2016版高考数学大二轮总复习 增分策略 专题六 解析几何 第3讲 圆锥曲线的综合问题试题
- 格式:docx
- 大小:437.21 KB
- 文档页数:20
第1讲圆锥曲线的概念、方程与性质圆锥曲线的定义与标准方程1.(2015广东卷)已知椭圆+=1(m>0)的左焦点为F1(-4,0),则m等于( B )(A)2 (B)3 (C)4 (D)9解析:由4=(m>0)⇒m=3,故选B.2.若圆x2+y2-4x-9=0与y轴的两个交点A,B都在某双曲线上,且A,B两点恰好将此双曲线的焦距三等分,则此双曲线的标准方程为( A )(A)-=1 (B)-=1(C)-=1 (D)-=1解析:解方程组得或因为圆x2+y2-4x-9=0与y轴的两个交点A,B都在某双曲线上,且A,B两点恰好将此双曲线的焦距三等分,所以A(0,-3),B(0,3),所以a=3,2c=18,所以b2=()2-32=72,所以双曲线方程为-=1.故选A.3.已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|=12,P为C 的准线上一点,则△ABP的面积为( C )(A)18 (B)24 (C)36 (D)48解析: 设抛物线方程y2=2px(p>0),F为抛物线焦点,则直线l垂直于x轴,AF==6,所以△ABP的边AB上的高h=6,所以S△ABP=×12×6=36.故选C.4.已知P为椭圆+=1上的一点,M,N分别为圆(x+3)2+y2=1和圆(x-3)2+y2=4上的点,则|PM|+|PN|的最小值为.解析:由题意知椭圆的两个焦点F1,F2分别是两圆的圆心,且|PF1|+|PF2|=10,从而|PM|+|PN|的最小值为|PF1|+|PF2|-1-2=7.答案:75.(2015佛山模拟)设F1,F2是双曲线x2-=1的两个焦点,P是双曲线与椭圆+=1的一个公共点,则△PF1F2的面积等于.解析:由题知,双曲线和椭圆焦点相同,假设点P是两曲线在第一象限的交点,则有|PF1|-|PF2|=2,|PF1|+|PF2|=14,解得|PF1|=8,|PF2|=6,又|F1F2|=10,故△PF1F2是直角三角形,则其面积为24.答案:24圆锥曲线的几何性质6.(2014广东卷)若实数k满足0<k<5,则曲线-=1与曲线-=1的( A )(A)焦距相等 (B)离心率相等(C)虚半轴长相等 (D)实半轴长相等解析:因为0<k<5,所以5-k>0,16-k>0,这两个方程表示的是双曲线.焦距都是2.故选A.7.(2013北京卷)若双曲线-=1的离心率为,则其渐近线方程为( B )(A)y=±2x (B)y=±x(C)y=±x (D)y=±x解析:考查双曲线的离心率e=,渐近线方程y=±x及a,b,c之间的关系a2+b2=c2.由=,令a=m,c=m(m>0),则b==m,渐近线方程为y=±x.故选B.8.(2014新课标全国卷Ⅰ)已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为( A )(A)(B)3 (C)m (D)3m解析:-=1,因为m>0,所以双曲线的焦点在x轴上,a2=3m,b2=3,所以一条渐近线为y=x,即y=x,c2=a2+b2=3m+3,则焦点F(,0)到直线y-x=0的距离为d===.故选A.9. (2015黑龙江模拟)已知椭圆+=1(a>b>0),以O为圆心,短半轴长为半径作圆O,过椭圆的长轴的一端点P作圆O的两条切线,切点为A,B,若四边形PAOB为正方形,则椭圆的离心率为( B )(A)(B)(C)(D)解析:由题意知|OA|=|AP|=b,|OP|=a,OA⊥AP,所以2b2=a2,=,故e==,故选B.10.(2015福建卷)已知椭圆E:+=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点.若|AF|+|BF|=4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是( A )(A)(B)(C)(D)解析:设椭圆的左焦点为F1,半焦距为c,连接AF1,BF1,则四边形AF1BF为平行四边形,所以|AF1|+|BF1|=|AF|+|BF|=4.根据椭圆定义,有|AF1|+|AF|+|BF1|+|BF|=4a,所以8=4a,解得a=2.因为点M到直线l:3x-4y=0的距离不小于,即≥,b≥1,所以b2≥1,所以a2-c2≥1,4-c2≥1,解得0<c≤,所以0<≤,所以椭圆的离心率的取值范围为(0,].故选A.11.(2015甘肃兰州第二次监测)已知椭圆C的中心为O,两焦点为F1,F2,M是椭圆C上的一点,且满足||=2||=2||,则椭圆C的离心率e等于( D )(A)(B)(C)(D)解析:过M向椭圆的长轴作垂线,垂足为N,则N为OF2的中点,设||=t,则||2-||2=||2-||2,即4t2-c2=t2-c2,所以c=t,而a=t,所以e=.12.抛物线x2=2py(p>0)的焦点为F,其准线与双曲线-=1相交于A,B两点,若△ABF为等边三角形,则p= .解析: 如图,在等边三角形ABF中,DF=p,BD=p,所以B点坐标为(p,-).又点B在双曲线上,故-=1.解得p=6.答案:6一、选择题1.(2014安徽卷)抛物线y=x2的准线方程是( A )(A)y=-1 (B)y=-2(C)x=-1 (D)x=-2解析:抛物线的方程化为x2=4y,其准线方程为y=-1.故选A.2.(2015江西景德镇模拟)已知△ABC的顶点B,C在椭圆+=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是( B )(A)10 (B)20 (C)8 (D)16解析:设椭圆的另一焦点为F,由椭圆的定义知|BA|+|BF|=|CA|+|CF|=2a,所以△ABC的周长为4a=4×5=20.3.(2015江西省重点中学协作体模拟)已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且椭圆G上一点到其两个焦点的距离之和为12,则椭圆G的方程为( A )(A)+=1 (B)+=1(C)+=1 (D)+=1解析:据题意知2a=12,得a=6,离心率e==,所以c=3,于是b2=9,故椭圆G的方程为+=1.4.(2015济宁模拟)若椭圆+=1(a>b>0)的离心率为,则双曲线-=1的渐近线方程为( A )(A)y=±2x (B)y=±x(C)y=±4x (D)y=±x解析:设椭圆的焦距为2c,由题意知=,所以c=a,b==a,双曲线-=1的渐近线为y=±x=±2x.5.(2015山西大学附中模拟)若m是2和8的等比中项,则圆锥曲线x2+=1的离心率是( D )(A) (B)(C)或(D)或解析:因为m是2,8的等比中项,所以m2=2×8=16,所以m=±4,若m=4时,则椭圆x2+=1的方程为x2+=1,所以其离心率e=,若m=-4,则双曲线方程为x2-=1,离心率e==.故选D.6.(2014天津卷)已知双曲线-=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为( A )(A)-=1 (B)-=1(C)-=1 (D)-=1解析:由题意可知,双曲线的其中一条渐近线y=x与直线y=2x+10平行,所以=2且左焦点为(-5,0),所以a2+b2=c2=25,解得a2=5,b2=20,故双曲线方程为-=1.故选A.7.(2015赣州市模拟)F1是双曲线C:-=1(a>0,b>0)的左焦点,点P是双曲线右支上一点,若线段PF1与y轴的交点M恰为PF1的中点,且|OM|=a(O为坐标原点),则双曲线C的离心率为( B ) (A)(B)(C)2 (D)3解析:因为M是线段PF1的中点,|OM|=a,所以OM∥PF2,PF2⊥x轴且|PF2|=2a,又由|PF1|-|PF2|=2a知,|PF1|=4a,在直角三角形F1PF2中,sin∠PF1F2==,所以∠PF1F2=30°,故双曲线C的离心率e====.故选B.8.(2015江西上饶模拟)已知抛物线y2=8x,P为其上一点,点N(5,0),点M满足||=1,·=0,则||的最小值为( C )(A)(B)4 (C)(D)2解析:设点P(,y0)由题意知M点的轨迹是以N(5,0)为圆心,1为半径的圆,PM为该圆的一条切线,所以||===≥.故选C.9.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是( D )(A)(,) (B)(,1)(C)(,1) (D)(,)∪(,1)解析:根据题意,结合椭圆的图形得a-c<2c且a≠2c(a=2c时只有当P点与短轴两个端点重合时,△F1F2P才为等腰三角形).所以<e<1,且e≠.10.已知双曲线-=1(a>0,b>0)的右焦点F,直线x=与其渐近线交于A,B两点,且△ABF为钝角三角形,则双曲线离心率的取值范围是( D )(A)(,+∞) (B)(1,)(C)(,+∞) (D)(1,)解析:由题意设直线x=与x轴的交点为D,因为三角形ABF为钝角三角形,且∠BFD=∠AFD,所以∠AFD>,又|DF|=c-=,双曲线的渐近线方程为y=±x,所以可得A,B两点坐标分别为(,),(,-),所以tan∠AFD===>1,即b<a,则e==<=,故e∈(1,).故选D.11.(2015开封模拟)从双曲线-=1(a>0,b>0)的左焦点F引圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于P点,若M为线段FP的中点,O为坐标原点,则|MO|-|MT|与b-a的关系为( C )(A)|MO|-|MT|>b-a(B)|MO|-|MT|<b-a(C)|MO|-|MT|=b-a(D)|MO|-|MT|与b-a无关解析:设F1是双曲线的右焦点,连接PF1,由双曲线的定义知|PF|-|PF1|=2a, ①因为OM是△FF1P的中位线,所以|PF1|=2|OM|, ②又因为M是FP的中点,所以|PF|=2|MF|, ③②③代入①得2|MF|-2|OM|=2a,|MF|-|OM|=a. ④因为|MF|=|MT|+|TF|,|FT|2=|OF|2-|OT|2=c2-a2,所以|FT|=b.所以|MF|=|MT|+b. ⑤把⑤代入④得|MT|+b-|OM|=a,所以|OM|-|MT|=b-a.选C.二、填空题12.(2015宁夏石嘴山高三联考)已知双曲线-=1(a,b>0)的一条渐近线方程为2x+3y=0,则双曲线的离心率是.解析:双曲线-=1的渐近线方程为y=±x,2x+3y=0可化为y=-x,所以=,e======.答案:13.(2015江西九江二模)已知直线2x-(m+)y-2=0(m>0)与直线l:x=-1,抛物线C:y2=4x及x轴分别相交于A,B,F三点,若=2,则m= .解析:如图所示,点F及直线l分别是抛物线C的焦点和准线,过点B作BD⊥l于D,则|BD|=|BF|,因为=2,所以∠ABD=60°,所以=tan 60°,解得m=.答案:14.已知点P(m,4)是椭圆+=1(a>b>0)上的一点,F1,F2是椭圆的两个焦点,若△PF1F2的内切圆的半径为,则此椭圆的离心率为.解析:一方面△PF1F2的面积为(2a+2c)r;另一方面△PF1F2的面积为|y P|·2c,所以(2a+2c)·r=|y P|·2c,所以(a+c)·r=|y P|·c,所以=,所以(+1)=,又y P=4,所以=-1=-1=,所以椭圆的离心率为e==.答案:15.(2015大连市模拟)已知双曲线C:-=1(a>0,b>0)左、右顶点为A1,A2,左、右焦点为F1,F2,P为双曲线C上异于顶点的一动点,直线PA1斜率为k1,直线PA2斜率为k2,且k1k2=1,又△PF1F2内切圆与x轴切于点(1,0),则双曲线的方程为.解析:A1(-a,0),A2(a,0),F1(-c,0),F2( c,0),直线PA1的方程为y-0=k1(x+a),直线PA2的方程为y-0=k2(x-a),于是有y2=k1k2(x2-a2),又k1k2=1,所以x2-y2=a2,因此a=b,又由△PF1F2内切圆与x轴切于点(1,0),知||PF1|-|PF2||=|1+c-(c-1)|=2a,解得a=1.故双曲线的方程为x2-y2=1.答案:x2-y2=1。
【3份】2016江苏高考数学(理科)大二轮总复习与增分策略专题六解析几何目录专题六解析几何 (1)第1讲直线与圆 (1)二轮专题强化练 (5)专题六解析几何专题六解析几何 (5)学生用书答案精析 (7)二轮专题强化练答案精析 (12)第2讲椭圆、双曲线、抛物线 (17)二轮专题强化练 (21)学生用书答案精析 (23)二轮专题强化练答案精析 (30)第3讲圆锥曲线的综合问题 (36)二轮专题强化练 (44)学生用书答案精析 (47)二轮专题强化练答案精析 (54)专题六解析几何第1讲直线与圆1.(2015·安徽改编)直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是________.2.(2015·湖南)若直线3x-4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°(O为坐标原点),则r=________.3.(2014·重庆)已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=________.4.(2014·课标全国Ⅱ)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是________.考查重点是直线间的平行和垂直的条件、与距离有关的问题.直线与圆的位置关系(特别是弦长问题),此类问题难度属于中低档,一般以填空题的形式出现.热点一直线的方程及应用1.两条直线平行与垂直的判定若两条不重合的直线l1,l2的斜率k1,k2存在,则l1∥l2⇔k1=k2,l1⊥l2⇔k1k2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在.2.求直线方程要注意几种直线方程的局限性.点斜式、两点式、斜截式要求直线不能与x轴垂直.而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线.3.两个距离公式(1)两平行直线l1:Ax+By+C1=0,l2:Ax+By+C2=0间的距离d=|C1-C2| A2+B2.(2)点(x0,y0)到直线l:Ax+By+C=0的距离公式d=|Ax0+By0+C|A2+B2.例1(1)已知直线l1:(k-3)x+(4-k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的值是________.(2)已知两点A(3,2)和B(-1,4)到直线mx+y+3=0的距离相等,则m的值为________.思维升华(1)求解两条直线的平行或垂直问题时要考虑斜率不存在的情况;(2)对解题中可能出现的特殊情况,可用数形结合的方法分析研究.跟踪演练1已知A(3,1),B(-1,2)两点,若∠ACB的平分线方程为y=x+1,则AC所在的直线方程为____________________________________________________________.热点二圆的方程及应用1.圆的标准方程当圆心为(a,b),半径为r时,其标准方程为(x-a)2+(y-b)2=r2,特别地,当圆心在原点时,方程为x2+y2=r2.2.