图1所示.被控量为中水箱的液位高度,试验请求中水箱的液位稳固在给定值.将压力传感器LT2检测到的中水箱液位旌旗灯号作为反馈旌旗灯号,在与给定量比较后的差值经由过程调节器控制电动调节阀的开度,以达到控制中水箱液位的目标.为了实现体系在阶跃给定和阶跃扰动感化下的无静差控制,体系的调节器应为PI或PID控制.图1 中水箱单容液位定值控制体系(a)构造图 (b)方框图四.试验内容与步调本试验选择中水箱作为被控对象.试验之前先将储水箱中贮足水量,然后将阀门F1-1.F1-2.F1-7.F1-11全开,将中水箱出水阀门F1-10开至恰当开度,其余阀门均封闭.本次试验采取的是S7-200控制的办法.图2 S7-200PLC控制单容液位定值控制试验接线图1.将SA-42 S7-200PLC控制挂件挂到屏上,并用PC/PPI通信电缆线将S7-200PLC衔接到盘算机串口2,并按照下面的控制屏接线图衔接试验体系.将“LT2中水箱液位”钮子开关拨到“ON”的地位.2.接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相Ⅰ.Ⅲ空气开关,给S7-200PLC及电动调节阀上电.3.打开Step 7-Micro/WIN 32软件,并打开“S7-200PLC”程序进行下载,然后将S7-200PLC置于运行状况,然后运行MCGS组态情况,打开“S7-200PLC控制体系”工程,然落后入MCGS运行情况,在主菜单中点击“试验三.单容液位定值控制”,进入试验三的监控界面.4.在上位机监控界面中点击“启动内心”.将智能内心设置为“手动”,并将设定值和输出值设置为一个适合的值,此操纵可经由过程调节内心实现.5.合上三相电源空气开关,磁力驱动泵上电打水,恰当增长/削减智能内心的输出量,使中水箱的液位均衡于设定值.6.依据经验法或动态特征参数法整定调节器参数,选择PI控制纪律,并按整定后的PI参数进行调节器参数设置.7.待液位稳固于给定值后,将调节器切换到“主动”控制状况,待液位均衡后,经由过程以下几种方法加干扰:(1)突增(或突减)内心设定值的大小,使其有一个正(或负)阶跃增量的变更;(此法推举,后面三种仅供参考)(2)将电动调节阀的旁路阀F1-3或F1-4(同电磁阀)开至恰当开度;(3)将下水箱进水阀F1-8开至恰当开度;(转变负载)(4)接上变频器电源,并将变频器输出接至磁力泵,然后打开阀门F2-1.F2-4,用变频器歧路以较小频率给中水箱打水.以上几种干扰均请求扰动量为控制量的5%~15%,干扰过大可能造成水箱中水溢出或体系不稳固.参加干扰后,水箱的液位便分开原均衡状况,经由一段调节时光后,水箱液位稳固至新的设定值(采取后面三种干扰办法仍稳固在原设定值),记载此时的智能内心的设定值.输出值和内心参数,液位的响应进程曲线将如图3所示.图3 单容水箱液位的阶跃响应曲线8.分离适量转变调节仪的P及I参数,反复步调7,用盘算机记载不合参数时体系的阶跃响应曲线.9.分离用P.PD.PID三种控制纪律反复步调4~8,用盘算机记载不合控制纪律下体系的阶跃响应曲线.四、试验成果剖析试验刚开端时,输入设定值(SV)为90cm,比例系数(P).积分时光(I)均设为10,液位波形开端有近似纪律的阻尼震动响应,直至最后波形稳固,得出响应曲线.(如图4.5所示)图4 单容液位控制的系数调节图5 单容液位控制的响应曲线六.试验总结进修了单容液位定值控制体系办法,待液位稳固于给定值后,将调节器切换到“主动”控制状况,待液位均衡后,突减内心设定值为60,使其有一个负阶跃增量的变更,但因为忽视,未能将图像保管下来.因为设定值的原因,波位波形曲线趋势准确,但是阻尼震动时光过长,得到最后成果曲线所需时光较长,解释取值其实不是完善.后经由学长讲授,应将积分时光(I)设为5,如许将大大晋升试验效力.这更请求我们在做试验前可以经由过程剖析法对试验成果进行理论剖析,找到近似值,在试验时可以直接在理论值邻近进行验证,将有用进步试验效力.。
