(北师大版)八年级数学上第七章《二元一次方程组》
- 格式:doc
- 大小:256.00 KB
- 文档页数:16
北师⼤版⼋年级上册数学第七章⼆元⼀次⽅程组练习题(带解析)北师⼤版⼋年级上册数学第七章⼆元⼀次⽅程组练习题(带解析)考试范围:xxx ;考试时间:100分钟;命题⼈:xxx1. 答题前填写好⾃⼰的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释⼀、单选题(注释)1、甲⼄两地相距360千⽶,⼀轮船往返于甲、⼄两地之间,顺⽔⾏船⽤18⼩时,逆⽔⾏船⽤24⼩时,若设船在静⽔中的速度为x 千⽶/时,⽔流速度为y 千⽶/时,则下列⽅程组中正确的是() A .B .C .D .2、已知有含盐20%与含盐5%的盐⽔,若配制含盐14%的盐⽔200千克,设需含盐20%的盐⽔x 千克,含盐5%的盐⽔y 千克,则下列⽅程组中正确的是() A .B .C .D .3、如果⼀个两位数的⼗位数字与个位数字之和为6,那么这样的两位数的个数是() A .3 B .6 C .5 D .44、已知x b+5y 3a 和-3x 2a y 2-4b是同类项,那么a,b 的值是()5、如果5x3m-2n-2y n-m+11=0是⼆元⼀次⽅程,则()A.m=1,n=2 B.m=2,n=1 C.m=-1,n=2 D.m=3,n=46、⽤加减法解⽅程组时,要使两个⽅程中同⼀未知数的系数相等或相反,有以下四种变形的结果:①②③④其中变形正确的是()A.①②B.③④C.①③D.②④7、⽤代⼊法解⽅程组使得代⼊后化简⽐较容易的变形是()A.由①得x=B.由①得y=C.由②得x=D.由②得y=2x-58、四名学⽣解⼆元⼀次⽅程组提出四种不同的解法,其中解法不正确的是()A.由①得x=,代⼊②B.由①得y=,代⼊②C.由②得y=-,代⼊①D.由②得x=3+2y,代⼊①9、已知⽅程mx+(m+1)y=4m-1是关于x,y的⼆元⼀次⽅程,则m的取值范围是()A.m≠0B.m≠-1 C.m≠0且m≠1D.m≠0且m≠-110、⼆元⼀次⽅程3a+b=9在正整数范围内的解的个数是()A.0 B.1 C.2 D.3更多功能介绍/doc/be631667312b3169a451a4e8.html /zt/11、如图,10块相同的长⽅形墙砖拼成⼀个矩形,设长⽅形墙砖的长和宽分别为x厘⽶和y厘⽶,则依题意列⽅程组正确的是A .B .C .D .12、某车间有56名⼯⼈,每⼈每天能⽣产螺栓16个或螺母24个,设有x 名⼯⼈⽣产螺栓,y 名⼯⼈⽣产螺母,每天⽣产的螺栓和螺母按1:2配套,下⾯所列⽅程组正确的是() A .B .C .D .13、已知⽅程组中x ,y 的互为相反数,则m 的值为()A .2B .﹣2C .0D .414、下列⽅程是⼆元⼀次⽅程的是() A .B .C .3x ﹣8y=11D .7x+2=15、关于x 、y 的⼆元⼀次⽅程组的解满⾜不等式>0,则的取值范围是() A .<-1 B .<1 C .>-1 D .>116、⽅程组的解是()A .B .C .D .由于疏忽,表格中捐款40元和50元的⼈数忘记填写了,若设捐款40元的有x 名同学,捐款50元的有y 名同学,根据题意,可得⽅程组()A. B.C. D.18、将⽅程中的x的系数化为整数,则下列结果正确的是()A.B.C.D.19、雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、⼄两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6⼈,⼄种帐篷每顶安置4⼈,共安置8000⼈.设该企业捐助甲种帐篷x顶、⼄种帐篷y顶,那么下⾯列出的⽅程组中正确的是A.B.C.D.20、若|3x+y+5|+|2x-2y-2|=0,则2x2-3xy的值是()A.14 B.