圆的一般方程x 2+y 2+Dx +Ey +F =0,其中D 2+E 2-4F >0,表示以(-D 2,-E2)为圆心,D 2+E 2-4F 2为半径的圆.例2 (1)若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为_________________. (2)已知圆M 的圆心在x 轴上,且圆心在直线l 1:x =-2的右侧,若圆M 截直线l 1所得的弦长为23,且与直线l 2:2x -5y -4=0相切,则圆M 的方程为____________________. 思维升华 解决与圆有关的问题一般有两种方法:(1)几何法,通过研究圆的性质、直线和圆、圆与圆的位置关系,进而求得圆的基本量和方程;(2)代数法,即用待定系数法先设出圆的方程,再由条件求得各系数.跟踪演练2 (1)(2015·江苏名校联考)经过点A (5,2),B (3,-2),且圆心在直线2x -y -3=0上的圆的方程为________________.(2)已知直线l 的方程是x +y -6=0,A ,B 是直线l 上的两点,且△OAB 是正三角形(O 为坐标原点),则△OAB 外接圆的方程是____________________.热点三 直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离,判断的方法主要有点线距离法和判别式法. (1)点线距离法:设圆心到直线的距离为d ,圆的半径为r ,则d <r ⇔直线与圆相交,d =r ⇔直线与圆相切,d >r ⇔直线与圆相离.(2)判别式法:设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0,方程组⎩⎪⎨⎪⎧Ax +By +C =0,(x -a )2+(y -b )2=r 2消去y ,得关于x 的一元二次方程根的判别式Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系有五种,即内含、内切、相交、外切、外离.设圆C 1:(x -a 1)2+(y -b 1)2=r 21,圆C 2:(x -a 2)2+(y -b 2)2=r 22,两圆心之间的距离为d ,则圆与圆的五种位置关系的判断方法如下: (1)d >r 1+r 2⇔两圆外离; (2)d =r 1+r 2⇔两圆外切; (3)|r 1-r 2|<d <r 1+r 2⇔两圆相交; (4)d =|r 1-r 2|(r 1≠r 2)⇔两圆内切; (5)0≤d <|r 1-r 2|(r 1≠r 2)⇔两圆内含.例3(1)已知直线2x+(y-3)m-4=0(m∈R)恒过定点P,若点P平分圆x2+y2-2x-4y-4=0的弦MN,则弦MN所在直线的方程是_______________________________.(2)已知P(x,y)是直线kx+y+4=0(k>0)上一动点,P A,PB是圆C:x2+y2-2y=0的两条切线,A,B是切点,若四边形P ACB的最小面积是2,则k的值为____________.思维升华(1)讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.(2)圆上的点与圆外点的距离的最值问题,可以转化为圆心到点的距离问题;圆上的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的点与另一圆上点的距离的最值问题,可以转化为圆心到圆心的距离问题.跟踪演练3(1)已知在平面直角坐标系xOy中,圆C的方程为x2+y2=-2y+3,直线l过点(1,0)且与直线x-y+1=0垂直.若直线l与圆C交于A、B两点,则△OAB的面积为________.(2)两个圆C1:x2+y2+2ax+a2-4=0(a∈R)与C2:x2+y2-2by-1+b2=0(b∈R)恰有三条公切线,则a+b的最小值为________.1.已知圆C关于y轴对称,经过点(1,0)且被x轴分成两段弧长比为1∶2,则圆C的方程为________________________________________________________________________.2.已知点A(-2,0),B(0,2),若点C是圆x2-2ax+y2+a2-1=0上的动点,△ABC面积的最小值为3-2,则a的值为________.3.若圆x2+y2=4与圆x2+y2+ax+2ay-9=0(a>0)相交,公共弦的长为22,则a=________.提醒:完成作业专题六第1讲二轮专题强化练专题六 解析几何专题六 解析几何第1讲 直线与圆A 组 专题通关1.直线l 过点(-1,2)且与直线2x -3y -1=0垂直,则l 的方程是________________. 2.若直线y =kx +2k 与圆x 2+y 2+mx +4=0至少有一个交点,则m 的取值范围是________.3.过P (2,0)的直线l 被圆(x -2)2+(y -3)2=9截得的线段长为2时,直线l 的斜率为________.4.若圆O :x 2+y 2=4与圆C :x 2+y 2+4x -4y +4=0关于直线l 对称,则直线l 的方程是____________.5.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则PM +PN 的最小值为________.6.已知圆O :x 2+y 2=5,直线l :x cos θ+y sin θ=1(0<θ<π2).设圆O 上到直线l 的距离等于1的点的个数为k ,则k =________.7.(2014·湖北)直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=____.8.(2015·湖北)如图,已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且AB =2.(1)圆C 的标准方程为____________________________________. (2)圆C 在点B 处的切线在x 轴上的截距为________.9.已知点A (3,3),B (5,2)到直线l 的距离相等,且直线l 经过两直线l 1:3x -y -1=0和l 2:x +y -3=0的交点,求直线l 的方程.10.(2015·课标全国Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求MN .B 组 能力提高11.圆心在曲线y =2x (x >0)上,与直线2x +y +1=0相切,则面积最小的圆的方程为________________________________________________________________________. 12.已知圆面C :(x -a )2+y 2≤a 2-1的面积为S ,平面区域D :2x +y ≤4与圆面C 的公共区域的面积大于12S ,则实数a 的取值范围是_______________________________________.13.(2015·淮安模拟)若圆x 2+y 2-4x -4y -10=0上恰有三个不同的点到直线l :y =kx 的距离为22,则k =________.14.已知圆C :(x -1)2+(y -2)2=25,直线l :(2a +1)x +(a +1)y -7a -4=0,其中a ∈R . (1)求证:不论实数a 取何值,直线l 和圆C 恒有两个交点; (2)求直线l 被圆C 截得的线段最短时,直线l 的方程和最短的弦长; (3)求过点M (6,-4)且与圆C 相切的直线方程.学生用书答案精析专题六 解析几何第1讲 直线与圆高考真题体验 1.2或12【详细分析】∵圆方程可化为(x -1)2+(y -1)2=1,∴该圆是以(1,1)为圆心,以1为半径的圆,∵直线3x +4y =b 与该圆相切,∴|3×1+4×1-b |32+42=1,解得b =2或b =12. 2.2【详细分析】如图,过O 点作OD ⊥AB 于D 点,在Rt △DOB 中,∠DOB =60°, ∴∠DBO =30°,又OD =|3×0-4×0+5|5=1,∴r =2OD =2. 3.4±15【详细分析】圆心C (1,a )到直线ax +y -2=0的距离为|a +a -2|a 2+1.因为△ABC 为等边三角形,所以AB =BC =2,所以(|a +a -2|a 2+1)2+12=22,解得a =4±15.4.[-1,1]【详细分析】如图,过点M 作⊙O 的切线,切点为N ,连结ON . M 点的纵坐标为1, MN 与⊙O 相切于点N . 设∠OMN =θ, 则θ≥45°, 即sin θ≥22, 即ON OM ≥22. 而ON =1,∴OM ≤ 2. ∵M (x 0,1),∴x 20+1≤2,∴x 20≤1,∴-1≤x 0≤1,∴x 0的取值范围为[-1,1]. 热点分类突破例1 (1)3或5 (2)12或-6【详细分析】(1)当k =4时,直线l 1的斜率不存在,直线l 2的斜率存在,则两直线不平行;当k ≠4时,两直线平行的一个必要条件是3-k 4-k =k -3,解得k =3或k =5.但必须满足1k -4≠32(截距不相等)才是充要条件,经检验知满足这个条件. (2)依题意,得|3m +5|m 2+1=|-m +7|m 2+1. 所以|3m +5|=|m -7|.所以(3m +5)2=(m -7)2, 所以8m 2+44m -24=0. 所以2m 2+11m -6=0. 所以m =12或m =-6.跟踪演练1 x -2y -1=0【详细分析】由题意可知,直线AC 和直线BC 关于直线y =x +1对称.设点B (-1,2)关于直线y =x +1的对称点为B ′(x 0,y 0),则有⎩⎪⎨⎪⎧y 0-2x 0+1=-1,y 0+22=x 0-12+1⇒⎩⎪⎨⎪⎧x 0=1,y 0=0,即B ′(1,0).因为B ′(1,0)在直线AC 上, 所以直线AC 的斜率为k =1-03-1=12,所以直线AC 的方程为y -1=12(x -3),即x -2y -1=0.例2 (1)(x -2)2+(y ±3)2=4 (2)(x +1)2+y 2=4【详细分析】(1)因为圆C 经过(1,0),(3,0)两点,所以圆心在直线x =2上,又圆与y 轴相切,所以半径r =2,设圆心坐标为(2,b ),则(2-1)2+b 2=4,b 2=3,b =±3. 所以圆C 的方程为(x -2)2+(y ±3)2=4.(2)由已知,可设圆M 的圆心坐标为(a,0),a >-2,半径为r , 得⎩⎪⎨⎪⎧(a +2)2+(3)2=r 2,|2a -4|4+5=r ,解得满足条件的一组解为⎩⎪⎨⎪⎧a =-1,r =2,所以圆M 的方程为(x +1)2+y 2=4.跟踪演练2 (1)(x -2)2+(y -1)2=10 (2)(x -2)2+(y -2)2=8 【详细分析】(1)由题意知K AB =2,AB 的中点为(4,0), 设圆心为C (a ,b ),∵圆过A (5,2),B (3,-2)两点, ∴圆心一定在线段AB 的垂直平分线上.则⎩⎪⎨⎪⎧b a -4=-12,2a -b -3=0,解得⎩⎪⎨⎪⎧a =2,b =1∴C (2,1),∴r =CA =(5-2)2+(2-1)2=10. ∴所求圆的方程为(x -2)2+(y -1)2=10.(2)设△OAB 的外心为C ,连结OC ,则易知OC ⊥AB ,延长OC 交AB 于点D ,则OD =32,且△AOB 外接圆的半径R =OC =23OD =2 2.又直线OC 的方程是y =x ,容易求得圆心C 的坐标为(2,2),故所求圆的方程是(x -2)2+(y -2)2=8. 例3 (1)x +y -5=0 (2)2【详细分析】(1)对于直线方程2x +(y -3)m -4=0(m ∈R ),取y =3,则必有x =2,所以该直线恒过定点P (2,3). 设圆心是C ,则易知C (1,2), 所以k CP =3-22-1=1, 由垂径定理知CP ⊥MN ,所以k MN =-1. 又弦MN 过点P (2,3),故弦MN 所在直线的方程为y -3=-(x -2), 即x +y -5=0.(2)如图,把圆的方程化成标准形式得x 2+(y -1)2=1,所以圆心为(0,1),半径为r =1,四边形P ACB 的面积S =2S △PBC ,所以若四边形P ACB 的最小面积是2,则S △PBC 的最小值为1.而S △PBC =12r ·PB ,即PB 的最小值为2,此时PC 最小,PC 为圆心到直线kx +y +4=0的距离d ,此时d =|5|k 2+1=12+22=5,即k 2=4,因为k >0,所以k =2. 跟踪演练3 (1)1 (2)3 2【详细分析】(1)因为圆C 的标准方程为x 2+(y +1)2=4,圆心为C (0,-1),半径r =2,直线l 的斜率为-1,其方程为x +y -1=0. 圆心C 到直线l 的距离d =|0-1-1|2=2,弦长AB =2r 2-d 2=24-2=22, 又坐标原点O 到线段AB 的距离为12,所以S △OAB =12×22×12=1.(2)两个圆恰有三条公切线,则两圆外切,两圆的标准方程分别为圆C 1:(x +a )2+y 2=4, 圆C 2:x 2+(y -b )2=1, 所以C 1C 2=a 2+b 2=2+1=3, 即a 2+b 2=9.由(a +b 2)2≤a 2+b 22,得(a +b )2≤18,所以-32≤a +b ≤32,当且仅当“a =b ”时取“=”. 高考押题精练 1.x 2+(y ±33)2=43【详细分析】由已知得圆心在y 轴上,且被x 轴所分劣弧所对圆心角为23π.设圆心坐标为(0,a ),半径为r , 则r sin π3=1,r cos π3=|a |,解得r =23, 即r 2=43,|a |=33,即a =±33, 故圆C 的方程为x 2+(y ±33)2=43.2.1或-5【详细分析】圆的标准方程为(x -a )2+y 2=1,圆心M (a,0)到直线AB :x -y +2=0的距离为d =|a +2|2,圆上的点到直线AB 的最短距离为 d -1=|a +2|2-1,(S △ABC )min =12×22×|a +2|-22=3-2,解得a =1或-5. 3.102【详细分析】联立两圆方程⎩⎪⎨⎪⎧x 2+y 2=4,x 2+y 2+ax +2ay -9=0, 可得公共弦所在直线方程为ax +2ay -5=0, 故圆心(0,0)到直线ax +2ay -5=0的距离为|-5|a 2+4a2=5a(a >0). 故222-(5a)2=22, 解得a 2=52,因为a >0,所以a =102. 二轮专题强化练答案精析专题六 解析几何第1讲 直线与圆1.3x +2y -1=0【详细分析】方法一 由题意可得l 的斜率为-32,所以直线l 的方程为y -2=-32(x +1),即3x +2y -1=0.方法二 设直线l 的方程为3x +2y +C =0,将点(-1,2)代入,得C =-1, 所以l 的方程是3x +2y -1=0. 2.(4,+∞)【详细分析】由y =k (x +2)得直线恒过定点(-2,0),因此可得点(-2,0)必在圆内或圆上,故有(-2)2+02-2m +4≤0⇒m ≥4.又由方程表示圆的条件,故有m 2-4×4>0⇒m <-4或m >4.综上可知m >4. 3.