湖南工程学院系统综合训练报告液位课题名称控制系统专业班级名姓号学指导教师目录一概述 (1)二硬件介绍说明 (4)2.1电动调节阀 (4)2.2扩散硅压力液位变送器 (5)2.2扩散硅压力液位变送器 (5)2.4远程数据采集模块ICP-7017、ICP-7024面板 (5)三.软件介绍说明 (7)3.1工艺流程 (7)3.2制作总体回路 (8)3.2制作总体回路 (9)调试结果与调试说明………………………………………11四.4.1调试说明: (11)4.2调试结果 (12)五.实训心得………………………………………………………12.第章系统总体方案1在工业生产过程中,液位贮槽如进料罐、成品罐、中间缓冲器、水箱等设备应用十分普遍,为了保证生产正常进行,物料进出需均衡,以保证过程的物料平衡。
因此,工艺要求贮槽内的液位需维持在给定值上下,或在某一小范围内变化,并保证物料不产生溢出。
例如,锅炉系统汽包的液位控制,自流水生产系统过滤池、澄清池水位的控制等等。
根据课题要求,设计一个单容水箱的液位过程控制系统,该系统能对一个单容水箱液位的进行恒高度控制。
单容水箱是个比较简单的控制系统,因为在该设计中,只要控制一个液位的高度,初步设计采用水泵恒定抽水,改变电动调节阀的开度来控制水的流量从而控制水箱液位的高度。
本设计选用压力传感器对液位高度进行测量,将测量的值与系统的给定值进行比较,来确定阀的开度。
被控参数的选择1.1根据设计要求可知,水箱的液位要求保持在一恒定值。
所以,可以直接选取水箱的液位作为被控参数。
控制参数的选择1.2影响水箱液位有两个量,一是流入水箱的流量。
二是流出水箱的流量。
调节这两个流量的大小都可以改变液位高低,这样构成液位控制系统就有两种控制方案。
对两种控制方案进行比较,假如系统在停电或者失去控制作用时,第一种通过控制水箱的流入量的方案将出现的情况是:水箱的水将流干;第二种通过控制水箱的流出量的方案则会形成水长流或者水溢出的情况,因此,选择流入量作为控制参数更加合理。
1.1.3调节阀的选择在工程中,当系统的控制作用消失时,如果调节阀没有关闭则会造成水的浪费甚至出现事故,因此,需要关闭调节阀。
故选择电动气开式调节阀。
1.4控制规律的选择一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。
比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。
比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。
系统设计要求将水箱的液位控制在一恒定的高度,说明了系统的控制精度比较高。
为了消除余差,该控制系统应采用比例积分控制或者比例积分微分控制。
1.5控制系统的方框图扰动给定单容水箱电动调节阀控制器检测变送器图1控制系统方框图1.6控制系统的简图2.图2控制系统的简图3.第章系统各模块2根据设计要求本次设计系统要通过MCGS监控软件来控制两个水箱的液位。
大致可以分成以下几个部分:1)计算机系统使用MCGS工程组态软件创建液位控制系统。
并利用计算机对其进行液位控制以及数据和曲线的读取。
2)传感器检测单元对水箱底部进行压力检测,通过通讯线将所测的模拟量输送的实验台的压力变送器。