-4 C.-12 D.12分卷II分卷II 注释⼆、填空题(注释)21、⽅程组的解是.22、在⽅程组中,若x >0,y <0,则m 的取值范围是.23、已知⽅程组的解为,则2a ﹣3b 的值为.24、若(x+y+4)2+|3x ﹣y|=0,则x= ,y= .25、已知⼆元⼀次⽅程2x+3y+1=0,⽤含x 的代数式表⽰y ,则y= .26、请写出⼀个以x ,y 为未知数的⼆元⼀次⽅程组,要求满⾜下列条件:①由两个⼆元⼀次⽅程组成;②⽅程组的解为,这样的⽅程组是.27、⼀次数学测试,满分为100分.测试分数出来后,同桌的李华和吴珊同学把他俩的分数进⾏计算,李华说:我俩分数的和是160分,吴珊说:我俩分数的差是60分.那么对于下列两个命题:①俩⼈的说法都是正确的,②⾄少有⼀⼈说错了.真命题是(填写序号).28、请写出⼀个以x ,y 为未知数的⼆元⼀次⽅程组,且同时满⾜下列两个条件:①由两个⼆元⼀次⽅程组成;②⽅程组的解为,这样的⽅程组可以是____________.按此规律,第n 个⽅程组为___________,它的解为___________(n 为正整数).30、⽅程组的解是_____________.三、计算题(注释)31、解⽅程组:.32、解⽅程组:(1)(2)33、解⽅程组:(1)(2)34、解⽅程组:35、若是⼆元⼀次⽅程ax -by=8和ax+2by=-4的公共解,求2a -b 的值.36、解下列⽅程:(1).(2)(3)(4)37、解⽅程组38、解⽅程组(5分)(1)39、解下列⼆元⼀次⽅程组(1) (2)40、(1)计算:(2)解⽅程组:四、解答题(注释)41、端午节期间,某校“慈善⼩组”筹集到1240元善款,全部⽤于购买⽔果和粽⼦,然后到福利院送给⽼⼈,决定购买⼤枣粽⼦和普通粽⼦共20盒,剩下的钱⽤于购买⽔果,要求购买⽔果的钱数不少于180元但不超过240元.已知⼤枣粽⼦⽐普通粽⼦每盒贵15元,若⽤300元恰好可以买到2盒⼤枣粽⼦和4盒普通粽⼦.(1)请求出两种⼝味的粽⼦每盒的价格;(2)设买⼤枣粽⼦x 盒,买⽔果共⽤了w 元.①请求出w 关于x 的函数关系式;②求出购买两种粽⼦的可能⽅案,并说明哪⼀种⽅案使购买⽔果的钱数最多.42、某农户原有15头⼤⽜和5头⼩⽜,每天约⽤饲料325kg ;两周后,由于经济效益好,该农户决定扩⼤养⽜规模,⼜购进了10头⼤⽜和5头⼩⽜,这时每天约⽤饲料550kg .问每头⼤⽜和每头⼩⽜1天各需多少饲料? 43、某种仪器由1种A 部件和1个B 部件配套构成.每个⼯⼈每天可以加⼯A 部件1000个或者加⼯B 部件600个,现有⼯⼈16名,应怎样安排⼈⼒,才能使每天⽣产的A 部件和B 部件配套?44、某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资⾦为⽼师购买纪念品,其余资⾦⽤于在毕业晚会上给50位同学每⼈购买⼀件⽂化衫或⼀本相册作为纪念.已知每件⽂化衫⽐每本相册贵9元,⽤200元恰好可以买到2件⽂件衫和5本相册.(1)求每件⽂化衫和每本相册的价格分别为多少元?(2)有⼏种购买⽂化衫和相册的⽅案?哪种⽅案⽤于购买⽼师纪念品的资⾦更充⾜?45、解⽅程(组)(1)(2).46、某学校初⼆级甲、⼄两班共有学⽣150⼈,他们的期末考试数学平均分为64.4分,若甲班学⽣平均分为72分,⼄班学⽣平均分为57分,那么甲、⼄两班各有学⽣多少⼈?47、⼀辆汽车从A地驶往B地,前路段为普通公路,其余路段为⾼速公路.已知汽车在普通公路上⾏驶的速度为60km/h,在⾼速公路上⾏驶的速度为100km/h,汽车从A 地到B地⼀共⾏驶了2.2h.请你根据以上信息,就该汽车⾏驶的“路程”或“时间”,提出⼀个⽤⼆元⼀次⽅程组解决的问题,并写出解答过程.48、解⽅程组.49、⼩⽂在甲、⼄两家超市发现他看中的篮球的单价相同,书包单价也相同,⼀个篮球和三个书包的总费⽤是400元.