±24【详细分析】由题意得直线l 的斜率存在,设为k ,则直线l 的方程为y =k (x -2),即kx -y -2k =0.由点到直线的距离公式得,圆心到直线l 的距离d =|2k -3-2k |k 2+1=3k 2+1, 由圆的性质可得d 2+12=r 2,即(3k 2+1)2+12=9, 解得k 2=18,即k =±24.4.x -y +2=0【详细分析】圆x 2+y 2+4x -4y +4=0,即(x +2)2+(y -2)2=4,圆心C 的坐标为(-2,2). 直线l 过OC 的中点(-1,1),且垂直于直线OC ,易知k OC =-1,故直线l 的斜率为1,直线l 的方程为y -1=x +1,即x -y +2=0. 5.52-4【详细分析】两圆的圆心均在第一象限,先求PC 1+PC 2的最小值,作点C 1关于x 轴的对称点C 1′(2,-3),则(PC 1+PC 2)min =C 1′C 2=52,所以(PM +PN )min =52-(1+3)=52-4. 6.4【详细分析】圆心O 到直线l 的距离d =1cos 2θ+sin 2θ=1,而圆O 半径为5,所以圆O 上到l 的距离等于1的点有4个. 7.2【详细分析】依题意,不妨设直线y =x +a 与单位圆相交于A ,B 两点,则∠AOB =90°.如图,此时a =1,b =-1, 满足题意, 所以a 2+b 2=2.8.(1)(x -1)2+(y -2)2=2 (2)-2-1【详细分析】(1)由题意,设圆心C (1,r )(r 为圆C 的半径),则r 2=⎝⎛⎫AB 22+12=2,解得r = 2.所以圆C 的方程为(x -1)2+(y -2)2=2.(2)方法一 令x =0,得y =2±1,所以点B (0,2+1).又点C (1,2),所以直线BC 的斜率为k BC =-1,所以过点B 的切线方程为y -(2+1)=x -0,即y =x +(2+1). 令y =0,得切线在x 轴上的截距为-2-1.方法二 令x =0,得y =2±1,所以点B (0,2+1).又点C (1,2),设过点B 的切线方程为y -(2+1)=kx ,即kx -y +(2+1)=0.由题意,得圆心C (1,2)到直线kx -y +(2+1)=0的距离d =|k -2+2+1|k 2+1=r =2,解得k =1.故切线方程为x -y +(2+1)=0.令y =0,得切线在x轴上的截距为-2-1.9.解 解方程组⎩⎪⎨⎪⎧3x -y -1=0,x +y -3=0,得交点P (1,2).①若点A ,B 在直线l 的同侧,则l ∥AB . 而k AB =3-23-5=-12,由点斜式得直线l 的方程为y -2=-12(x -1),即x +2y -5=0.②若点A ,B 分别在直线l 的异侧,则直线l 经过线段AB 的中点(4,52),由两点式得直线l 的方程为y -2x -1=52-24-1,即x -6y +11=0.综上所述,直线l 的方程为 x +2y -5=0或x -6y +11=0.10.解 (1)由题设,可知直线l 的方程为y =kx +1, 因为l 与C 交于两点,所以|2k -3+1|1+k2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73. (2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1, 整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2. OM →·ON →=x 1x 2+y 1y 2 =(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8.由题设可得4k (1+k )1+k 2+8=12,解得k =1,所以l 的方程为y =x +1. 故圆心C 在l 上,所以MN =2. 11.(x -1)2+(y -2)2=5【详细分析】设圆心坐标为C (a ,2a )(a >0),则半径r =2a +2a+15≥22a ×2a+15=5, 当且仅当2a =2a,即a =1时取等号.所以当a =1时圆的半径最小,此时r =5,C (1,2), 所以面积最小的圆的方程为(x -1)2+(y -2)2=5. 12.(-∞,-1)∪(1,2)【详细分析】依题意并结合图形分析可知(图略),圆面C :(x -a )2+y 2≤a 2-1的圆心(a,0)应在不等式2x +y ≤4表示的平面区域内,且(a,0)不在直线2x +y =4上,即有⎩⎪⎨⎪⎧a 2-1>0,2a +0<4,由此解得a <-1或1<a <2.因此,实数a 的取值范围是(-∞,-1)∪(1,2). 13.2±3【详细分析】x 2+y 2-4x -4y -10=0, 即(x -2)2+(y -2)2=18, 其圆心为C (2,2),半径为r =3 2.圆x 2+y 2-4x -4y -10=0上恰有三个不同的点到直线l :y =kx 的距离为22,应满足图中A ,B ,D 到直线l :y =kx 的距离为22,所以,C (2,2)到直线l :y =kx 的距离为32-|2k -2|1+k2=22,整理得k 2-4k +1=0,解得k =2±3.14.(1)证明 方法一 在直线l 的方程中,分别取a =0,a =-1,得x +y -4=0,-x +3=0,联立方程得直线l 恒过定点N (3,1). 因圆心C 的坐标为(1,2), 圆C 的半径为r =5,CN =(3-1)2+(1-2)2=5<5,故点N 在圆C 内,所以,不论实数a 取何值,直线l 和圆C 恒有两个交点. 方法二 直线l 的方程可以化为(2x +y -7)a +x +y -4=0,由a 的任意性得⎩⎪⎨⎪⎧ 2x +y -7=0,x +y -4=0,解得⎩⎪⎨⎪⎧x =3,y =1.所以直线l 恒过定点N (3,1).下面的解答过程与方法一相同. (2)解 当l ⊥CN 时,直线l 被圆C 截得的线段最短. 因为k CN =2-11-3=-12,所以-2a +1a +1=2,解得a =-34,这时,直线l 的方程为2x -y -5=0.又CN =5,r =5,所以半弦长为52-5=25, 最短的弦长为4 5.(3)解 因为(6-1)2+(-4-2)2>25,所以M (6,-4)在圆外,过点M (6,-4)且与圆C 相切的直线有两条. 当斜率不存在时,所求的切线为x =6;当斜率存在时,设所求的切线方程为y +4=k (x -6), 即kx -y -6k -4=0,由|k -2-6k -4|k 2+1=5,得k =-1160, 这时,所求的切线方程为11x +60y +174=0. 综上,所求的直线方程为x =6或11x +60y +174=0.第2讲 椭圆、双曲线、抛物线1.(2015·福建改编)若双曲线E :x 29-y 216=1的左,右焦点分别为F 1,F 2,点P 在双曲线E上,且PF 1=3,则PF 2等于________.2.(2014·课标全国Ⅰ改编)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则QF 等于________.3.(2015·江苏)在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________.4.(2014·安徽)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左,右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若AF 1=3F 1B ,AF 2⊥x 轴,则椭圆E 的方程为________.1.以填空题形式考查圆锥曲线的方程、几何性质(特别是离心率).2.以解答题形式考查直线与圆锥曲线的位置关系(弦长、中点等).热点一 圆锥曲线的定义与标准方程1.圆锥曲线的定义(1)椭圆:PF 1+PF 2=2a (2a >F 1F 2); (2)双曲线:|PF 1-PF 2|=2a (2a <F 1F 2);(3)抛物线:PF =PM ,点F 不在直线l 上,PM ⊥l 于M . 2.求解圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a 2,b 2,p 的值.例1 (1)若椭圆C :x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆C 上,且PF 2=4,则∠F 1PF 2=________.(2)(2015·丰台模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点坐标为(2,0),则双曲线的方程为________.思维升华 (1)准确把握圆锥曲线的定义和标准方程及其简单几何性质,注意焦点在不同坐标轴上时,椭圆、双曲线、抛物线方程的不同表示形式.(2)求圆锥曲线方程的基本方法就是待定系数法,可结合草图确定.跟踪演练1 (1)(2014·大纲全国改编)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点.若△AF 1B 的周长为43,则C 的方程为________________.(2)(2015·天津改编)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线过点(2,3) ,且双曲线的一个焦点在抛物线y 2=47x 的准线上,则双曲线的方程为________.热点二 圆锥曲线的几何性质1.椭圆、双曲线中,a ,b ,c 之间的关系 (1)在椭圆中:a 2=b 2+c 2,离心率为e =ca =1-(b a )2;(2)在双曲线中:c 2=a 2+b 2,离心率为e =ca=1+(b a)2.2.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x .注意离心率e 与渐近线的斜率的关系.例2 (1)椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x+c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________. (2)(2015·盐城模拟)已知双曲线x 2a 2-y 2b 2=1的左、右焦点分别为F 1、F 2,过F 1作圆x 2+y 2=a 2的切线分别交双曲线的左、右两支于点B 、C ,且BC =CF 2,则双曲线的渐近线方程为________________.思维升华 (1)明确圆锥曲线中a ,b ,c ,e 各量之间的关系是求解问题的关键.(2)在求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆或双曲线的几何特点,建立关于参数c ,a ,b 的方程或不等式,通过解方程或不等式求得离心率的值或范围.跟踪演练2 (1)设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1 (a >b >0)的左,右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆的离心率的取值范围是________.(2)(2015·重庆改编)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,右顶点为A ,过F 作AF的垂线与双曲线交于B ,C 两点,过B ,C 分别作AC ,AB 的垂线,两垂线交于点D ,若D 到直线BC 的距离小于a +a 2+b 2,则该双曲线的渐近线斜率的取值范围是___________.热点三 直线与圆锥曲线判断直线与圆锥曲线公共点的个数或求交点问题有两种常用方法(1)代数法:即联立直线与圆锥曲线方程可得到一个关于x ,y 的方程组,消去y (或x )得一元方程,此方程根的个数即为交点个数,方程组的解即为交点坐标; (2)几何法:即画出直线与圆锥曲线的图象,根据图象判断公共点个数.例3 (2015·江苏改编)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且右焦点F 到直线l :x =-a 2c 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.思维升华 解决直线与圆锥曲线问题的通法是联立方程,利用根与系数的关系,设而不求思想,弦长公式等简化计算;涉及中点弦问题时,也可用“点差法”求解.跟踪演练3 (1)(2015·四川改编)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB 等于________.(2)(2015·南开中学月考)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为________________.1.已知双曲线y 2a 2-x 2b 2=1(a >0,b >0)的一条渐近线上有两点A ,B ,若直线l 的方程为x +2y-2=0,且AB ⊥l ,则椭圆x 2a 2+y 2b2=1的离心率为________.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且点(1,32)在该椭圆上.(1)求椭圆C 的方程;(2)过椭圆C 的左焦点F 1的直线l 与椭圆C 相交于A ,B 两点,若△AOB 的面积为627,求圆心在原点O 且与直线l 相切的圆的方程.提醒:完成作业 专题六 第2讲二轮专题强化练第2讲 椭圆、双曲线、抛物线A 组 专题通关1.已知椭圆x 29+y 2m=1(0<m <9)的左,右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点,若AF 2+BF 2的最大值为10,则m 的值为________.2.(2015·广东改编)已知双曲线C :x 2a 2-y 2b 2=1的离心率e =54,且其右焦点为F 2(5,0),则双曲线C 的方程为________.3.(2015·课标全国Ⅱ改编)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为________.4.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为________.5.(2014·课标全国Ⅱ改编)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为________.6.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则PM +PN 的最小值为________.7.已知点P (0,2),抛物线C :y 2=2px (p >0)的焦点为F ,线段PF 与抛物线C 的交点为M ,过M 作抛物线准线的垂线,垂足为Q ,若∠PQF =90°,则p =________.8.(2015·山东)平面直角坐标系xOy 中,双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线C 2:x 2=2py (p >0)交于点O ,A ,B .若△OAB 的垂心为C 2的焦点,则C 1的离心率为________.9.