3.3 矩阵的秩
- 格式:ppt
- 大小:606.50 KB
- 文档页数:18
各种矩阵的概念矩阵是现代数学的一个基本概念,广泛应用于线性代数、微积分、概率论、统计学等领域。
它是由若干行和列组成的一个矩形阵列。
在这篇文章中,我将介绍矩阵的基本概念和一些常见的矩阵类型。
一、基本概念1.1 元素:矩阵中每个所在行列交叉点上的数称为元素。
常用小写字母表示,如a_ij表示第i行第j列的元素。
1.2 阶数:矩阵的行数和列数称为矩阵的阶数。
如果一个矩阵有m行n列,记作m×n的矩阵,其中m和n分别表示矩阵的行数和列数。
1.3 主对角线:一个方阵从左上角到右下角的斜线称为主对角线。
1.4 零矩阵:所有元素都为零的矩阵称为零矩阵,用0表示。
二、特殊类矩阵2.1 方阵:行数和列数相同的矩阵称为方阵。
它可以表示线性变换、线性方程组等。
2.2 对称矩阵:主对角线两侧的元素相等的方阵称为对称矩阵。
如果一个矩阵A 满足A_ij=A_ji,其中A_ij表示第i行第j列的元素,A_ji表示第j行第i列的元素,则称矩阵A为对称矩阵。
2.3 反对称矩阵:主对角线上的元素为零,且A_ij=-A_ji的方阵称为反对称矩阵。
2.4 单位矩阵:主对角线上的元素为1,其余元素为零的方阵称为单位矩阵,用I表示。
例如,3×3的单位矩阵是[[1, 0, 0], [0, 1, 0], [0, 0, 1]]。
2.5 对角矩阵:主对角线以外的元素全部为零的方阵称为对角矩阵。
例如,一个对角矩阵可以表示特定向量的缩放因子。
2.6 上三角矩阵:主对角线以下的元素全部为零的方阵称为上三角矩阵。
例如,一个上三角矩阵的所有元素在主对角线和主对角线上方。
2.7 下三角矩阵:主对角线以上的元素全部为零的方阵称为下三角矩阵。
例如,一个下三角矩阵的所有元素在主对角线和主对角线下方。
三、矩阵运算3.1 矩阵的加法:相同阶数的两个矩阵相加,只需将对应位置上的元素相加。
3.2 矩阵的数乘:一个矩阵中的每个元素都乘以一个常数,结果仍然是一个矩阵。
矩阵的知识点总结一、基本概念1.1 矩阵的定义矩阵是一个由数字排成的矩形阵列。
它由m行n列的数域(通常是实数域或复数域)中的元素所组成,用A=(aij)m×n表示。
1.2 矩阵的分类按行、列的数量可以将矩阵分为行矩阵、列矩阵和方阵;按元素的类型可以分为实矩阵和复矩阵。
1.3 矩阵的转置矩阵A的转置记作A^T,其中A^T的行数等于A的列数,A^T的列数等于A的行数。
1.4 矩阵的秩矩阵的秩是指矩阵中非零行的最大数目。
二、性质2.1 矩阵的加法性质设A、B是同一维数的矩阵,则它们的和A+B也是同一维数的矩阵,它的元素是A和B 对应元素的和。
2.2 矩阵的数乘性质设A是m×n的矩阵,k是数,则kA是m×n的矩阵,它的元素是k与A中对应元素的乘积。
2.3 矩阵的乘法性质设A是m×n的矩阵,B是n×p的矩阵,那么它们的乘积AB是m×p的矩阵。
2.4 矩阵的逆若存在一个矩阵B,使得AB=BA=I,其中I是单位矩阵,则称B是A的逆矩阵,记作A^-1。
2.5 矩阵的行列式对于n阶方阵A,其行列式是一个标量,通常用det(A)或|A|表示,代表了矩阵A的某种代数性质。
三、运算3.1 矩阵的加法设A=(aij)m×n,B=(bij)m×n,那么A+B=(aij+bij)m×n。
3.2 矩阵的数乘设A=(aij)m×n,k是数,则kA=(kaij)m×n。
3.3 矩阵的乘法设A=(aij)m×n,B=(bij)n×p,那么AB=(cij)m×p,其中cij=∑(k=1→n)aij*bkj。
3.4 矩阵的转置对于n×m的矩阵A,它的转置矩阵是m×n的矩阵,且满足(a^T)ij=aji。
四、特殊矩阵4.1 方阵每个元素是一个标量的矩阵,其中行数和列数相等。
4.2 零矩阵所有元素都是零的矩阵。