两个篮球和⼀个书包的总费⽤也是400元.(1)求⼩⽂看中的篮球和书包单价各是多少元?(2)某⼀天⼩⽂上街,恰好赶上商家促销,超市甲所有商品打九折销售,超市⼄全场购物满100元返30元购物券(不⾜100元不返券,购物券全场通⽤),如果他只能在同⼀家超市购买他看中的篮球和书包各⼀个,应选择哪⼀家超市购买更省钱?50、解⽅程组:试卷答案1.【解析】试题分析:根据等量关系:顺⽔⾏船⽤18⼩时,逆⽔⾏船⽤24⼩时,即可列出⽅程组. 由题意可列⽅程组为,故选A.考点:本题考查的是根据实际问题列⽅程组点评:解题关键是要读懂题⽬的意思,根据题⽬给出的条件,找出合适的等量关系,列出⽅程组.2.【解析】试题分析:根据等量关系:盐⽔总质量为200千克,配制前后的含盐量相同,即可列出⽅程组.由题意可列⽅程组为,故选C.考点:本题考查的是根据实际问题列⽅程组点评:解题关键是要读懂题⽬的意思,根据题⽬给出的条件,找出合适的等量关系,列出⽅程组.3.【解析】试题分析:可以设两位数的个位数为x,⼗位为y,根据两数之和为6,且xy为整数,分别讨论两未知数的取值即可.注意不要漏解.设两位数的个位数为x,⼗位为y,根据题意得:x+y=6,∵xy都是整数,∴当x=0时,y=6,两位数为60;当x=1时,y=5,两位数为51;当x=2时,y=4,两位数为42;当x=3时,y=3,两位数为33;当x=4时,y=2,两位数为24;当x=5时,y=1,两位数为15;则此两位数可以为:60、51、42、33、24、15,共6个,故选B.考点:本题考查了⼆元⼀次⽅程的应⽤点评:解题的关键在于根据未知数的整数性质讨论未知数的具体值,注意不要漏掉两位数的个位数可以为0的情况.4.【解析】试题分析:根据同类项的定义即可得到关于a、b的⽅程组,解出即可.由题意得,解得,故选D.考点:本题考查的是同类项点评:解答本题的关键是熟记同类项的定义:所含有的字母相同,并且相同字母的指数也相同的项叫同类项.5.【解析】试题分析:根据⼆元⼀次⽅程的定义即可得到关于m、n的⽅程组,解出即可.由题意得,解得,故选D.考点:本题考查的是⼆元⼀次⽅程的定义点评:解答本题的关键是熟练掌握⼆元⼀次⽅程必须符合以下三个条件:(1)⽅程中只含有2个未知数;(2)含未知数项的最⾼次数为⼀次;(3)⽅程是整式⽅程.注意:π是⼀个数.6.【解析】试题分析:根据等式的基本性质把⽅程组中的每个⽅程分别变形,注意不能漏乘项.(1)第⼀个⽅程右边的1漏乘了3,第⼆个⽅程右边的8漏乘了2,故变形不正确;(2)第⼀个⽅程右边的1漏乘了2,第⼆个⽅程右边的8漏乘了3,故变形不正确;(3)是利⽤等式的性质把x的系数化为了互为相反数的数,变形正确;(4)是利⽤等式的性质把y的系数化为了互为相反数的数,变形正确.故选B.考点:本题考查的是解⼆元⼀次⽅程组点评:解答本题的关键是注意⽅程组中,两个⽅程中同⼀未知数的系数相等或互为相反数时,直接运⽤加减法求解.7.【解析】试题分析:⽤代⼊法解⽅程组的第⼀步:尽量⽤其中⼀个未知数表⽰系数较简便的另⼀个未知数.A、B、C、D四个答案都是正确的,但“化简⽐较容易的”只有D.故选D.考点:本题考查的是代⼊法解⼆元⼀次⽅程组点评:解答本题的关键是注意在⽤其中⼀个未知数表⽰另⼀个未知数时,尽量避免出现分数.8.【解析】试题分析:此题中四位同学均利⽤了代⼊法求⽅程组的解,需对四个答案进⾏逐⼀分析求解.A、B、D均符合等式的性质,不符合题意;C、应该由②得y=,故错误,符合题意.考点:本题考查的是代⼊法解⼆元⼀次⽅程组点评:解答本题的关键是熟练掌握代⼊法解⼆元⼀次⽅程组,同时注意⽅程在进⾏合理变形时要根据等式的性质.9.【解析】试题分析:根据⼆元⼀次⽅程的定义即可得到结果.