汽车电子稳定程序系统
- 格式:doc
- 大小:1001.50 KB
- 文档页数:16
汽车电子稳定控制系统的作用汽车电子稳定控制系统(ECS)是现代汽车安全技术的重要组成部分。
它通过利用先进的传感器和控制单元,对车辆的动力和制动系统进行智能化的调节和控制,以提供更强大的稳定性、操控性和安全性。
本文将探讨汽车电子稳定控制系统的作用及其对驾驶体验和路面安全的重要性。
一、提供车辆稳定性汽车电子稳定控制系统通过对车辆动力和制动系统的智能调节,可以实现车辆在各种驾驶情况下的稳定性控制。
例如,在车辆转弯时,通过感知车辆的横向加速度和方向盘转角等参数,ECS可以精确计算出车辆的转向需求,并智能调节每个车轮的制动力和扭矩分配,从而减少侧滑和失控的风险,提供更好的操控性和驾驶稳定性。
二、增加车辆操控性除了稳定性控制外,汽车电子稳定控制系统还可以提供更好的操控性能。
通过感知车辆的动态参数,ECS可以根据驾驶者的操作意图,智能调节车辆的扭矩分配和制动力,从而实现更精确的操控。
无论是在高速公路上的高速行驶,还是在复杂的路况下的紧急变道,ECS都可以提供更快速、准确的操控响应,使驾驶者更加自信和舒适地驾驶。
三、提升驾驶安全性汽车电子稳定控制系统对提升驾驶安全性起到了重要作用。
在紧急制动和急转弯等情况下,ECS可以智能调节每个车轮的制动力和扭矩分配,避免车辆失控和侧滑。
此外,当车辆发生失控或侧滑时,ECS还可以通过主动调整车辆动力和制动力,使车辆恢复平稳行驶状态,减少事故发生的可能性。
四、适应路面环境汽车电子稳定控制系统还可以通过感知车辆周围的路面环境,智能调节车辆的动力和制动力。
例如,在不同路面摩擦系数的情况下,ECS 可以根据实时感知到的数据,动态调节车轮的制动力和扭矩分配,以确保车辆在湿滑或不平的路面上具有更好的牵引力和稳定性。
综上所述,汽车电子稳定控制系统是一项非常重要的汽车安全技术。
它通过智能调节车辆的动力和制动系统,提供更好的稳定性、操控性和安全性,提升驾驶者的驾驶体验,同时减少道路事故的发生。
汽车电子稳定系统的工作原理现代汽车的电子稳定系统(Electronic Stability Control,简称ESC)是一种重要的安全系统,它能够帮助驾驶员在紧急情况下保持车辆的稳定性,减少交通事故的发生。
本文将详细介绍汽车电子稳定系统的工作原理。
一、传感器检测汽车电子稳定系统的工作原理首先涉及到传感器的检测。
车辆上装备有多个传感器,用于检测车辆的行驶状态。
其中包括车轮转速传感器、转向传感器、方向盘角度传感器等。
这些传感器将持续监测车辆的各项数据,并传输给电子控制单元(ECU)。
二、电子控制单元处理获得传感器数据后,电子控制单元会进行实时的数据处理和分析。
它根据传感器的反馈信息,判断车辆是否存在潜在的失控风险。
如果存在风险,电子控制单元将采取相应的措施来保持车辆的稳定性。
三、制动力分配当电子控制单元判断车辆开始失控时,它会通过控制制动系统来分配制动力。
一般而言,如果某一车轮的速度明显高于其他车轮,电子控制单元将通过制动系统降低该车轮的转速,以减缓车轮的旋转。
四、引擎控制除了通过制动系统来控制车轮的转速外,电子控制单元还可以通过调整引擎的输出力矩来控制车辆的稳定性。
当车辆出现侧滑或失控的迹象时,电子控制单元会减少引擎输出的力矩,降低车辆的加速度,以稳定车辆。
五、增加稳定性汽车电子稳定系统还具备通过制动力分配和引擎控制来增加车辆稳定性的功能。
当车辆行驶过弯时,电子控制单元可以适时地减少车辆的侧倾角度,提高车辆的操控性和平稳性。
这种功能尤其在高速行驶或紧急变道时,能够显著提高行驶的安全性。
六、系统自检为了确保汽车电子稳定系统的正常工作,该系统还具备自检功能。
每次启动车辆时,系统会对自身进行自检,检测传感器的功能是否正常,以及各个部件是否可以正常工作。
如果在自检过程中发现故障,系统会自动关闭并发出警告信号,提醒驾驶员及时维修。