(2015·扬州模拟)已知椭圆C 的中心在原点,焦点在x 轴上,焦距为2,离心率为12. (1)求椭圆C 的方程;(2)设直线l 经过点M (0,1),且与椭圆C 交于A ,B 两点,若AM →=2MB →,求直线l 的方程.10.(2015·浙江)如图,已知抛物线C 1:y =14x 2,圆C 2:x 2+(y -1)2=1,过点P (t,0)(t >0)作不过原点O 的直线P A ,PB 分别与抛物线C 1和圆C 2相切,A ,B 为切点.(1)求点A ,B 的坐标;(2)求△P AB 的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.B 组 能力提高11.(2014·辽宁改编)已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为____________________________.12.已知圆x 2+y 2=a 216上点E 处的一条切线l 过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F ,且与双曲线的右支交于点P ,若OE →=12(OF →+OP →),则双曲线的离心率是__________. 13.已知抛物线y 2=4x 的准线过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点且与双曲线交于A ,B 两点,O 为坐标原点,且△AOB 的面积为32,则双曲线的离心率为____________. 14.已知椭圆C 的长轴左、右顶点分别为A ,B ,离心率e =22,右焦点为F ,且AF →·BF →=-1.(1)求椭圆C 的标准方程;(2)若P 是椭圆C 上的一动点,点P 关于坐标原点的对称点为Q ,点P 在x 轴上的射影点为M ,连结QM 并延长交椭圆于点N ,求证:∠QPN =90°.学生用书答案精析第2讲 椭圆、双曲线、抛物线高考真题体验1.9【详细分析】由双曲线定义|PF 2-PF 1|=2a ,∵PF 1=3,∴P 在左支上,∵a =3,∴PF 2-PF 1=6,∴PF 2=9.2.3【详细分析】∵FP →=4FQ →,∴|FP →|=4|FQ →|,∴PQ PF =34. 如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则AF =4,∴PQ PF =QQ ′AF =34, ∴QQ ′=3,根据抛物线定义可知QQ ′=QF =3. 3.22【详细分析】双曲线x 2-y 2=1的渐近线为x ±y =0,直线x -y +1=0与渐近线x -y =0平行,故两平行线的距离d =|1-0|12+12=22.由点P 到直线x -y +1=0的距离大于c 恒成立,得c ≤22,故c 的最大值为22. 4.x 2+32y 2=1 【详细分析】设点B 的坐标为(x 0,y 0).∵x 2+y 2b 2=1, ∴F 1(-1-b 2,0),F 2(1-b 2,0).∵AF 2⊥x 轴,∴A (1-b 2,b 2).∵AF 1=3F 1B ,∴AF 1→=3F 1B →,∴(-21-b 2,-b 2)=3(x 0+1-b 2,y 0).∴x 0=-531-b 2,y 0=-b 23. ∴点B 的坐标为⎝⎛⎭⎫-531-b 2,-b 23. 将B ⎝⎛⎭⎫-531-b 2,-b 23代入x 2+y 2b 2=1, 得b 2=23.2热点分类突破例1 (1)120° (2)x 2-y 23=1 【详细分析】(1)由题意得a =3,c =7,所以PF 1=2.在△F 2PF 1中,由余弦定理可得cos ∠F 2PF 1=42+22-(27)22×4×2=-12. 又因为cos ∠F 2PF 1∈(0°,180°),所以∠F 2PF 1=120°.(2)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程是y =±b a x ,故可知b a=3, 又∵焦点坐标为(2,0),∴c =a 2+b 2=2,解得a =1,b = 3.∴双曲线方程为x 2-y 23=1. 跟踪演练1 (1)x 23+y 22=1 (2)x 24-y 23=1 【详细分析】(1)由e =33得c a =33.① 又△AF 1B 的周长为43,由椭圆定义,得4a =43,得a =3,代入①得c =1, ∴b 2=a 2-c 2=2,故C 的方程为x 23+y 22=1. (2)双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b a x ,又渐近线过点(2,3),所以2b a =3,即2b =3a ,① 抛物线y 2=47x 的准线方程为x =-7,由已知,得a 2+b 2=7,即a 2+b 2=7,②联立①②解得a 2=4,b 2=3,43例2 (1)3-1 (2)y =±(3+1)x【详细分析】(1)直线y =3(x +c )过点F 1(-c,0),且倾斜角为60°,所以∠MF 1F 2=60°,从而∠MF 2F 1=30°,所以MF 1⊥MF 2.在Rt △MF 1F 2中,MF 1=c ,MF 2=3c ,所以该椭圆的离心率e =2c 2a =2c c +3c=3-1.(2)由题意作出示意图,易得直线BC 的斜率为a b ,cos ∠CF 1F 2=b c, 又由双曲线的定义及BC =CF 2可得CF 1-CF 2=BF 1=2a ,BF 2-BF 1=2a ⇒BF 2=4a ,故cos ∠CF 1F 2=b c =4a 2+4c 2-16a 22×2a ×2c⇒ b 2-2ab -2a 2=0⇒(b a )2-2(b a )-2=0⇒b a=1+3,故双曲线的渐近线方程为 y =±(3+1)x .跟踪演练2 (1)⎣⎡⎭⎫33,1 (2)(-1,0)∪(0,1)【详细分析】(1)设P ⎝⎛⎭⎫a 2c ,y ,线段F 1P 的中点Q 的坐标为⎝⎛⎭⎫b 22c ,y 2, 当2QF k 存在时,则1F P k =cy a 2+c 2,2QF k =cy b 2-2c 2, 由1F P k ·2QF k =-1,得y 2=(a 2+c 2)·(2c 2-b 2)c 2,y 2≥0, 但注意到b 2-2c 2≠0,即2c 2-b 2>0,即3c 2-a 2>0,即e 2>13,故33<e <1. 当2QF k 不存在时,b 2-2c 2=0,y =0,此时F 2为中点,即a 2c -c =2c ,得e =33, 综上,得33≤e <1, 即所求的椭圆离心率的取值范围是⎣⎡⎭⎫33,1.(2)由题作出图象如图所示.由x 2a 2-y 2b 2=1可知A (a,0),F (c,0). 易得B ⎝⎛⎭⎫c ,b 2a ,C ⎝⎛⎭⎫c ,-b 2a . ∵k AB =b 2a c -a =b 2a (c -a ), ∴k CD =a (a -c )b 2. ∵k AC =b 2a a -c =b 2a (a -c ), ∴k BD =-a (a -c )b 2. ∴l BD :y -b 2a =-a (a -c )b 2(x -c ), 即y =-a (a -c )b 2x +ac (a -c )b 2+b 2a, l CD :y +b 2a =a (a -c )b 2(x -c ), 即y =a (a -c )b 2x -ac (a -c )b 2-b 2a. ∴x D =c +b 4a 2(a -c ). ∴点D 到BC 的距离为⎪⎪⎪⎪b 4a 2(a -c ). ∴b 4a 2(c -a )<a +a 2+b 2=a +c , ∴b 4<a 2(c 2-a 2)=a 2b 2,∴a 2>b 2,∴0<b 2a 2<1. ∴0<b a<1. 例3 解 (1)由题意,得c a =22且c +a 2c=3, 解得a =2,c =1,则b =1,所以椭圆的标准方程为x 22+y 2=1. (2)当AB ⊥x 轴时,AB =2,又CP =3,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),将直线AB 的方程代入椭圆方程,得(1+2k 2)x 2-4k 2x +2(k 2-1)=0,则x 1,2=2k 2±2(1+k 2)1+2k 2, C 的坐标为⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2,且 AB =(x 2-x 1)2+(y 2-y 1)2=(1+k 2)(x 2-x 1)2=22(1+k 2)1+2k 2. 若k =0,则线段AB 的垂直平分线为y 轴,与直线l 平行,不合题意.从而k ≠0,故直线PC 的方程为y +k 1+2k 2=-1k ⎝⎛⎭⎫x -2k 21+2k 2, 则P 点的坐标为⎝ ⎛⎭⎪⎫-2,5k 2+2k (1+2k 2), 从而PC =2(3k 2+1)1+k 2|k |(1+2k 2). 因为PC =2AB , 所以2(3k 2+1)1+k 2|k |(1+2k 2)=42(1+k 2)1+2k 2, 解得k =±1.此时直线AB 的方程为y =x -1或y =-x +1.跟踪演练3 (1)43 (2)x 218+y 29=1 【详细分析】(1)由题意知,双曲线x 2-y 23=1的渐近线方程为y =±3x ,将x =c =2代入得y =±23,即A ,B 两点的坐标分别为(2,23),(2,-23),所以AB =4 3.(2)设A (x 1,y 1),B (x 2,y 2),代入椭圆的方程有,x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1, 两式相减得,(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0. ∵线段AB 的中点坐标为(1,-1),∴x 1+x 2=2,y 1+y 2=-2代入上式得:y 1-y 2x 1-x 2=b 2a2. ∵直线AB 的斜率为0+13-1=12,∴b 2a 2=12⇒a 2=2b 2, ∵右焦点为F (3,0),∴a 2-b 2=c 2=9,解得a 2=18,b 2=9,又此时点(1,-1)在椭圆内,∴椭圆方程为x 218+y 29=1. 高考押题精练 1.22【详细分析】由条件可知直线l 的斜率为-22,又AB ⊥l ,可知直线AB 的斜率为2,故a b =2,故a 2b 2=2,由此可知a >b >0,则椭圆的焦点在x 轴上,设椭圆的焦距为2c ,则a 2a 2-c2=2,解得椭圆的离心率为c a =22. 2.解 (1)由题意可得e =c a =12, 又a 2=b 2+c 2,所以b 2=34a 2. 因为椭圆C 经过点(1,32), 所以1a 2+9434a 2=1, 解得a =2,所以b 2=3,故椭圆C 的方程为x 24+y 23=1. (2)由(1)知F 1(-1,0),设直线l 的方程为x =ty -1,由⎩⎪⎨⎪⎧x =ty -1,x 24+y 23=1消去x , 得(4+3t 2)y 2-6ty -9=0,显然Δ>0恒成立,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=6t 4+3t 2,y 1y 2=-94+3t 2, 所以|y 1-y 2|=(y 1+y 2)2-4y 1y 2= 36t 2(4+3t 2)2+364+3t 2=12t 2+14+3t 2, 所以S △AOB =12·F 1O ·|y 1-y 2| =6t 2+14+3t 2=627, 化简得18t 4-t 2-17=0,即(18t 2+17)(t 2-1)=0,解得t 21=1,t 22=-1718(舍去), 又圆O 的半径r =|0-t ×0+1|1+t 2 =11+t 2, 所以r =22,故圆O 的方程为x 2+y 2=12. 二轮专题强化练答案精析 第2讲 椭圆、双曲线、抛物线1.3【详细分析】已知椭圆x 29+y 2m=1(0<m <9)中,a 2=9,b 2=m . AF 2+BF 2=4a -AB ≤10, ∴AB ≥2,(AB )min =2b 2a =2m 3=2,解得m =3. 2.x 216-y 29=1 【详细分析】因为所求双曲线的右焦点为F 2(5,0)且离心率为e =c a =54,所以c =5,a =4,b 2=c 2-a 2=9,所以所求双曲线方程为x 216-y 29=1. 3. 2【详细分析】如图,设双曲线E 的方程为x 2a 2-y 2b2=1(a >0,b >0),则AB =2a ,由双曲线的对称性,可设点M (x 1,y 1)在第一象限内,过M 作MN ⊥x 轴于点N (x 1,0),∵△ABM 为等腰三角形,且∠ABM =120°,∴BM =AB =2a ,∠MBN =60°,∴y 1=MN =BM sin ∠MBN =2a sin 60°=3a ,x 1=OB +BN =a +2a cos 60°=2a .将点M (x 1,y 1)的坐标代入x 2a 2-y 2b 2=1,可得a 2=b 2,∴e =c a =a 2+b 2a 2= 2. 4.x 2=16y【详细分析】∵双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,∴ca =a 2+b 2a =2,∴b =3a , ∴双曲线的渐近线方程为3x ±y =0,∴抛物线C 2:x 2=2py (p >0)的焦点⎝⎛⎭⎫0,p2到双曲线的渐近线的距离为⎪⎪⎪⎪3×0±p 22=2,∴p =8.∴所求的抛物线方程为x 2=16y . 5.94【详细分析】由已知得焦点坐标为F (34,0),因此直线AB 的方程为y =33(x -34), 即4x -43y -3=0.方法一 联立抛物线方程化简得 4y 2-123y -9=0,故|y A -y B |=(y A +y B )2-4y A y B =6. 因此S △OAB =12OF |y A -y B |=12×34×6=94.方法二 联立方程得x 2-212x +916=0,故x A +x B =212.根据抛物线的定义有AB =x A +x B +p =212+32=12,同时原点到直线AB 的距离为h =|-3|42+(-43)2=38,因此S △OAB =12AB ·h =94.6.7【详细分析】由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且PF 1+PF 2=10,从而PM +PN 的最小值为PF 1+PF 2-1-2=7. 7. 2【详细分析】由抛物线的定义可得MQ =MF ,F (p2,0),又PQ ⊥QF ,故M 为线段PF 的中点,所以M (p 4,1),把M (p 4,1),代入抛物线y 2=2px (p >0)得,1=2p ×p4,解得p =2,故答案为 2. 8.32【详细分析】由题意,不妨设直线OA 的方程为y =b a x ,直线OB 的方程为y =-ba x .由⎩⎪⎨⎪⎧y =b a x ,x 2=2py ,得x 2=2p ·bax ,∴x =2pb a ,y =2pb 2a 2,∴A ⎝⎛⎭⎫2pb a ,2pb 2a 2.设抛物线C 2的焦点为F ,则F ⎝⎛⎭⎫0,p2, ∴k AF =2pb 2a 2-p22pb a.∵△OAB 的垂心为F ,∴AF ⊥OB , ∴k AF ·k OB =-1,∴2pb 2a 2-p22pb a·⎝⎛⎭⎫-b a =-1,∴b 2a 2=54.设C 1的离心率为e ,则e 2=c 2a 2=a 2+b 2a 2=1+54=94.∴e =32.9.解 (1)设椭圆方程为x 2a 2+y 2b 2=1(a >0,b >0),因为c =1,c a =12,所以a =2,b =3, 所以椭圆方程为x 24+y 23=1.(2)由题意得直线l 的斜率存在, 设直线l 的方程为y =kx +1, 联立方程⎩⎪⎨⎪⎧y =kx +1,x 24+y 23=1,得(3+4k 2)x 2+8kx -8=0,且Δ>0. 设A (x 1,y 1),B (x 2,y 2), 由AM →=2MB →,得x 1=-2x 2, 又⎩⎪⎨⎪⎧ x 1+x 2=-8k3+4k 2,x 1·x 2=-83+4k2,所以⎩⎪⎨⎪⎧-x 2=-8k 3+4k 2,-2x 22=-83+4k2,消去x 2得(8k 3+4k 2)2=43+4k 2, 解得k 2=14,k =±12,所以直线l 的方程为y =±12x +1,即x -2y +2=0或x +2y -2=0.10.解 (1)由题意知直线P A 的斜率存在,故可设直线P A 的方程为y =k (x -t ). 由⎩⎪⎨⎪⎧y =k (x -t ),y =14x 2消去y ,整理得:x 2-4kx +4kt =0,由于直线P A 与抛物线相切,得k =t , 因此,点A 的坐标为(2t ,t 2).设圆C 2的圆心为D (0,1),点B 的坐标为(x 0,y 0),由题意知:点B ,O 关于直线PD 对称,且直线PD :y =-1tx +1,。