由题意得m≠0且m+1≠0,解得m≠0且m≠-1,故选D.考点:本题考查的是⼆元⼀次⽅程的定义点评:解答本题的关键是熟练掌握⼆元⼀次⽅程必须符合以下三个条件:(1)⽅程中只含有2个未知数;(2)含未知数项的最⾼次数为⼀次;(3)⽅程是整式⽅程.注意:π是⼀个数.10.【解析】试题分析:根据题意,⼆元⼀次⽅程3a+b=9的解为正整数,分类讨论、解答出即可.根据题意,a ,b 为正整数,∴当a=1时,b=9-3=6,当a=2时,b=9-6=3,当a=3时,b=0,不符合题意,所以,⽅程在正整数范围内的解的个数是2个故选C.考点:本题主要考查了解⼆元⼀次⽅程点评:采⽤“给⼀个,求⼀个”的⽅法,即先给出其中⼀个未知数的值,再依次求出另⼀个的对应值. 11.【解析】试题分析:根据图⽰可得:长⽅形的长可以表⽰为x+2y ,长⼜是75厘⽶,故x+2y=75,长⽅形的宽可以表⽰为2x ,或x+3y ,故2x=3y+x ,整理得x=3y ,联⽴两个⽅程得。
专题5.4求解二元一次方程组(知识梳理与考点分类讲解)【知识点1】代入消元法解二元一次方程组代入消元法:(1)定义:将其中一个方程组中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程组,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法.(2)用代入消元法解二元一次方程组的一般步骤:步骤具体做法目的注意事项(1)变形选取一个系数比较简单的二元一次方程变形,用含一个未知数的式子表示另一个未知数变形为x=ax+b(或x=ay+b)(a,b 是常数,a≠0)的形式一般选未知数系数比较简单的方程变形(2)代入把y=ax+B(或x=ay+b)代入另一个没有变形的方程消去一个未知数,将二元一次方程组转化为一元一次方程变形后的方程只能代入另一个方程(或另一个方程变形后的方程)(3)求解解消元后的一元一次方程求出一个未知数的值去括号时不能漏乘,移项时所移的项要变号(4)回代把求得的未知数的值代入步骤(1)中变形后的方程求出另一个未知数的值一般代入变形后的方程(5)写解把两个未知数的值用大括号联立起来特别提醒:将方程组中的一个二元一次方程写成用含一个未知数的式子表示另一个未知数的形式,是用代入法解二元一次方程组的前提和关键,其方法就是利用等式的性质将其变形为y=ax+b(或x=ay+b)的形式,其中a,b 为常数,a≠0.用含一个未知数的式子表示另一个未知数后,应代入另一个方程求解,否则只能得到一个恒等式,并不能求出方程组的解.【知识点2】加减消元法解二元一次方程组1.加减消元法的定义通过将两个方程相加(减)消去其中一个未知数,将二元一次方程组转化为一元一次方程来解,这种解二元一次方程组的方法叫做加减消元法,简称加减法.2.用加减消元法解二元一次方程组的一般步骤步骤具体做法目的注意事项(1)变形根据绝对值较小的未知数(同一个未知数)的系数的最小公倍数,给方程的两边都乘适当的数.使某一个未知数在两个方程中的系数相等或互为相反数.给某个方程乘一个数时,方程两边的每一项都要和这个数相乘(2)代入两个方程中同一个未知数的系数互为相反数时,将两个方程相加;同一个未知数的系数相等时,将两个方程相减.消去一个未知数,将二元一次方程组转化为一元一次方程把两个方程相加(减)时,一定要把两个方程两边分别相加(减).(3)求解解消元后的一元一次方程求出一个未知数的值(4)回代把求得的未知数的值代入方程组中某个较简单的方程求出另一个未知数的值回代时选择系数较简单的方程(5)写解把两个未知数的值用大括号联立起来特别提醒:1.两个方程同一未知数的系数的绝对值相等或成倍数关系时,解方程组应考虑用加减消元法.2.如果同一未知数的系数的绝对值既不相等又不成倍数关系,我们应设法将一个未知数的系数的绝对值转化为相等关系.3.用加减法时,一般选择系数比较简单(同一未知数的系数的绝对值相等或成倍数关系)的未知数作为消元对象.【考点目录】【考点1】代入消元法解二元一次方程组;【考点2】加减消元法解二元一次方程组;【考点3】同解方程组;【考点4】整体思想解二元一次方程组;【考点5】求解二元一次方程组——错题复原问题;【考点6】求解二元一次方程组——参数问题;【考点7】构造二元一次方程组求解。