《高等代数》陈重穆主编目录第一章 线性方程组的消元法§1.1 引言§1.2 消元法§1.3 系数分离法§1.4 和号“∑”第二章 行列式§2.1 行列式的定义§2.2 行列式的性质§2.3 行列式按任意一行(列)的展开式 §2.4 克莱姆规则§2.5 行列式的完全展开式§2.6 拉普拉斯定理 行列式的相乘规则第三章 线性方程组的一般解法§3.1 n 维向量§3.2 线性相关性§3.3 矩阵的秩§3.4 线性方程组有解的判别定理 §3.5 线性方程组解的结构第四章 矩阵§4.1 矩阵的概念§4.2 矩阵的运算§4.3 逆矩阵§4.4 矩阵的分块§4.5 初等矩阵第五章 整数论初步§5.1 整除§5.2 最大公约数 辗转相除法 §5.3 因子分解唯一性定理§5.4 因子分解唯一性的一个直接证明 §5.5 同余式(相合式)§5.6 剩余类§5.7 求)(m ϕ第六章 数域 p 元域§6.1 集合§6.2 数域§6.3 p 元域第七章 未定元多项式§7.1 一元多项式的定义§7.2 多项式的整除§7.3 最大公因式§7.4 因式分解唯一性定理§7.5 重因式§7.6 多项式的根 函数多项式§7.7 复数域与实数域上多项式的因式分解 §7.8 有理数域上的多项式§7.9 多元多项式的定义§7.10 对称多项式§7.11 结式 二元高次方程组 判别式第八章 线性空间§8.1 线性空间的定义和简单性质§8.2 基、维数与坐标§8.3 基变换与坐标变换§8.4 线性子空间§8.5 子空间的和与直和§8.6 集合的映射§8.7 线性空间的同构第九章线性变换§9.1 线性变换及其运算§9.2 线性变换的矩阵§9.3 不变子空间特征向量§9.4 特征多项式与最小多项式第十章λ-矩阵§10.1 λ-矩阵及其标准形§10.2 初等因子§10.3 矩阵相似的判别条件§10.4 若当标准形第十一章欧氏空间§11.1 定义、哥西-施瓦兹不等式§11.2 标准正交基、同构及正交阵§11.3 向量到子空间距离及其应用§11.4 正交变换第十二章二次型§12.1 矩阵合同化简二次型§12.2 复、实二次型的标准形§12.3 在因式分解方面的应用§12.4 实对称矩阵正交合同化简二次型。
判别向量组线性相关性的几种方法方法1 依据下面的结论来判断向量组的线性相关性1)含零向量的向量组一定线性相关2)对应分量成比例的两个向量一定线性相关3)向量组中的某个向量可由其余向量线性表示的一定线性相关4)相关组增加向量仍相关,无关组减少向量仍无关5)无关组添加分量仍无关,相关组减少分量仍相关6)向量组的个数大于向量维数的必线性相关22211=,=1211=1,=223⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭γγββ11线性无关,则仍线性无关22312=1,=21212-1=1,=2=0126⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ααααα11线性相关,则,仍线性相关232312-1=1,=2=020126⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭αααααα 11,线性相关,234120-1=1,=0,=0,=31215⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭αααα1线性相关(个数大于维数)方法2 利用向量组线性相关性的定义转化为齐次线性方程组的求解212122122,,,,,...,,,,,=n n n n n nk k k k k k k k k +++⎛⎫ ⎪⎪⇔⇔= ⎪ ⎪⎝⎭ααααααOαααO AK O 111已知列向量组, 设有使得=()齐次线性方程组22,,,,,,n n =⇔=⇔=AK O αααAK O αααAK O 11可利用初等行变换求解齐次线性方程组线性无关只有零解线性相关有非零解例1234213344223344,,,+,+,-,+(2)+,+,,+-αααααααααααααααααααα11111已知向量组线性无关,判断下列向量组的线性相关性(1)122233344414122233344(2)(+)(+)()()()()()()k k k k k k k k k k k k ++++-=-++++++=ααααααααOααααO111设213344+-1++1-+1+=⨯⨯⨯⨯ααααααααO11解(1)0()()()()所以该向量组线性相关234,,,αααα1已知向量组线性无关,有14121234233400000k k k k k k k k k k k k -=⎧⎪+=⎪⇒====⎨+=⎪⎪+=⎩所以线性无关方法3 利用矩阵的秩判断向量组的线性相关性122,,,m n ij m n nm a ⨯⨯⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ββA αααβ 1矩阵=()=()=22,,, ,,,=n n ⇔⇔αααA αααA 11向量组线性相关R ()< n 向量组线性无关R () n22,,,,,,=m m ⇔⇔βββA βββA 11向量组线性相关R ()< m 向量组线性无关R () m例223()3=,,,R =∴A ααα 1向量的个数线性无关23112011201120312504-4504-45201102-310023---⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦→→αA αα初等初等1变换变换解 利用初等变换求向量组的秩令=()()()23=1-120,=3125,=2011ααα1判断线性相关性方法4 利用向量组的秩判断线性相关性2222(,,,,,,(,,,,,,n n n n R R ⇔⇔αααααααααααα 1111)< n 线性相关)= n 线性无关22=()(,,,T T n T n R R ⎛⎫ ⎪ ⎪=⎪ ⎪ ⎪⎝⎭ααB B αααα 11 或 , 则)22(,,,),()(,,,n n R R ==A αααA ααα 11令则),2(,,,n R ααα 1) 因此,将(矩阵的秩等于行(列)向量组)转化为的秩矩阵求秩方法5 利用初等变换判断向量组的线性相关性1)初等行变换不改变矩阵列向量组的线性相关性2)初等列变换不改变矩阵行向量组的线性相关性2323,,,,16-3=0=2a a ∴⇔βββγγγB 11线性无关,线性无关R()=3,即,[]23123102102102210-3006-3=31001-601-611301100-5()a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦=→→A βββB B γγγ初等初等变换变1行行换令=,,2310221=,=,=3101-13a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭βββ1已知向量组线性无关,求例3解思考题:下面的结论是否正确• 1.线性无关组增加向量仍然线性无关答案:不正确• 2.求向量组的秩时只能用初等行变换答案:不正确THANKS。
第一章 矩阵的秩矩阵理论是高等代数的主要内容之一, 在数学及其它科学领域中有着广泛的应用.在矩阵理论中, 矩阵的秩是一个重要的概念. 它是矩阵的一个数量特征, 而且是初等变换下的不变量. 本文归纳了矩阵的秩与向量的线性关系; 线性方程组的求解; 空间中点面位置关系; 二次型; 线性变换等问题的密切的联系.1 矩阵的秩的定义及简单的公式1.1 矩阵的秩的定义定义1一个向量组的极大线性无关组所含向量的个数称为这个向量组的秩. 所谓矩阵的行秩就是矩阵的行向量组的秩, 矩阵的列秩就是矩阵的列向量组的秩. 矩阵的行秩等于矩阵的列秩, 并统称为矩阵的秩. 另外, 矩阵的秩等于它的不为零的子式的最高阶数, 这是矩阵的秩的行列式定义.定义2设()n m a A ij ⨯=有r 阶子式不为0,任何r +1阶子式(如果存在的话)全为0 , 称r 为矩阵A 的秩,记作()A R 或。
定义3 矩阵A 经过初等变换所化成的阶梯型中非零行的个数称为矩阵A 的秩. 矩阵A 的秩为r ,记为()r A R =.特别,零矩阵的秩()00=R1.2 矩阵的秩的几个简单性质性质1 ()0=A r , 当且仅当A 是零矩阵 性质2 ()n A r =, 当且仅当|A |≠0性质3 设A 是m ×n 矩阵, 则()}{n m A r ,min 0≤≤ 性质4 ()()()B r A r B A r +≤+性质5 ()()TA rank A rank =1.3矩阵秩的求法(1)定义法找出矩阵A 中不为零的最高子式,算出它的阶数. (2)初等变换法用初等变换(行、列均可)将矩阵A 化为标准形r E O O O ⎛⎫⎪⎝⎭,即可得出()R A r =;或化成阶梯形矩阵,其非零行的个数即为秩.例设6117404112901316124223A ⎛⎫ ⎪ ⎪⎪=- ⎪--- ⎪ ⎪-⎝⎭, 求秩(A) 解 A →1290404161171316124223-⎛⎫ ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪-⎝⎭→1290084010115570525108403-⎛⎫⎪- ⎪⎪- ⎪-- ⎪ ⎪-⎝⎭→12900151015711015150153-⎛⎫ ⎪-- ⎪ ⎪-- ⎪-- ⎪ ⎪--⎝⎭→12900151000458800034000014-⎛⎫ ⎪-- ⎪ ⎪- ⎪- ⎪ ⎪-⎝⎭所以()3R A =.第二章 矩阵的秩的相关问题1 矩阵的秩在向量组线性相关性问题中的应用向量组的线性相关性是线性代数中一个较为抽象的概念, 它既是线性代数的重点, 又是一个难点。