在调试中,该设计选择的是应变式压力传感器。
3)ICP-7017远程数据采集模拟量输入模块将压力变送器的模拟信号进行模/数转换变成数字信号,然后通过通讯线将数字信号传给计算机。
将压力变送器的模拟信号进行模/数转换变成数字信号,然后通过通讯线将数字信号传给计算机。
ICP7017模块是利用RS485和上位机进行通讯的8通道模拟输入采集模块,如图 2.1示输入类型:电压、电流;输入范围:150—150mv,-500—500mv,-1—1v,-5—5v,-10—10v,-20—20mA4.图 2.1ICP7017接口图接线方式:图2.24)ICP-7024远程数据采集模拟量输出模块将计算机传送过来的数字信号转换成模拟信号,并控制水箱液位控制系统的电动调节阀。
ICP70244路电压型、电流型模拟输出。
电流输出范围:0—20mA或4—20Ma电压输出范围:-10—10V,0—10V,-5—5V,0—5V 5.图 2.3ICP7024接口图接线方式:①、电压型输出接线方式:图 2.47024电压输出接线方式②、电流型输出接线方式:图 2.57024电流输出接线方式5)实验台系统AE2000B2型过程控制实验台,是根据我国工业自动化及相关专业教学特点,吸取了国外同类实验装置的特点和长处,并与目前大型工业装置的自动化现场紧密联系,采用了工业上广泛使用并处于领先的AI智能仪表加组态软件控制系统、DCS(分布式集散控制系统),经过精心设计、多次实验和反复论证后,推出的一套基于本科生、研究生教学和学科基地建设的实验设备。
6.第3章实验系统图7.第4章系统组态监控界面的设计该设计要求采用MCGS组态软件设计出一个单容水箱的控制界面并能在计算机上进行仿真及对实验台进行液位控制实验。
考虑到要进行实验检测,所设计的界面中能显示水箱的设定值、测量值、电动调节阀的开度、控制规律(PI或PID)中比例、积分、微分系数的设置、实时曲线和历史曲线及实验数据等。
MCGS(Monitor and Control Generated System,通用监控系统)是一套用于快速构造和生成计算机监控系统的组态软件,它能够在基于Microsoft的各种32位Windows平台上运行,通过对现场数据的采集处理,以动画显示、报警处理、流程控制和报表输出等多种方式向用户提供解决实际工程问题的方案,在工业控制领域有着广泛的应用。
MCGS系统包括组态环境和运行环境两个部分。
组态结果数据库完成了MCGS系统从组态环境向运行环境的过渡,它们之间的关系如图 4.1所示。
组态环境组态结果运行环境:::解释执行数据库组态生成组态结果应用系统图 4.1由MCGS生成的用户应用系统,其结构由主控窗口、设备窗口、用户窗口、实时数据库和运行策略五个部分构成。
具体步骤:4.1组态环境的进入8.在Windows系统桌面上,鼠标双击Windows桌面上的“Mcgs 组态环境”图标进入MCGS组态环境。
4.2组态工程的建立进入MCGS组态环境后,单击工具条上的新建按钮,或执行文件菜单中的新建工程命令,系统自动创建一个名为单容水箱液位控制系统.MCG的新工程。
新工程是一个包含五个基本组成部分的结构框架,接下来要逐步在框架中配置不同的功能部件,构造完成特定任务的应用系统。
如图4.2所示,MCGS用“工作台”窗口来管理构成用户应用系统的五个部分,工作台上的五个标签:主控窗口、设备窗口、用户窗口、实时数据库和运行策略,对应于五个不同的窗口页面,每一个页面负责管理用户应用系统的一个部分,用鼠标单击不同的标签可选取不同窗口页面,对应用系统的相应部分进行组态操作。