专题八 圆锥曲线一.考场传真1.【南京市、盐城市2016届高三年级第一次模拟考试】在平面直角坐标系xOy 中,已知抛物线C 的顶点在坐标原点,焦点在x 轴上,若曲线C 经过点()1,3P ,则其焦点到准线的距离为 .2.【南京市、盐城市2016届高三年级第一次模拟考试】过()4,0P - 的直线l 与圆22:(1)5C x y -+=相交于,A B 两点,若点A 恰好是线段PB 的中点,则直线l 的方程为 .3.【苏州市2016届高三年级第一次模拟考试】双曲线22145x y -=的离心率为 .4.【苏州市2016届高三年级第一次模拟考试】若直线1:l y x a =+和2:l y x b =+将圆22(1)(2)8x y -+-=分成长度相等的四段弧,则22a b += .5.【扬州市2015-2016学年度第一学期期末检测】双曲线116922=-y x 的焦点到渐近线的距离为 .6.【扬州市2015-2016学年度第一学期期末检测】已知圆O :422=+y x ,若不过原点O 的直线l 与圆O 交于P 、Q 两点,且满足直线OP 、PQ 、OQ 的斜率依次成等比数列,则直线l 的斜率为 .7.【淮安、宿迁、连云港、徐州苏北四市2016届高三第二次】抛物线x y 42=的焦点到双曲线191622=-yx渐近线的距离为 .8.【泰州市2016届高三第一次模拟考试】在直角坐标系xOy 中,双曲线2212x y -=的实轴长为 . 9.【泰州市2016届高三第一次模拟考试】已知直线(0)y kx k =>与圆22:(2)1C x y -+=相交于,A B 两点,若255AB =,则k = . 10.【泰州市2016届高三第一次模拟考试】在平面直角坐标系xOy 中,已知点,A B 分别为x 轴,y 轴上一点,且2AB =,若点5)P ,则AP BP OP ++的取值范围是 .二.高考研究1.考纲要求:(1)直线方程:①在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;②能根据两条直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;③能根据两条直线的斜率判定这两条直线平行或垂直;④掌握正确直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系;⑤能用解方程组的方法求两条相交直线的交点坐标;⑥掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.(2)圆与方程:①掌握确定圆的几何要素,掌握圆的标准方程与一般方程;②能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系;③能用直线和圆的方程解决一些简单的问题;④初步了解用代数方法处理几何问题的思想.(3)圆锥曲线:①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用;②掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质;③了解双曲线的定义、几何图形和标准方程.知道它的简单几何性质;④了解圆锥曲线的简单应用;⑤理解数形结合的思想.(4)曲线与方程:了解方程的曲线与与曲线方程的对应关系.2.命题规律:(1)题量稳定:解析几何与立体几何相似,在高考试卷中试题所占分值比例较大.一般地,解析几何在高考试卷中试题大约出现2个题目左右,其填空题占一道,解答题占一道;其所占平均分值为21分左右,所占平均分值比例约为14%.(2)整体平衡,重点突出:重点内容重点考,重点内容年年考.以2014年全国新课标卷数学高考《考试说明》为参考,可理解为有19个知识点,一般考查的知识点在60%左右,其中三大圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度.直线与圆的方程,圆锥曲线的定义、标准方程、几何性质等是支撑解析几何的基石,也是高考命题的基本元素.高考十分注重对这些基础知识的考查,有的是考查定义的理解和应用,有的是求圆锥曲线的标准方程,有的是直接考查圆锥曲线的离心率,有的是考查直线与圆和圆锥曲线的位置关系等.数学高考对解析几何内容的考查主要集中在如下几个类型:①求曲线方程(类型确定,甚至给出曲线方程);②直线、圆和圆锥曲线间的交点问题(含切线问题);③与圆锥曲线定义有关的问题(涉及焦半径、焦点弦、焦点三角形和准线,利用余弦定理等) ④与曲线有关的最值问题(含三角形和四边形面积);⑤与曲线有关的几何证明(圆线相切、四点共圆、对称性或求对称曲线、平行、垂直等); ⑥探求曲线方程中几何量及参数间的数量特征(很少).一.基础知识整合 基础知识:1.直线的倾斜角和斜率:任何直线都有倾斜角,但不一定都有斜率,如倾斜角等于90°时,斜率不存在;若两直线的倾斜角相等,斜率相等或都不存在;若两条直线的斜率相等,则两直线的倾斜角相等;当倾斜角为锐角时,倾斜角越大,斜率也越大;当倾斜角为钝角时,倾斜角越大,斜率也越大;与x 轴平行或重合的直线的倾斜角为零,斜率也为零.2.直线的方程:点斜式:)(11x x k y y -=-;截距式:b kx y +=;两点式:121121x x x x y y y y --=--;截距式:1=+bya x ;一般式:0=++C By Ax ,其中A 、B 不同时为0. 3.两条直线的位置关系:两条直线1l ,2l 有三种位置关系:平行(没有公共点);相交(有且只有一个公共点);重合(有无数个公共点).在这三种位置关系中,我们重点研究平行与相交. 两直线平行⇔两直线的斜率相等或两直线斜率都不存在;两直线垂直⇔两直线的斜率之积为1-或一直线斜率不存在,另一直线斜率为零; 与已知直线0(0,0)Ax By C A B ++=≠≠平行的直线系方程为0()Ax By m C m ++=≠; 若给定的方程是一般式,即l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0,则有下列结论:l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0;l 1⊥l 2⇔A 1A 2+B 1B 2=0.两平行直线间距离公式:10(0,0)Ax By C A B ++=≠≠与2120(0,0,)Ax By C A B C C ++=≠≠≠的距离1222d A B=+.4.圆的有关问题:圆的标准方程:222)()(r b y a x =-+-(r >0),称为圆的标准方程,其圆心坐标为(a ,b ),半径为r ,特别地,当圆心在原点(0,0),半径为r 时,圆的方程为222r y x =+,几种特殊的圆的方程设圆的圆心为(,)a b ,半径为r .(1)若圆过坐标原点,则圆的标准方程为:2222()()x a y b a b -+-=+ (2)若圆与x 轴相切,则圆的标准方程为:222()()x a y b b -+-= (3)若圆与y 轴相切,则圆的标准方程为:222()()x a y b a -+-= (4)若圆心在x 轴上,则圆的标准方程为:222()x a y r -+= (5)若圆心在y 轴上,则圆的标准方程为:222()x y b r +-=(6)若圆与坐标轴相切,则圆的标准方程为:222()()x a y a a -+-=或222()()x b y b b -+-=.圆的一般方程:022=++++F Ey Dx y x (F E D 422-+>0)称为圆的一般方程,其圆心坐标为(2D -,2E -),半径为F E D r 42122-+=.当F E D 422-+=0时,方程表示一个点(2D -,2E-);当F E D 422-+<0时,方程不表示任何图形.圆的参数方程:圆的普通方程与参数方程之间有如下关系:222r y x =+⇔cos sin x r y r θθ=⎧⎨=⎩ (θ为参数);222)()(r b y a x =-+-⇔cos sin x a r y b r θθ=+⎧⎨=+⎩(θ为参数)直线与圆的位置关系:直线与圆的位置关系的判断:【方法一】几何法:根据圆心与直线的距离与半径的大小关系进行判断;设圆心到直线的距离为d ,圆的半径为r ,则(1)d r <⇔直线与圆相交⇔直线与圆有两个公共点; (2)d r >⇔直线与圆相离⇔直线与圆无公共点;(3)d r =⇔直线与圆相切⇔直线与圆有且只有一个公共点;【方法二】代数法:把直线的方程圆的方程联立方程组,消去其中一个未知数得到关于另外一个数的未知数的一元二次方程,则(1)0∆>⇔直线与圆相交⇔直线与圆有两个公共点; (2)0∆<⇔直线与圆相离⇔直线与圆无公共点;(3)0∆=⇔直线与圆相切⇔直线与圆有且只有一个公共点;若直线与圆相交,设弦长为l ,弦心距为d ,半径为r ,则l =圆与圆的位置关系:圆与圆的位置关系的判断:设两个圆的圆心分别为12,O O ,半径分别为12,r r ,则 (1)1212||O O r r >+⇔圆与圆相离⇔两个圆有四条公切线; (2)121212||||r r O O r r -<<+⇔圆与圆相交⇔两个圆有两条公切线; (3)1212||O O r r =+⇔圆与圆相外切⇔两个圆有三条公切线; (4)1212||||O O r r =-⇔圆与圆相内切⇔两个圆有一条公切线; (5)1212||||O O r r <-⇔圆与圆相内含⇔两个圆没有公切线;若圆221110x y D x E y F ++++=与圆222220x y D x E y F ++++=相交,则公共弦所在的直线方程为121212()()()0D D x E E y F F -+-+-=; 5.椭圆及其标准方程:椭圆的定义:椭圆的定义中,平面内动点与两定点12F F ,的距离的和大于12F F 这个条件不可忽视.若这个距离之和小于12F F ,则这样的点不存在;若距离之和等于12F F ,则动点的轨迹是线段12F F .椭圆的标准方程:12222=+b y a x (a >b >0),12222=+bx a y (a >b >0).椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果2x 项的分母大于2y 项的分母,则椭圆的焦点在x 轴上,反之,焦点在y 轴上.求椭圆的标准方程的方法:(1)正确判断焦点的位置;(2)设出标准方程后,运用待定系数法求解. 如果已知椭圆过两个点(不是在坐标轴上的点),求其标准方程时,为了避免对焦点的讨论可以设其方程为221(0,0)Ax By A B +=>>或221(0,0)x y A B A B+=>>; 椭圆的参数方程:椭圆12222=+b y a x (a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数).说明:(1)这里参数θ叫做椭圆的离心角.椭圆上点P 的离心角θ与直线OP 的倾斜角α不同:tan tan ba αθ=;(2)椭圆的参数方程可以由方程22221x y a b+=与三角恒等式22cos sin 1θθ+=相比较而得到,所以椭圆的参数方程的实质是三角代换.6.椭圆的简单几何性质椭圆的几何性质:设椭圆方程为12222=+by a x (a >b >0).范围:a x a -≤≤,b x b -≤≤,所以椭圆位于直线x =a ±和y =b ±所围成的矩形里.对称性:分别关于x 轴、y 轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心. 顶点:有四个1A (-a ,0)、2A (a ,0)1B (0,-b )、2B (0,b). 线段1A 2A 、1B 2B 分别叫做椭圆的长轴和短轴.它们的长分别等于2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点. 离心率:椭圆的焦距与长轴长的比ace =叫做椭圆的离心率.它的值表示椭圆的扁平程度. 0<e <1.e 越接近于1时,椭圆越扁;反之,e 越接近于0时,椭圆就越接近于圆. 椭圆的第二定义:平面内动点M 与一个顶点的距离和它到一条定直线的距离的比是常数ace =(e <1=时,这个动点的轨迹是椭圆.准线:根据椭圆的对称性,12222=+b y a x (a >b >0)的准线有两条,它们的方程为c a x 2±=.对于椭圆12222=+bx a y (a >b >0)的准线方程,只要把x 换成y 就可以了,即c a y 2±=.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.设1F (-c ,0),2F (c ,0)分别为椭圆12222=+by a x (a >b >0)的左、右两焦点,M(x ,y)是椭圆上任一点,则两条焦半径长分别为ex a MF +=1,ex a MF -=2,椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.椭圆的四个主要元素a ,b ,c ,e 中有2a =2b +2c ,ace =两个关系,因此确定椭圆的标准方程只需两个独立条件.在椭圆中,如果一个三角形的两个顶点是焦点12,F F ,另一个顶点P 在椭圆上,称该三角形为焦点三角形,则三角形12F PF 的周长为定值等于22a c +,面积等于212tan 2F PF b ∠,其中b 是短半轴的长;过焦点垂直于对称轴的弦长即通径长为2b 2a.7.双曲线及其标准方程:双曲线的定义:平面内与两个定点1F 、2F 的距离的差的绝对值等于常数2a (小于12F F )的动点M 的轨迹叫做双曲线.在这个定义中,要注意条件2a <12F F ,这一条件可以用“三角形的两边之差小于第三边”加以理解.若2a =12F F ,则动点的轨迹是两条射线;若2a >12F F ,则无轨迹.若1MF <2MF 时,动点M 的轨迹仅为双曲线的一个分支,又若1MF >2MF 时,轨迹为双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”.