将实际问题转化成二元一次方程组的数学模型;设间接未知数转化解决实际问题列方程式要注意哪些点?列出方程;(2)13:00时小明看到的数可表示为,12:00~13:00间摩托车行驶的路程是;(3)14:00时小明看到的数可表示为,13:00~14:00间摩托车行驶的路程是;[归纳总结]在求两位数或三位数时,一般是不能直接设这个两位数或三位数的,而是把它各个数位上的数字设为未知数。
解题的关键是弄清题意,根据题意找出合适的等量关系,列出方程组,再进行求解。
活动探究二:想一想,回答下面的问题(小组讨论,3min)例两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数.已知前一个四位数比后一个四位数大2178,求这两个两位数.活动探究三:想一想,回答下面的问题(小组讨论,3min)列二元一次方程组解决实际问题的一般步骤是怎样的?与同伴交流一下.列二元一次方程组解决实际问题的一般步骤:审清题意,找出等量关系;(鸡兔同笼、增收开支、里程碑上的数)设未知数x,y;列出二元一次方程组解方程组;检验;答题.变式1:一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1.这个两位数是多少?变式2:小亮和小明做加法游戏,小明在第一个加首先由学生思考,说出设未知数的方法,教师再给予点评、引导,然后共同完成问题的解决。
学生通过练习检验自己对本节知识的掌握情况.动画引入,使数字问题变的更有趣,确实有效地激发了学生的兴趣,学生参与热情很高;借助图表分析,有效地克服了难点设计本题,意在让学生了解,在具体解决问题时,不一定直接设未知数,设间接未知数是复杂问题简单化的解决途径之一,是转化思想的应用手段。
本例中,要求一个三位数,学生习惯设三个未知数,可是只有两个等量关系,学生发现不太好解答,思维陷入僵局,这时通过教师的引导,发现这里十位数字与个位数字组成的两位数在问题中一直连在一起,因此可以将它们看成一个整体,这时学生一下子豁然开朗,然后列出了方程组并解出该题。
北师大版数学八年级上册7《用二元一次方程组确定一次函数表达式》教案1一. 教材分析《用二元一次方程组确定一次函数表达式》是北师大版数学八年级上册7的一节内容。
本节课的主要内容是让学生掌握利用二元一次方程组确定一次函数表达式的方法,培养学生解决实际问题的能力。
教材通过引入实际问题,让学生经历从实际问题中建立数学模型的过程,从而加深对一次函数的理解。
二. 学情分析学生在学习本节课之前,已经学习了了一次函数的基本概念和相关性质,对一次函数有一定的了解。
但是,对于如何利用二元一次方程组确定一次函数表达式,可能还存在一定的困难。
因此,在教学过程中,需要引导学生从实际问题中抽象出数学模型,理解并掌握利用二元一次方程组确定一次函数表达式的方法。
三. 教学目标1.知识与技能:让学生掌握利用二元一次方程组确定一次函数表达式的方法。
2.过程与方法:培养学生从实际问题中建立数学模型的能力,提高解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:让学生掌握利用二元一次方程组确定一次函数表达式的方法。
2.难点:如何引导学生从实际问题中抽象出数学模型,理解并掌握利用二元一次方程组确定一次函数表达式的过程。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动参与课堂。