秩知识点总结本文将就秩知识点进行总结,从不同角度来解释秩的概念、性质、应用及其相关定理。
秩是线性代数中的一个重要概念,它在矩阵的研究中有着重要的作用。
秩的概念和性质是线性代数的基础知识,对于理解线性代数的其他内容具有重要意义。
一、秩的定义1.1 矩阵的行秩和列秩在矩阵的行空间中,秩的定义是行空间的维数。
同样,在矩阵的列空间中,秩的定义是列空间的维数。
行秩和列秩都是矩阵的秩。
矩阵的秩是行秩和列秩中的较小者。
1.2 符号表示矩阵A的秩记作r(A)。
在文中,通常会简单地称呼为矩阵A的秩。
1.3 矩阵A的秩等于行秩和列秩行空间和列空间是等价的。
因此,矩阵A的行秩和列秩是相等的,即秩。
这个定理是线性代数中的重要定理。
二、秩的性质2.1 零矩阵的秩为0对于任意大小的零矩阵,其秩都是0。
这是秩的一个重要性质。
2.2 矩阵的秩不会超过其行数和列数中的较小者对于一个m×n的矩阵A,其秩r(A)不会大于m和n中的较小者。
2.3 等价矩阵的秩相等对于等价矩阵A和B,它们的秩是相等的。
2.4 矩阵的秩与矩阵的变换无关对于一个矩阵A,将其进行线性变换后得到的新矩阵B,矩阵A和B的秩是相等的。
秩只与原矩阵A有关,与其变换无关。
2.5 矩阵的秩与初等行变换有关通过初等行变换,矩阵的行秩是它所对应的行阶梯形矩阵的行秩。
这个性质对于计算矩阵的秩非常重要。
三、秩的应用3.1 矩阵的秩与方程组的解的个数有关当矩阵A的秩与矩阵的增广形式的秩相等时,方程组有唯一解;当矩阵A的秩小于矩阵的增广形式的秩时,方程组有无穷解;当矩阵A的秩小于矩阵的增广形式的秩时,方程组无解。
3.2 矩阵的秩与矩阵的逆的存在性有关当矩阵A是一个n×n的方阵,并且其秩等于n时,矩阵A存在逆矩阵。
3.3 矩阵的秩与矩阵的特征值有关关于特征值和特征向量的理论可以用秩来进一步分析特征值和特征向量的性质。
3.4 矩阵的秩与矩阵的奇异性有关当矩阵A的秩小于n时,矩阵A被称为奇异矩阵。
第3章 矩阵的初等变换与矩阵的秩3.1 矩阵的初等变换矩阵的初等行(列)变换:(1) 交换第i 行(列)和第j 行(列);(2) 用一个非零常数乘矩阵某一行(列)的每个元素;(3) 把矩阵某一行(列)的元素的k 倍加到另一行(列).对矩阵施行初等变换时,由于矩阵中的元素已经改变,变换后的矩阵和变换前的矩阵已经不相等,所以在表达上不能用等号,而要用箭号"→".例1 求矩阵⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=042111210A 的逆矩阵.3.2 初等矩阵单位矩阵作一次初等变换得到的矩阵叫初等矩阵.概括起来,初等矩阵有3类,分别是(1)交换第行和第i j 行(交换第列和第i j 列)⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎛=1101111011).(%"""###%###"""%j i E(2)用常数λ乘第行(i λ乘第i 列)⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎛=1111))((%%λλi E (3)第i 行的k 倍加到第j 行(第j 列的k 倍加到第列) i⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎛=1111))((%"%#%k k ij E显然,初等矩阵都可逆,其逆矩阵仍是初等矩阵,且有),(),(1j i E j i E =−;⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛=−λλ1))((1i E i E ; ))(())((1k ij E k ij E −=−.初等矩阵与初等变换有着密切的关系:左乘一个初等矩阵相当于对矩阵作了一次与初等矩阵相应类型一样的初等行变换.