双曲线的标准方程:12222=-b y a x 和12222=-bx a y (a >0,b >0).这里222a c b -=,其中12F F =2c .要注意这里的a ,b ,c 及它们之间的关系与椭圆中的异同.双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.求双曲线的标准方程,应注意两个问题:⑴正确判断焦点的位置;⑵设出标准方程后,运用待定系数法求解.如果已知双曲线过两个点(不是在坐标轴上的点),求其标准方程时,为了避免对焦点的讨论可以设其方程为221(0)Ax By AB +=<或221(0)x y AB A B+=< 8.双曲线的简单几何性质双曲线12222=-b y a x 的实轴长为2a ,虚轴长为2b ,离心率a ce =>1,离心率e 越大,双曲线的开口越大.双曲线12222=-b y a x 的渐近线方程为x a by ±=或表示为02222=-by a x .若已知双曲线的渐近线方程是x nmy ±=,即0=±ny mx ,那么双曲线的方程具有以下形式:k y n x m =-2222,其中k 是一个不为零的常数.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1的常数(离心率)的点的轨迹叫做双曲线.对于双曲线12222=-b y a x ,它的焦点坐标是(-c ,0)和(c ,0),与它们对应的准线方程分别是ca x 2-=和c a x 2=.在双曲线中,a 、b 、c 、e 四个元素间有ac e =与222b a c +=的关系,与椭圆一样确定双曲线的标准方程只要两个独立的条件.在双曲线中,如果一个三角形的两个顶点是焦点12,F F ,另一个顶点P 在椭圆上,称该三角形为焦点三角形,则面积等于212tan2b F PF ∠,其中b 是虚半轴的长;过焦点垂直于对称轴的弦长即通径长为22b a9.抛物线的标准方程和几何性质抛物线的定义:平面内到一定点(F )和一条定直线(l )的距离相等的点的轨迹叫抛物线.这个定点F 叫抛物线的焦点,这条定直线l 叫抛物线的准线.需强调的是,点F 不在直线l 上,否则轨迹是过点F 且与l 垂直的直线,而不是抛物线. 抛物线的方程有四种类型:22y px =,22y px =-,22x py =,22x py =-.对于以上四种方程:应注意掌握它们的规律:曲线的对称轴是哪个轴,方程中的该项即为一次项;一次项前面是正号则曲线的开口方向向x 轴或y 轴的正方向;一次项前面是负号则曲线的开口方向向x 轴或y 轴的负方向.抛物线的几何性质,以标准方程y 2=2px 为例(1)范围:x ≥0; (2)对称轴:对称轴为y =0,由方程和图像均可以看出; (3)顶点:O (0,0),注:抛物线亦叫无心圆锥曲线(因为无中心);(4)离心率:e =1,由于e 是常数,所以抛物线的形状变化是由方程中的p 决定的; (5)准线方程2p x =-; (6)焦半径公式:抛物线上一点11(,)P x y ,F 为抛物线的焦点,对于四种抛物线的焦半径公式分别为(p >0):22112:;2:22p p y px PF x y px PF x ==+=-=-+22112:;2:22p p x py PF y x py PF y ==+=-=-+ (7)焦点弦长公式:对于过抛物线焦点的弦长,可以用焦半径公式推导出弦长公式.设过抛物线y2=2px(p >O )的焦点F 的弦为AB ,A 11(,)x y ,B 22(,)x y ,AB 的倾斜角为α,则有12AB x x p =++或22sin pAB α=,以上两公式只适合过焦点的弦长的求法,对于其它的弦,只能用“弦长公式”来求.在抛物线中,以抛物线的焦点弦为直径的圆与该抛物的对应准线相切.10.轨迹方程:⑴曲线上的点的坐标都是这个方程的解;⑵以这个方程的解为坐标的点都是曲线上的点.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线(图形或轨迹) 11.直线与圆锥曲线的位置关系:①直线与圆锥曲线的相离关系,常通过求二次曲线上的点到已知直线的距离的最大值或最小值来解决. ②直线与圆锥曲线仅有一个公共点,对于椭圆,表示直线与其相切;对于双曲线,表示与其相切或与双曲线的渐近线平行,对于抛物线,表示直线与其相切或直线与其对称轴平行.③直线与圆锥曲线有两个相异的公共点,表示直线与圆锥曲线相割,此时直线被圆锥曲线截得的线段称为圆锥曲线的弦.直线l 被圆锥曲线所截得弦为AB ,则长为221||1|1|A B A B AB k x x y y k=+-=+-,其中k 为直线l 的斜率.直线与圆锥曲线相交问题的解法:利用“点差法”来解决中点弦问题,其基本思路是设点(即设出弦的端点坐标)——代入(即将端点代入曲线方程)——作差(即两式相减)——得出中点坐标与斜率的关系.韦达定理法:将直线方程代入圆锥曲线的方程,消元后得到一个一元二次方程,利用韦达定理和中点坐标公式建立等式求解 必备方法:1.点差法(中点弦问题)设()11,A x y 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点,则1342121=+y x ,1342222=+y x ;两式相减得()()03422212221=-+-y yx x ⇒()()()()3421212121y y y y x x x x+--=+-⇒ABk =b a 43- 2.联立消元法:设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0∆≥,以及根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程得到①②两个式子,然后①-②,整体消元,······,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A 、B 、F 共线解决之.若有向量的关系,则寻找坐标之间的关系,根与系数的关系结合消元处理.一旦设直线为y kx b =+,就意味着k 存在.3.设而不求法例:如图,已知梯形ABCD 中CD AB 2=,点E 分有向线段AC 所成的比为λ,双曲线过C ,D ,E 三点,且以A ,B 为焦点当4332≤≤λ时,求双曲线离心率e 的取值范围.分析:本小题主要考查坐标法、定比分点坐标公式、双曲线的概念和性质,推理、运算能力和综合运用数学知识解决问题的能力.建立直角坐标系xOy ,如图,若设C ⎪⎭⎫⎝⎛h c , 2,代入12222=-b y a x ,求得h =⋅⋅⋅,求,E E x y =⋅⋅⋅ =⋅⋅⋅,再代入12222=-by a x ,建立目标函数(,,,)0f a b c λ=,整理(,)0f e λ=,此运算量可见是难上加难.我们对h 可采取设而不求的解题策略,建立目标函数(,,,)0f a b c λ=,整理(,)0f e λ=,化繁为简.解法一:如图,以AB 为垂直平分线为y 轴,直线AB 为x 轴,建立直角坐标系xOy ,则CD ⊥y 轴,因为双曲线经过点C 、D ,且以A 、B 为焦点,由双曲线的对称性知C 、D 关于y 轴对称,依题意,记A ()0 ,c -,C ⎪⎭⎫⎝⎛h c , 2,E ()00 ,y x ,其中||21AB c =为双曲线的半焦距,h 是梯形的高,由定比分点坐标公式得()()122120+-=++-=λλλλc cc x ,λλ+=10h y ,设双曲线的方程为12222=-b y a x ,则离心率a c e = 由点C ,E 在双曲线上,将点C ,E 的坐标和ace =代入双曲线方程,得14222=-b h e ①, 11124222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-bh e λλλλ②,由①式得 14222-=e b h ③,将③式代入②式,整理,得()λλ214442+=-e ,故1312+-=e λ,由题设4332≤≤λ,得43231322≤+-≤e ,解得107≤≤e , 所以双曲线的离心率的取值范围为7 ,10分析:考虑,AE AC 为焦半径,可用焦半径公式,,AE AC 用,E C 的横坐标表示,回避h 的计算, 达到设而不求的解题策略.解法二:建系同解法一,(),E CAE a ex AC a ex=-+=+,()()22121Ecc cxλλλλ-+-==++,又1AEACλλ=+,代入整理1312+-=eλ,由题设4332≤≤λ得,43231322≤+-≤e,解得107≤≤e,所以双曲线的离心率的取值范围为7 ,10⎡⎤⎣⎦4.判别式法例:已知双曲线22:122y xC-=,直线l过点()0,2A,斜率为k,当10<<k时,双曲线的上支上有且仅有一点B到直线l的距离为2,试求k的值及此时点B的坐标.分析1:解析几何是用代数方法来研究几何图形的一门学科,因此,数形结合必然是研究解析几何问题的重要手段.从“有且仅有”这个微观入手,对照草图,不难想到:过点B作与l平行的直线,必与双曲线C相切.而相切的代数表现形式是所构造方程的判别式0=∆.由此出发,可设计如下解题思路:解题过程略.分析2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓“有且仅有一点B到直线l 的距离为2”,相当于化归的方程有唯一解.据此设计出如下解题思路:简解:设点)2,(2x x M +为双曲线C 上支上任一点,则点M 到直线l 的距离为:222221kx x kk -+-=+()10<<k ()*于是,问题即可转化为如上关于x 的方程.由于10<<k ,所以kx x x >>+22,从而有222222kx x k kx x k -+-=-+++.于是关于x 的方程()*⇔)1(22222+=+++-k k x kx⇔()222222(2(1)2),2(1)20x k k kx k k kx ⎧+=+-+⎪⎨⎪+-+>⎩⇔()()()222222122(1)22(1)2202(1)20.k x k k k x k kk k kx ⎧-++-++--=⎪⎨⎪+-+>⎩由10<<k 可知:方程()()()22222122(1)22(1)220k x kk k x k k-++-++--=的二根同正,故02)1(22>+-+kx k k 恒成立,于是()*等价于()()()22222122(1)22(1)220kx kk k x k k-++-++--=.由如上关于x 的方程有唯一解,得其判别式0=∆,就可解得 552=k . 点评:上述解法紧扣解题目标,不断进行问题转换,充分体现了全局观念与整体思维的优越性. 例:已知椭圆C :2228x y +=和点P (4,1),过P 作直线交椭圆于A ,B 两点,在线段AB 上取点Q ,使AP AQPB QB=-,求动点Q 的轨迹所在曲线的方程. 分析:这是一个轨迹问题,解题困难在于多动点的困扰,学生往往不知从何入手.其实,应该想到轨迹问题可以通过参数法求解. 因此,首先是选定参数,然后想方设法将点Q 的横、纵坐标用参数表达,最后通过消参可达到解题的目的.由于点),(y x Q 的变化是由直线AB 的变化引起的,自然可选择直线AB 的斜率k 作为参数,如何将y x ,与k 联系起来?一方面利用点Q 在直线AB 上;另一方面就是运用题目条件:AP AQPB QB=-来转化.由A ,B ,P ,Q 四点共线,不难得到4()28()A B A B A B x x x x x x x +-=-+,要建立x 与k 的关系,只需将直线AB 的方程代入椭圆C 的方程,利用韦达定理即可.据此设计出如下解题思路:在得到()k f x =之后,如果能够从整体上把握,认识到:所谓消参,目的不过是得到关于y x ,的方程(不含k ),则可由1)4(+-=x k y 解得41--=x y k ,直接代入()k f x =即可得到轨迹方程.从而简化消去参的过程.简解:设()),(),(,,2211y x Q y x B y x A ,,则由QBAQPB AP -=可得:x x x x x x --=--212144, 解之得:)(82)(4212121x x x x x x x +--+=(1)设直线AB 的方程为:1)4(+-=x k y ,代入椭圆C 的方程,消去y 得出关于 x 的一元二次方程:()08)41(2)41(412222=--+-++k x k k x k(2)∴ 12221224(41)212(14)821k k x x k k x x k -⎧+=⎪⎪+⎨--⎪=⎪+⎩,代入(1),化简得:432k x k +=+ (3) 与1)4(+-=x k y 联立,消去k 得:()24(4)0x y x +--=, 在(2)中,由02464642>++-=∆k k 210210k -+<<结合(3)1621016210x -+<<, 故知点Q 的轨迹方程为:042=-+y x 1621016210x -+<<⎝⎭.点评:由方程组实施消元,产生一个标准的关于一个变量的一元二次方程,其判别式、韦达定理模块思维易于想到. 这当中,难点在引出参,活点在应用参,重点在消去参.而“引参、用参、消参”三步曲,正是解析几何综合问题求解的一条有效通道.5.求根公式法例:设直线l 过点P (0,3),和椭圆22194xy +=顺次交于A 、B 两点,试求AP PB的取值范围. 分析:本题中,绝大多数同学不难得到:A Bx APPB x =-,但从此后却一筹莫展,问题的根源在于对题目的整体把握不够.事实上,所谓求取值范围,不外乎两条路:其一是构造所求变量关于某个(或某几个)参数的函数关系式(或方程),这只需利用对应的思想实施;其二则是构造关于所求量的一个不等关系. 分析1:从第一条想法入手,A Bx APPB x =-已经是一个关系式,但由于有两个变量B A x x ,,同时这两个变量的范围不好控制,所以自然想到利用第3个变量—直线AB 的斜率k .问题就转化为如何将B A x x ,转化为关于k 的表达式,到此为止,将直线方程代入椭圆方程,消去y 得出关于x 的一元二次方程,其求根公式呼之欲出.简解1:当直线l 垂直于x 轴时,可求得51-=PB AP ; 当l 与x 轴不垂直时,设())(,,2211y x B y x A ,,直线l 的方程为:3+=kx y ,代入椭圆方程,消去y 得()045544922=+++kx x k ,解之得21,227695k k x -±-=.因为椭圆关于y 轴对称,点P 在y 轴上,所以只需考虑0>k 的情形.当0>k 时,4959627221+-+-=k k k x ,4959627222+---=k k k x , 所以 21x x PB AP -==5929592922-+-+-k k k k =59291812-+-k k k=215929k +-由()049180)54(22≥+--=∆k k , 解得 952≥k,所以21811155929k-≤-<-+-,综上,115AP PB -≤≤-. 分析2: 如果想构造关于所求量的不等式,则应该考虑到:判别式往往是产生不等的根源.由判别式值的非负性可以很快确定k 的取值范围,于是问题转化为如何将所求量与k 联系起来.一般来说,韦达定理总是充当这种问题的桥梁,但本题无法直接应用韦达定理,原因在于21x x PB AP-=不是关于21,x x 的对称关系式.