2.案例教学法:通过分析具体案例,让学生理解并掌握利用二元一次方程组确定一次函数表达式的方法。
3.小组合作学习:引导学生分组讨论,培养学生的团队合作精神和沟通能力。
六. 教学准备1.教师准备:准备好相关案例和教学PPT。
2.学生准备:预习一次函数的基本概念和相关性质。
七. 教学过程1.导入(5分钟)教师通过引入实际问题,激发学生的学习兴趣,引导学生主动参与课堂。
2.呈现(10分钟)教师通过PPT呈现具体案例,引导学生从实际问题中抽象出数学模型。
3.操练(10分钟)教师引导学生分组讨论,让学生动手解二元一次方程组,确定一次函数表达式。
第七章《二元一次方程组》一、选择题1. 已知⎩⎨⎧=++=+m y x m y x 32353且x 、y 之和为12,则m 等于………………( )A. 10B. 15C. 20D. 252. 方程72=+y x 在自然数范围内的解……………………………….( )A. 有无数对B. 只有1对C. 只有3对D. 以上都不对3. 若方程组⎩⎨⎧=+=+b ay x y x 21有唯一解,那么a 、b 的值应当是…………( )A. a ≠2,b 为任意实数B. a =2,b ≠0C. a =2,b ≠2D. a ,b 为任意实数4. 若x 、y 为非负实数,且方程组⎪⎩⎪⎨⎧-=+=+y x a y x 213219992001有解,则a 的值为………………………………………………………………………………..( )A. 0B. -2 C . 2 D. 不定5. 一次函数b ax y +=1和bx y =2则⎩⎨⎧+=+=a bx y bax y 21的解⎩⎨⎧==n y mx .( )A. m >0,n >0C. m <0,n >0 D. m <0,n <06. 如果5=-y x 且5=-z y 那么x z -的值是……………………...( )A. 5B. 10C. -5D. -107. 已知k z yx y xz x zy =+=+=+,那么k=……………………………( )A. 2B. -1C. 2或-1D. 无法确定8. 如果方程组⎩⎨⎧=+=+k y x y x 4252有无穷多解,那么方程组⎩⎨⎧=+=+84572y x y kx 的解的情况有……………………………………………………………………………….( )A. 唯一解B. 无穷多解C. 无解D. 都有可能9. 一个两位数的十位数字比个位数字小2,且能被3整除,若将十位数字与个位数字交换又能被5整除,这个两位数是……………………………….( )A. 53B. 57C. 35D. 75二、填空题1. 二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解与两直线1l :111c y b x a =+与2l :222c y b x a =+位置关系的联系。
(其中6个常数均不为零。
)(每小题前一个空选填“惟一”、“无”或“无数多组”;后一个空选填5“相交”、“平行”或“重合”)。
(1)当2121b b a a ≠时,从“数”看:方程有____________解;从“形”看,1l 与2l _______ 。
(2)当212121c c b b a a ≠=时,从“数”看:方程有____________解;从“形”看,1l 与2l _______ 。
(3)当212121c c b b a a ==时,从“数”看:方程有____________解;从“形”看,1l 与2l _______ 。
2. 当⎩⎨⎧==y x 时代数式26-+y x 与53+-y x 的和与差都是9。
3. 一次函数1+=x y 的图象与52--=x y 的图形的交点坐标是________ 。