例如要将矩阵的第1行和第3行交换,则左乘一个初等矩阵A )3,1(E :⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛001010100⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛333231232221131211a a a a a a a a a =⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛131211232221333231a a a a a a a a a . 右乘一个初等矩阵相当于对矩阵作了一次与初等矩阵相应类型一样的初等列变换.例2 设⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=333231232221131211a a a a a a a a a A ,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=231322122111333231232221a a a a a a a a a a a a B ,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=1000100111E ,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=0010101002E ,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=1000010103E .则以下选项中正确的是B A E E E A =321)(;B E E AE B =321)(;B A E E EC =123)(;B E E AE D =123)(.例3 设是3阶可逆矩阵,将的第1行和第3行对换后得到的矩阵记作.A AB (1) 证明可逆;B (2) 求. 1−AB例4 设⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=011431321A ,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=000110101B ,是否存在可逆矩阵P ,使得B PA =?若存在,求P ;若不存在,说明理由.例5 设是3阶方阵,将的第1列与第2列交换得,再把的第2列加到第3列得C ,A AB B 则满足C AQ =的可逆矩阵Q 为(A) ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛101001010 (B) ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛100101010 (C) ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛110001010 (D) ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛1000011103.3 矩阵的等价与等价标准形 若矩阵B 可以由矩阵经过一系列初等变换得到,则称矩阵和等价.A AB 矩阵的等价是同型矩阵之间的一种关系,它具有如下性质:(1) 反身性:任何矩阵和自己等价;(2) 对称性:若矩阵和矩阵等价,则矩阵和A B B矩阵也等价;A (3) 传递性:若矩阵和矩阵等价,矩阵和矩阵C 等价,则矩阵和矩阵C 等价.A B B A 形如⎟⎠⎞⎜⎝⎛000r E 的矩阵称为矩阵的等价标准形. 任意矩阵A 都与一个等价标准形⎟⎠⎞⎜⎝⎛000r E 等价.其中r E 是r 阶单位矩阵.这个r 是一个不变量,它就是矩阵的秩.任何矩阵总存在一系列的初等矩阵s P P P ,,,21",和初等矩阵t Q Q Q ,,,21"使得11P P P s s "−A t Q Q Q "21=⎟⎠⎞⎜⎝⎛000r E . 令P =,Q =11P P P s s "−t Q Q Q "21,于是对任意的矩阵,总存在m 阶可逆矩阵n m ×A P 和n 阶可逆矩阵Q ,使得PAQ =⎟⎠⎞⎜⎝⎛000r E .例6 设阶矩阵与等价,则必有n A B (A) 当)0(≠=a a A 时,a B =.(B) 当)0(≠=a a A 时,a B −=. (C) 当0≠A 时,0=B . (D) 当0=A 时,0=B .3.4 矩阵的秩在矩阵中,任取n m ×A k 行k 列,位于这k 行k 列交叉处的2k 个元素按其原来的次序组成一个k 阶行列式,称为矩阵的一个A k 阶子式.若矩阵中有一个A r 阶子式不为零,而所有1+r 阶子式全为零,则称矩阵的秩为A r .