原因找到后,解决问题的方法自然也就有了,可以构造关于21,x x 的对称关系式.简解2:设直线l 的方程为:3+=kx y ,代入椭圆方程,消去y ,得()229454450kx kx +++= (*)则12212254,9445.94k x x k x x k -⎧+=⎪⎪+⎨⎪=⎪+⎩,令λ=21x x ,则22132424520k k λλ++=+. 在(*)中,由判别式,0≥∆可得952≥k ,从而有2232436445205k k ≤≤+,所以136425λλ≤++≤,解得551≤≤λ.结合10≤<λ得151≤≤λ.综上,511-≤≤-PB AP . 点评:范围问题不等关系的建立途径多多,诸如判别式法,均值不等式法,变量的有界性法,函数的性质法,数形结合法等等. 本题也可从数形结合的角度入手,给出又一优美解法.解题犹如打仗,不能只是忙于冲锋陷阵,一时局部的胜利不能说明问题,有时甚至会被局部所纠缠而看不清问题的实质所在,只有见微知著,树立全局观念,讲究排兵布阵,运筹帷幄,方能决胜千里.椭圆与双曲线的经典结论一.椭圆1.点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3.以焦点弦PQ 为直径的圆必与对应准线相离.4.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5.若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.6.若000(,)P x y 在椭圆22221x y a b+=外 ,则过点0P 作椭圆的两条切线切点为P 1,P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.7.椭圆22221x y a b+=(a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8.椭圆22221x y a b+=(a >b >0)的焦半径公式:10MF a ex =+,20MF a ex =-,其中()1,0F c -,()2,0F c ,()00,M x y .9.设过椭圆焦点F 作直线与椭圆相交P ,Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M ,N 两点,则MF ⊥NF .10.过椭圆一个焦点F 的直线与椭圆交于两点P ,Q ,A 1,A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF .11.已知AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a⋅=-,即2020ABb x K a y =-.12.若000(,)P x y 在椭圆22221x y a b +=内,则被0P 所平分的中点弦的方程是2200002222x x y y x y a b a b+=+.。
2016高考数学复习方法大全--圆锥曲线圆锥曲线,在高考中一直作为压轴大题的形式出现,其实圆锥曲线很简单,那么从哪些地方下手才能轻松学好圆锥曲线呢?本期超级学团的学霸老师的主题就是:圆锥曲线。
圆锥曲线之所以叫做圆锥曲线,是因为它是从圆锥上截出来的。
古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。
用垂直于锥轴的平面去截圆锥,得到了圆;把平面渐渐倾斜,得到了椭圆;当平面倾斜到和且仅和圆锥的一条母线平行时,得到了抛物线;用平行圆锥的轴的平面截取,可得到双曲线的一边,以圆锥顶点做对称圆锥,则可得到双曲线。
在高中的学习中,平面解析几何研究的两个主要问题,一个是根据已知条件,求出表示平面曲线的方程;而另一个就是通过方程,研究平面曲线的性质.那么接下来,我们就就着这两个问题来说啦~1、曲线与方程首先第一个问题,我们想到的就是曲线与方程的这部分内容了。
在学习圆锥曲线这部分内容之前,我们最早接触到的就是曲线与方程这部分内容。
在这部分呢,我们要注意到的是几种常见求轨迹方程的方法。
在这里呢,简单的说一下,一共有四种方法:1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.2、定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.3、相关点法若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法).4、待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求(二)椭圆,双曲线,抛物线这部分就可以研究第二个问题了呢。
在椭圆,双曲线以及抛物线里,最最重要的就是他们的标准方程,因为我们可以从它们的标准方程中看到许多东西,包括顶点,焦点,图形的画法等等等等,所以这个呢是要求我们必须要会的。
第3讲 圆锥曲线的综合问题1.(2014·福建)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( ) A .5 2 B.46+ 2 C .7+ 2D .6 22.(2015·陕西)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0),经过点A (0,-1),且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.1.圆锥曲线的综合问题一般以直线和圆锥曲线的位置关系为载体,以参数处理为核心,考查范围、最值问题,定点、定值问题,探索性问题.2.试题解答往往要综合应用函数与方程、数形结合、分类讨论等多种思想方法,对计算能力也有较高要求,难度较大.热点一 范围、最值问题圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解.例1 (2015·重庆)如图,椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程;(2)若|PQ |=λ|PF 1|,且34≤λ<43,试确定椭圆离心率e 的取值范围.思维升华 解决范围问题的常用方法:(1)数形结合法:利用待求量的几何意义,确定出极端位置后,数形结合求解. (2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解. (3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.跟踪演练1 已知椭圆C 的左,右焦点分别为F 1,F 2,椭圆的离心率为12,且椭圆经过点P (1,32). (1)求椭圆C 的标准方程;(2)线段PQ 是椭圆过点F 2的弦,且PF 2→=λF 2Q →,求△PF 1Q 内切圆面积最大时实数λ的值.热点二 定点、定值问题1.由直线方程确定定点,若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).2.解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等与题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.例2 椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.(1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左,右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.思维升华 (1)动直线l 过定点问题解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m,0).(2)动曲线C 过定点问题解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.跟踪演练2 已知直线l :y =x +6,圆O :x 2+y 2=5,椭圆E :y 2a 2+x 2b2=1(a >b >0)的离心率e =33,直线l 被圆O 截得的弦长与椭圆的短轴长相等. (1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值.热点三 探索性问题1.解析几何中的探索性问题,从类型上看,主要是存在类型的相关题型,解决这类问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在. 2.反证法与验证法也是求解存在性问题常用的方法.例3 如图,抛物线C :y 2=2px 的焦点为F ,抛物线上一定点Q (1,2).(1)求抛物线C的方程及准线l的方程;(2)过焦点F的直线(不经过Q点)与抛物线交于A,B两点,与准线l交于点M,记QA,QB,QM的斜率分别为k1,k2,k3,问是否存在常数λ,使得k1+k2=λk3成立,若存在λ,求出λ的值;若不存在,说明理由.思维升华解决探索性问题的注意事项:存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.跟踪演练3 (2015·四川)如图,椭圆E :x 2a 2+y 2b2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1. (1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λPA →·PB →为定值?若存在,求λ的值;若不存在,请说明理由.已知椭圆C 1:x 2a 2+y 23=1(a >0)与抛物线C 2:y 2=2ax 相交于A ,B 两点,且两曲线的焦点F 重合.(1)求C 1,C 2的方程;(2)若过焦点F 的直线l 与椭圆分别交于M ,Q 两点,与抛物线分别交于P ,N 两点,是否存在斜率为k (k ≠0)的直线l ,使得|PN ||MQ |=2?若存在,求出k 的值;若不存在,请说明理由.提醒:完成作业 专题六 第3讲二轮专题强化练专题六第3讲 圆锥曲线的综合问题A 组 专题通关1.(2015·北京西城区期末)若曲线ax 2+by 2=1为焦点在x 轴上的椭圆,则实数a ,b 满足( ) A .a 2>b 2B.1a <1bC .0<a <bD .0<b <a2.已知椭圆x 24+y 2b2=1(0<b <2)的左,右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( ) A .1 B. 2 C.32D. 33.已知F 为抛物线y 2=8x 的焦点,过点F 且斜率为1的直线l 交抛物线于A ,B 两点,则||FA |-|FB ||的值为( ) A .4 2 B .8 C .8 2D .164.设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =12,右焦点为F (c,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)( ) A .必在圆x 2+y 2=2内 B .必在圆x 2+y 2=2上 C .必在圆x 2+y 2=2外D .以上三种情形都有可能5.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为( ) A .2 B .3 C .6 D .86.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→·PF 2→的最小值为_______________________________________________________________.7.已知A (1,2),B (-1,2),动点P 满足AP →⊥BP →.若双曲线x 2a2-y 2b2=1(a >0,b >0)的渐近线与动点P 的轨迹没有公共点,则双曲线离心率的取值范围是________.8.在直线y =-2上任取一点Q ,过Q 作抛物线x 2=4y 的切线,切点分别为A 、B ,则直线AB 恒过定点________.9.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长为2,离心率为22,过点M (2,0)的直线l 与椭圆C 相交于A ,B 两点,O 为坐标原点.(1)求椭圆C 的方程;(2)若B 点关于x 轴的对称点是N ,证明:直线AN 恒过一定点.B 组 能力提高10.已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.11.直线3x -4y +4=0与抛物线x 2=4y 和圆x 2+(y -1)2=1从左到右的交点依次为A 、B 、C 、D ,则|AB ||CD |的值为________. 12.(2015·课标全国Ⅱ)已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝ ⎛⎭⎪⎫m3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.学生用书答案精析第3讲 圆锥曲线的综合问题 高考真题体验1.D [如图所示,设以(0,6)为圆心,以r 为半径的圆的方程为x 2+(y -6)2=r 2(r >0),与椭圆方程x 210+y 2=1联立得方程组,消掉x 2得9y 2+12y +r 2-46=0. 令Δ=122-4×9(r 2-46)=0, 解得r 2=50,即r =5 2.由题意易知P ,Q 两点间的最大距离为r +2=62, 故选D.]2.(1)解 由题设知c a =22,b =1, 结合a 2=b 2+c 2,解得a =2, 所以椭圆的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0, 设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4kk -1+2k2,x 1x 2=2kk -1+2k2,从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-k x 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2 =2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k k -2k k -=2k -2(k -1)=2.热点分类突破例1 解 (1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2,因此 2c =|F 1F 2|=|PF 1|2+|PF 2|2=+22+-22=23,即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1.(2)如图,由PF 1⊥PQ , |PQ |=λ|PF 1|,得|QF 1|=|PF 1|2+|PQ |2=1+λ2|PF 1|.由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a , 进而|PF 1|+|PQ |+|QF 1|=4a , 于是(1+λ+1+λ2)|PF 1|=4a , 解得|PF 1|=4a1+λ+1+λ2, 故|PF 2|=2a -|PF 1|=2a λ+1+λ2-1+λ+1+λ2.