4. 已知方程1)3()2()4(2+=-+++-k y k x k x k ,若k=_____,则方程为二元一次方程;若k=_____,则方程为一元一次方程,且这个方程的解为________ 。
5. 已知x y b a 332+-与y x b a 4223-的和是一个单项式,则x+y=________ 。
6. 已知方程组⎩⎨⎧=++=+-062034z y x z y x ,且xyz ≠0,则x:y:z=__________。
7. 已知二元一次方程组⎩⎨⎧=-=+731885y x y x ,则=+y x 92________ 。
8. 二元一次方程组⎩⎨⎧=-+=+3)1(134y k kx y x 的解中,x 、y 的值相等,则k =______。
9. 在方程3227291=-y x 中,用含有y 的代数式表示x ,则x=___________ 。
10. 已知142522=+=+yx yx ,则=+-++73212y x y x ________。
11. 当a=2时,方程组⎩⎨⎧=+=+221y x y ax ________解,当a ≠2时,______解。
(填“有”或“无”)12. 若05431)2(2=-+-c b c a ,则=c b a ::___________ 。
13. 如果方程组⎩⎨⎧=++=365:4:3::c b a c b a 的解为___________ 。
三、解答题1. 某学校有校舍20 000m 2,计划拆除部分旧校舍,建造新校舍,使校舍总面积增加30﹪。
若建造新校舍的面积为被拆除的旧校舍面积的4倍,那么应该拆除多少旧校舍,建造多少新校舍?(单位:m 2)2. 求出方程3x+y=9在正整数范围内的解。
3. 已知⎩⎨⎧==34y x 是关于x 、y 的二元一次方程组⎩⎨⎧-=--=+21by x y ax 的解,求出a+b的值。
4. 若关于x 、y 的方程组⎩⎨⎧-=-=+k y x k y x 95432的解x 、y 的和等于5,求k 的值。
5. 已知方程组⎪⎩⎪⎨⎧=--=+1023215y x a y ax 的解也是方程4049=+y x 的解,求a 的值。
6. 已知⎩⎨⎧=+-=--030334z y x z y x 并且0≠z ,求x:z 和y:z 的值。
7. (只列方程,不要求解题步骤)某班同学参加学校运土劳动,一部分同学抬土,一部分同学挑土。
已知全班共有箩筐59个,扁担36根(无闲置不用工具)。
问共有多少同学抬土,多少同学挑土?8. (只列方程,不要求解题步骤)某项工程,甲、乙两人合作,8天可以完成,需费用3520元;若甲单独做6天后,剩余工程由乙单独做,乙还需12天才能完成,这样需费用3480元。
问:(1)甲、乙两人单独完成此工程,各需多少天?(2)甲、乙两人单独完成此工程,各需费用多少元?9. (只列方程,不要求解题步骤)第一小组的同学分铅笔若干支。
若其中有4人每人各取4支,其余的人每人取3支,则还剩16支;若1人只取2支,则其余的人恰好每人各取6支,问同学有多少人?铅笔有多少支?10. 某工厂第一车间的人数比第二车间人数的54少30人。
若从第二车间调10人到第一车间,那么第一车间的人数是第二车间人数的43,问各车间原有多少人?11. 小明与小凯进行投篮比赛,约定跨步上篮投中一个得3分,还可以在罚球线上罚球一次,投入再加1分。
而如果上篮未中,那么就要扣1分。
结果小明跨步上篮10次,得27分。
已知小明罚球得了5分。
问小明跨步上篮投中多少次?12. (只列方程,不要求解题步骤)《鸡兔同笼》问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”13. 水源紧张,节约用水迫在眉睫。
针对用水浪费现象。