矩阵的秩记作.A )(A r 零矩阵的秩规定为零.显然有 ⇔≥r A r )(A 中有一个r 阶子式不为零;中所有A r A r ⇔≤)(1+r 阶子式全为零.若n 阶方阵,有A n A r =)(,则称是满秩方阵. A 对于n 阶方阵, A 0)(≠⇔=A n A r .矩阵的初等变换不改变矩阵的秩.例7 求矩阵⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=45532511014132232211A 的秩. 例8 求阶矩阵n ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=a b b b a b b b a A """""""的秩, 2≥n .例9 设⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=71534321101111a b A ,已知3)(=A r , 求.b a , 常用的矩阵的秩的性质: (1);)()(T A r A r =(2))()()(B r A r B A r +≤+;(3)))(),(min()(B r A r AB r ≤,(4))()(00B r A r B A r +=⎟⎠⎞⎜⎝⎛; (5))()(0B r A r B C A r +≥⎟⎠⎞⎜⎝⎛;(6)若0=AB ,则n B r A r ≤+)()(,其中n 为矩阵的列数.A (7)若可逆,则A )()(B r AB r =(8)若列满秩,则A )()(B r AB r =(9)若行满秩,则B )()(A r AB r =例10 设B A ,都是阶方阵,满足n E AB A =−22,求=+−)(A BA AB r ?例11 设是矩阵,A 34× ,301020201,2)(⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−==B A r 求.)(AB r 例12 已知⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=62321321t A ,是3阶非零B 矩阵,且满足0=AB ,则4)(=t A 时,的秩必为1;B 4)(=t B 时,的秩必为2;B 4)(≠tC 时,的秩必为1;B 4)(≠t D 时,的秩必为2.B 例13 设B A ,都是阶非零矩阵,且满足n 0=AB , 则A 和的秩B)(A必有一个等于零; )(B都小于n ; )(C一个小于n ,一个等于; n )(D 都等于n .例14 设是矩阵,B 是A n m ×m n ×矩阵,若 m n < 证明:0=AB .例15 设是2阶方阵,已知A 05=A ,证明. 02=A3. 5 伴随矩阵设 ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=nn n n n n a a a a a a a a a A """""""212222111211, 记的代数余子式为,令ij a ij A ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=nn n nn n A A A A A A A A A A """""""212221212111* 为矩阵的伴随矩阵.因此,若A ()ij a A =,则 ()T ij A A =*.伴随矩阵的基本关系式:E A A A AA ==**. *11A A A =−,或 1*−=A A A . 1*−=n A A .⎪⎩⎪⎨⎧−<−===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r例16 设⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=122212221A ,求的伴随矩阵. A *A 例17 设⎟⎠⎞⎜⎝⎛−=⎟⎠⎞⎜⎝⎛−−=1111,23212121A A , ⎟⎟⎠⎞⎜⎜⎝⎛=−12100A A B 则 *B =? 例18 设是3阶矩阵,A 21=A ,求*12)3(A A −−. 例19 设⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=8030010100100001*A ,且E XA AXA 311+=−−,求X .。