由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2=4c 2, 从而⎝ ⎛⎭⎪⎫4a 1+λ+1+λ22+⎝ ⎛⎭⎪⎫2a λ+1+λ2-1+λ+1+λ22=4c 2, 两边除以4a 2,得4+λ+1+λ22+λ+1+λ2-2+λ+1+λ22=e 2. 若记t =1+λ+1+λ2,则上式变成 e 2=4+t -2t 2=8⎝ ⎛⎭⎪⎫1t -142+12. 由34≤λ<43,并注意到1+λ+1+λ2关于λ的单调性,得3≤t <4,即14<1t ≤13. 进而12<e 2≤59,即22<e ≤53.跟踪演练1 解 (1)e =c a =12,P (1,32)满足1a 2+322b2=1,又a 2=b 2+c 2,∴a 2=4,b 2=3,∴椭圆标准方程为x 24+y 23=1.(2)显然直线PQ 不与x 轴重合, 当直线PQ 与x 轴垂直时, |PQ |=3,|F 1F 2|=2,1PFQ S=3;当直线PQ 不与x 轴垂直时,设直线PQ :y =k (x -1),k ≠0代入椭圆C 的标准方程, 整理,得(3+4k 2)y 2+6ky -9k 2=0, Δ>0,y 1+y 2=-6k 3+4k 2,y 1·y 2=-9k 23+4k 2.1PFQ S =12·|F 1F 2|·|y 1-y 2|=12k 2+k 43+4k22,令t =3+4k 2,∴t >3,k 2=t -34,∴1PFQ S=3-1t +132+43, ∵0<1t <13,∴1PFQ S∈(0,3),∴当直线PQ 与x 轴垂直时1PFQ S 最大,且最大面积为3.设△PF 1Q 内切圆半径为r , 则1PFQ S=12(|PF 1|+|QF 1|+|PQ |)·r =4r ≤3. 即r max =34,此时直线PQ 与x 轴垂直,△PF 1Q 内切圆面积最大,∴PF 2→=F 2Q →,∴λ=1.例2 解 (1)设椭圆方程为x 2a 2+y 2b 2=1 (a >b >0),由e =c a =12,得a =2c ,∵a 2=b 2+c 2,∴b 2=3c 2,则椭圆方程变为x 24c 2+y 23c2=1.又由题意知+c2+12=10,解得c 2=1,故a 2=4,b 2=3,即得椭圆的标准方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0.则⎩⎪⎨⎪⎧Δ=64m 2k 2-+4k2m 2-,x 1+x 2=-8mk 3+4k 2,x 1·x 2=m 2-3+4k2.①又y 1y 2=(kx 1+m )(kx 2+m ) =k 2x 1x 2+mk (x 1+x 2)+m 2=m 2-4k 23+4k2. ∵椭圆的右顶点为A 2(2,0),AA 2⊥BA 2, ∴(x 1-2)(x 2-2)+y 1y 2=0, ∴y 1y 2+x 1x 2-2(x 1+x 2)+4=0, ∴m 2-4k 23+4k 2+m 2-3+4k 2+16mk3+4k2+4=0,∴7m 2+16mk +4k 2=0,解得m 1=-2k ,m 2=-2k 7,由①,得3+4k 2-m 2>0,②当m 1=-2k 时,l 的方程为y =k (x -2),直线过定点(2,0),与已知矛盾. 当m 2=-2k 7时,l 的方程为y =k ⎝ ⎛⎭⎪⎫x -27,直线过定点⎝ ⎛⎭⎪⎫27,0,且满足②, ∴直线l 过定点,定点坐标为⎝ ⎛⎭⎪⎫27,0.跟踪演练2 (1)解 设椭圆的半焦距为c , 圆心O 到直线l 的距离d =61+1=3,∴b =5-3= 2.由题意得⎩⎪⎨⎪⎧c a =33,a 2=b 2+c 2,b =2,∴a 2=3,b 2=2.∴椭圆E 的方程为y 23+x 22=1.(2)证明 设点P (x 0,y 0),过点P 的椭圆E 的切线l 0的方程为y -y 0=k (x -x 0),联立直线l 0与椭圆E 的方程得⎩⎪⎨⎪⎧y =k x -x 0+y 0,y 23+x22=1,消去y 得(3+2k 2)x 2+4k (y 0-kx 0)x +2(kx 0-y 0)2-6=0, ∴Δ=[4k (y 0-kx 0)]2-4(3+2k 2)[2(kx 0-y 0)2-6]=0, 整理得,(2-x 20)k 2+2kx 0y 0-(y 20-3)=0,设满足题意的椭圆E 的两条切线的斜率分别为k 1,k 2,则k 1·k 2=-y 20-32-x 20,∵点P 在圆O 上,∴x 20+y 20=5, ∴k 1·k 2=-5-x 20-32-x 20=-1.∴两条切线的斜率之积为常数-1.例3 解 (1)把Q (1,2)代入y 2=2px ,得2p =4, 所以抛物线方程为y 2=4x ,准线l 的方程为x =-1. (2)由条件可设直线AB 的方程为y =k (x -1),k ≠0. 由抛物线准线l :x =-1, 可知M (-1,-2k ).又Q (1,2),所以k 3=2+2k1+1=k +1,即k 3=k +1.把直线AB 的方程y =k (x -1),代入抛物线方程y 2=4x ,并整理,可得k 2x 2-2(k 2+2)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),由根与系数的关系,知 x 1+x 2=2k 2+4k2,x 1x 2=1.又Q (1,2),则k 1=2-y 11-x 1,k 2=2-y 21-x 2.因为A ,F ,B 共线,所以k AF =k BF =k , 即y 1x 1-1=y 2x 2-1=k .所以k 1+k 2=2-y 11-x 1+2-y 21-x 2=y 1x 1-1+y 2x 2-1-x 1+x 2-x 1x 2-x 1+x 2+1=2k -2k 2+4k 2-1-2k 2+4k2+1=2k +2,即k 1+k 2=2k +2.又k 3=k +1,可得k 1+k 2=2k 3.即存在常数λ=2,使得k 1+k 2=λk 3成立.跟踪演练3 解 (1)由已知,点C 、D 的坐标分别为(0,-b ),(0,b ), 又点P 的坐标为(0,1),且PC →·PD →=-1,于是⎩⎪⎨⎪⎧1-b 2=-1,c a =22,a 2-b 2=c 2,解得a =2,b =2,所以椭圆E 的方程为x 24+y 22=1.(2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0,其判别式Δ=(4k )2+8(2k 2+1)>0, 所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1, 从而,OA →·OB →+λPA →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1 =-2λ-k 2+-2λ-12k 2+1=-λ-12k 2+1-λ-2.所以当λ=1时,-λ-12k 2+1-λ-2=-3,此时OA →·OB →+λPA →·PB →=-3为定值.当直线AB 斜率不存在时,直线AB 即为直线CD ,此时,OA →·OB →+λPA →·PB →=OC →·OD →+PC →·PD →=-2-1=-3. 故存在常数λ=1,使得OA →·OB →+λPA →·PB →为定值-3. 高考押题精练解 (1)因为C 1,C 2的焦点重合, 所以a 2-3=a2,所以a 2=4. 又a >0,所以a =2.于是椭圆C 1的方程为x 24+y 23=1,抛物线C 2的方程为y 2=4x . (2)假设存在直线l 使得|PN ||MQ |=2,则可设直线l 的方程为y =k (x -1),P (x 1,y 1),Q (x 2,y 2),M (x 3,y 3),N (x 4,y 4).由⎩⎪⎨⎪⎧y 2=4x ,y =k x -,可得k 2x 2-(2k 2+4)x +k 2=0,则x 1+x 4=2k 2+4k2,x 1x 4=1,所以|PN |=1+k 2·x 1+x 42-4x 1x 4=+k2k 2.由⎩⎪⎨⎪⎧x 24+y 23=1,y =k x -,可得(3+4k 2)x 2-8k 2x +4k 2-12=0,则x 2+x 3=8k 23+4k 2,x 2x 3=4k 2-123+4k 2,所以|MQ |=1+k 2·x 2+x 32-4x 2x 3=+k 23+4k2.若|PN ||MQ |=2,则+k2k 2=2×+k 23+4k2,解得k =±62. 故存在斜率为k =±62的直线l , 使得|PN ||MQ |=2.二轮专题强化练答案精析第3讲 圆锥曲线的综合问题 1.C [由ax 2+by 2=1,得x 21a+y 21b=1,因为焦点在x 轴上,所以1a >1b>0,所以0<a <b .]2.D [由椭圆的方程,可知长半轴长a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b2a=3,可求得b 2=3,即b = 3.]3.C [依题意知F (2,0),所以直线l 的方程为y =x -2,联立方程⎩⎪⎨⎪⎧y =x -2,y 2=8x消去y 得x 2-12x +4=0.设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=12,x 1x 2=4,则||AF |-|BF ||=|(x 1+2)-(x 2+2)|=|x 1-x 2| =x 1+x 22-4x 1x 2=144-16=8 2.]4.A [∵x 1+x 2=-ba ,x 1x 2=-c a.∴x 21+x 22=(x 1+x 2)2-2x 1x 2=b 2a 2+2c a =b 2+2aca 2.∵e =c a =12,∴c =12a ,∴b 2=a 2-c 2=a 2-⎝ ⎛⎭⎪⎫12a 2=34a 2.∴x 21+x 22=34a 2+2a ×12a a 2=74<2. ∴P (x 1,x 2)在圆x 2+y 2=2内.] 5.C [设P (x 0,y 0),则x 204+y 203=1,即y 2=3-3x 24, 又因为F (-1,0),所以OP →·FP →=x 0·(x 0+1)+y 20=14x 20+x 0+3=14(x 0+2)2+2,又x 0∈[-2,2],即OP →·FP →∈[2,6], 所以(OP →·FP →)max =6.] 6.-2解析 由已知得A 1(-1,0),F 2(2,0).设P (x ,y ) (x ≥1),则PA 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=4x 2-x -5.令f (x )=4x 2-x-5,则f (x )在[1,+∞)上单调递增,所以当x =1时,函数f (x )取最小值,即PA 1→·PF 2→取最小值,最小值为-2. 7.(1,2)解析 设P (x ,y ),由题设条件,得动点P 的轨迹为(x -1)(x +1)+(y -2)·(y -2)=0, 即x 2+(y -2)2=1,它是以(0,2)为圆心,1为半径的圆.又双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±bax ,即bx ±ay =0,由题意,可得2a a 2+b 2>1,即2ac >1,所以e =ca<2,又e >1,故1<e <2. 8.(0,2)解析 设Q (t ,-2),A (x 1,y 1),B (x 2,y 2),抛物线方程变为y =14x 2,则y ′=12x ,则在点A处的切线方程为y -y 1=12x 1(x -x 1),化简得,y =12x 1x -y 1,同理,在点B 处的切线方程为y=12x 2x -y 2.又点Q (t ,-2)的坐标满足这两个方程,代入得:-2=12x 1t -y 1,-2=12x 2t -y 2,则说明A (x 1,y 1),B (x 2,y 2)都满足方程-2=12xt -y ,即直线AB 的方程为y -2=12tx ,因此直线AB恒过定点(0,2).9.(1)解 由题意知b =1,e =c a =22, 得a 2=2c 2=2a 2-2b 2,故a 2=2. 故所求椭圆C 的方程为x 22+y 2=1.(2)证明 设直线l 的方程为y =k (x -2),则由⎩⎪⎨⎪⎧y =k x -,x 22+y 2=1,得(1+2k 2)x 2-8k 2x +8k 2-2=0.设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=8k21+2k 2,x 1x 2=8k 2-21+2k2.由对称性可知N (x 2,-y 2),定点在x 轴上, 直线AN :y -y 1=y 1+y 2x 1-x 2(x -x 1). 令y =0得:x =x 1-y 1x 1-x 2y 1+y 2=x 1y 2+x 2y 1y 1+y 2=2kx 1x 2-2k x 1+x 2k x 1+x 2-=2x 1x 2-x 1+x 2x 1+x 2-4=16k 2-41+2k 2-16k 21+2k 28k21+2k 2-4=1, 故直线AN 恒过定点(1,0). 10.[1,+∞)解析 以AB 为直径的圆的方程为x 2+(y -a )2=a ,由⎩⎪⎨⎪⎧y =x 2,x 2+y -a 2=a ,得y 2+(1-2a )y +a 2-a =0.即(y -a )[y -(a -1)]=0,由已知⎩⎪⎨⎪⎧a >0,a -1≥0,解得a ≥1.11.116解析 由⎩⎪⎨⎪⎧3x -4y +4=0,x 2=4y 得x 2-3x -4=0,∴x A =-1,x D =4, ∴y A =14,y D =4.直线3x -4y +4=0恰过抛物线的焦点F (0,1), ∴|AF |=y A +1=54,|DF |=y D +1=5,∴|AB ||CD |=|AF |-1|DF |-1=116. 12.(1)证明 设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入9x 2+y 2=m 2, 得(k 2+9)x 2+2kbx +b 2-m 2=0, 故x M =x 1+x 22=-kb k 2+9,y M =kx M+b =9bk 2+9. 于是直线OM 的斜率k OM =y M x M=-9k,即k OM ·k =-9.所以直线OM 的斜率与l 的斜率的乘积为定值. (2)解 四边形OAPB 能为平行四边形.因为直线l 过点⎝ ⎛⎭⎪⎫m3,m ,所以l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3. 由(1)得OM 的方程为y =-9kx .设点P 的横坐标为x P , 由⎩⎪⎨⎪⎧y =-9k x ,9x 2+y 2=m 2得x 2P =k 2m 29k 2+81,即x P =±km3k 2+9. 将点⎝ ⎛⎭⎪⎫m 3,m 代入l 的方程得b =m-k3,因此x M =k k -mk 2+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M . 于是±km 3k 2+9=2×k k -mk 2+,解得k 1=4-7,k 2=4+7. 因为k i >0,k i ≠3,i =1,2,所以当l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形.。