某城市制定了居民每月每用户用水标准8m3,超过部分加价收费,某用户居民连续两个月的用水和水费分别为12 m3,22元;10 m3,16.2元。
试求该居民用户每月用水收费标准。
14. (只列方程,不要求解题步骤)甲、乙两人在400m的环行跑道上跑步,甲的速度比乙的速度快,当他们从某处同时出发并且同向跑出时,经过6min40s 甲追上乙;背向跑出时,经过40s两人相遇。
求甲、乙两人跑步的速度各是多少?15. 甲、乙两人从相距36km的两地相向而行。
如果甲比乙先走2h,那么他们在乙出发2.5h后相遇;如果乙比甲先走2 h,那么他们在甲出发3 h后相遇。
求甲、乙两人每小时各走多少千米?16. 用含糖分别为35﹪和40﹪的两种糖水混合,配制成含糖为36﹪糖水50kg。
问每种糖水各需多少千克?17. (只列方程,不要求解题步骤)某公司用30000元购进两种货物。
货物卖出后,一种货物的利润是10﹪,另一种货物的利润是11﹪,共获得利润3150元。
问两种货物各进货多少元?18. 北京和上海都有某种仪器可供外地使用,其中北京可提供10台,上海可提供4台。
已知重庆需要8台,武汉需要6台,从北京、上海将仪器运往重庆、武汉的费用如下表所示。
有关部门计划用7600元运送这些仪器。
请你设计一种方案,使重庆、武汉能得到所需的仪器,而且运费正好够用。
运费表(单位:元/台)起点终点武汉重庆北京 400 800上海 300 50019. (只列方程,不要求解题步骤)某农场有300名职工耕种51公顷土地,计划种植水稻、棉花和蔬菜。
已知种植各种植物每公顷所需劳动力人数及投入的设备资金如下表:农作物品种每公顷需劳动力每公顷需投入资金水稻 4人1万元棉花8人1万元蔬菜 5人2万元已知该农场计划在设备上投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的设备资金正好够用?20. (只列方程,不要求解题步骤)为治理沙尘暴,加快防护造林工程建设,某中学初二年级学生开展义务植树活动,参加者是未参加者人数的3倍,若该年级人数减少6人,未参加人数增加6人,则参加者人数是未参加人数的2倍,该校初二年级学生共有多少人?21. 森林公园的门票价格规定如下表:购票人数 1~50人 51~100人 100人以上每人门票价 13元 11元 9元某校初一(1)、(2)两个班共104人去游森林公园,其中(1)班人数较少,不到50人,(2)班人数较多,有50多人。
经估算,如果两班都以班为单位分别购票,则一共应付1240元;如果两班联合起来,作为一个团体购票,则可以节约不少钱。
问两个班各有多少名学生?22. 某纸品厂要制作如图所示的甲、乙两种无盖的长方体小盒。
该厂利用了边角料裁出长方形和正方形两种纸片,其中长方形纸片的宽和正方形纸片的边长相等。
现将150张正方形纸片和300张长方形纸片,用来制作这两种小盒(不计连接部分)。
可以做甲、乙两种小盒各多少个?(1)设可以做成甲、乙两种小盒分别x个、y个,列方程求解。
(2)设做甲种小盒用去x张长方形纸片。
做乙种小盒要用去y张正方形纸片,应如何列方程并解方程。
23. 一个三位数的数字之和等于12,它的个位数比十位数字小2。
若将它的百位数字与个位数字互换,所得的数比原来的数小99,求原数。
24. A、B两地相距50km,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车从A地出发驶往B地。
如图,折线PQR和线段MN分别表示甲、乙所行驶的里程s与该日下午时间t之间的关系。
(1)甲出发多少小时,乙才开始出发?(2)乙行驶多少小时就追上了甲,这时两人离B地还有多少千米?25. 甲、乙两个蓄水池,蓄满水后的水量都为120m3。
已知甲池有水48m3,乙水池蓄满了水,现甲池开始进水,每小时进水8m3,同时,乙池放水,每小时放水10m3。