图 4.2 4.3构造实时数据库9.点击MCGS“工作台”窗口的“实时数据库”将代表工程特征的所有物理量,作为系统参数加以定义,定义中不只包含了数值类型,还包括参数的属性及其操作方法,这种把数值、属性和方法定义成一体的数据就称为数据对象。
构造实时数据库的过程,就是定义数据对象的过程。
在实际组态过程中,一般无法一次全部定义所需的数据对象,而是根据情况需要逐步增加。
在实时数据库中新增数据“水箱SV”“水箱PV”等等。
选中数据并点击有键,可以对数据进行属性设置。
对象的属性包括基本属性、存盘属性和报警属性。
图 4.3 4.4建立用户窗口按“新建窗口”按钮,或执行菜单中的“插入”→“用户窗口”命令,即可创建一个新的用户窗口,以图标形式显示。
选中图标并单击右键,在对话框弹出后,可以分别对用户窗口的“基本属性、扩充属性”、“启动脚本”、“循环脚本”和“退出脚本”“”等属性进行设置。
10.根据设计方案,创建名为“单容水箱液位控制2”“实时曲线”历史曲线”“存盘数据”“退出提示”等窗口。
如图 4.4所示:图 4.4 4.5图形界面的生成定义了用户窗口并完成属性设置后,就开始在用户窗口内使用系统提供的绘图工具箱,创建图形对象,制作液位控制系统的图形界面。
定义了用户窗口并完成属性设置后,就开始在用户窗口内使用系统提供的绘图工具箱,创建图形对象,制作液位控制系统的图形界面。
根据设计要求,在绘图工具栏中选择“插入元件”的图标或点击编辑菜单中的查元件,在图形对象库中选择所需的元件,如水箱、抽水泵、电动调节阀、管道、传感器等等。
并在绘图工具箱中选择“流动块”,根据系统水流的流向用绘图工具箱中的“流动块”按键,画出系统的水流的流动。
编辑完控制系统图形对象后,继续使用绘图工具栏增加液位显示的“矩形图“和“实时”曲线及“自动和手动的切换按钮”等。
例外要添加水箱设定值(SV)、测量值(PV)、输出值(OP)、比例系数(K)、积分系数(Ti)、微分系数(Td)的设置。
11.生成的液位控制系统界面如图 4.5所示:图 4.5 4.6动画构件的连接在组态时,只需要建立动画构件与实时数据库中数据对象的对应关系,就能完成动画构件的连接,如对实时曲线构件,需要指明该构件运行时记录水箱SV和水箱PV的变化曲线。
在该设计中。
要求能观察实时曲线和历史曲线,因此应对实时曲线和历史曲线进行动画连接。
连接步骤:双击实时曲线表格,弹出如图 4.5所示对话框:12.图 4.6在基本属性页中,Y轴主划线设为:5;其它不变。
在标注属性页中,时间单位设为:秒钟;小数位数设为:1;最大值设为:10;其它不变。
在画笔属性页中,将:曲线1对应的表达式设为:水箱SV;颜色为:红色;曲线2对应的表达式设为:水箱PV;颜色为:绿色。
点击“确认”即可。
即可类似的对历史曲线进行设置。
4.7图形对象的动画连接为了使系统在运行过程中,产生形象逼真的动画效果,应对图形对象的状态属性设置。
对照图一所示,双击“进入自动运行13.所示:4.7状态”即可跳出对话框如图4.7图弹出的“标准按钮构件属性设置”对话框后,点击“操作属性”,将“进入自动状态”按钮中的“数据对象值操作”设置为,点击?在?的下拉菜单中,选择实时数据库中的数据对象1“run”。
类似的将“进入手动状态”按钮设置为0。
在图4.5中“SV”“PV”“OP”矩形是分别用来显示水箱的设定值SV、水箱的测量值PV、电动调节阀的开度(OPA)。
分别对他们进行属性设置,以“SV”为例:双击SV的矩形,弹出如下的对话框,点击对话框属性设置中的大小变化,将大小边变化表达式一栏选择?下拉菜单中的“水箱SV”,然后单击“确定”按钮,“SV”举矩形图的属性设置完毕。