总结:汽车电子稳定系统是一个基于传感器检测和电子控制单元处理的安全系统。
它通过分析传感器数据,以及通过制动力分配和引擎控制来提升车辆的稳定性。
详解ESP电子稳定系统电子稳定系统(Electronic Stability Program,简称ESP),实际上是一组车身稳定性控制的综合策略,它包含防锁死刹车系统(ABS)和驱动轮防滑系统(ASR)等,可以说它是在其它主、被动安全系统基础之上的一种功能性延伸,而并不是作为独立配置存在的。
那么,如今在众多车型上配备的ESP系统(不同品牌车型相应名称有所不同,具体请点击参考:车168教你学汽车知识之电子稳定系统ESP),它们之间到底有什么玄机呢?接下来,我们就为您对其进行详细剖析。
为了能够形象、具体的说明ESP系统到底都隐藏有哪些秘密,我们将以速腾和迈腾上的ESP系统举例说明。
这两种车型上匹配的ESP系统包括了九种详细功能,分别为:ABS (防死锁刹车系统)、EBD(电子制动力分配系统)、ESBS(扩展的电子稳定刹车系统)、HVV(后桥全减速)、ASR(牵引力控制系统)、EDL(电子差速系统)、MASR(发动机阻力矩控制)、HBA(液压辅助制动)和LDE(低动力ESP)。
下面,我们就一起来看看以上那些功能,在日常行车时都会起到什么作用。
(注释:这两种车型上的ESP系统并不是博世(BOSH)公司所提供的,迈腾由美国天合(TRW)所提供,而速腾则是德国大陆特维斯(Continental Teves)公司所提供。
)ABS(防死锁刹车系统)平时经常提到的ABS,其英文全称为“Anti-lockBreakSystem”,中文译名“防死锁刹车系统”。
该系统可在汽车制动情况下车轮即将锁死时,一秒内连续制动60至120次,有点类似于机械式“点刹”。
这样便可以有效避免紧急刹车时方向失控或车轮侧滑,同时由于车轮在刹车时不会被锁死,轮胎不在一个点上与地面发生摩擦,因而加大了摩擦力,使刹车效率达到90%以上。
ABS防锁死刹车系统分机械和电子式两种,机械式ABS结构简单,主要利用其自身内部结构达到简单调节制动力的效果,没有传感器来反馈路面摩擦力和轮速等信号,完全依靠预先设定的数据来工作,因此在任何路面情况下它的工作方式都是一样的,目前国内只有一些低端的皮卡等车型仍在使用机械式ABS。
汽车电子稳定控制系统的作用与选择汽车电子稳定控制系统(Electronic Stability Control,简称ESC)是一种旨在提高车辆安全性和稳定性的先进技术。
本文将探讨ESC的具体作用以及如何选择适合的控制系统。
一、ESC的作用1. 提高行驶稳定性汽车在急刹车、转弯时易发生侧滑或失控的情况。
ESC通过感知车辆行驶状态、车轮转速差异和转向角度等信息,及时判断车辆是否存在滑动或失控的风险,从而采取相应的措施来保持车辆稳定。
ESC能够矫正车辆姿态,使其始终保持在安全稳定的范围内,减少侧滑和翻滚的风险。
2. 防止悬空滑行悬空滑行是指车辆在弯道行驶时,因车轮失去附着力而无法提供足够的驱动力,导致车辆无法前进。
ESC通过检测各车轮转速,如发现车轮出现滑行情况,系统会自动增加或降低相应车轮的刹车力度,使车轮重新恢复附着力,保证车辆正常行驶。
3. 提升抗滑性能车辆在起步、行驶过程中,尤其是在低摩擦路面、湿滑路况下容易出现车轮打滑的情况。
ESC通过瞬间调整车轮的刹车力度和动力输出,使车轮与地面之间的附着力得到最大程度的利用,避免轮胎打滑,提高抗滑性能,保证车辆的驾驶稳定性和安全性。
二、选择适合的ESC系统1. 车型适配性不同的汽车品牌和型号可能配备不同的ESC系统,因此在选择时要确保系统与车辆的兼容性。
最好咨询汽车制造商或经销商,了解是否有适合特定车型的ESC系统。
2. 功能多样性ESC系统有多种功能,如刹车辅助、动力分配、车辆稳定性控制等。
根据自己的需求选择适合的ESC系统,例如经常行驶在曲线道路上的司机可以选择具备更高级别稳定控制的ESC系统。
3. 安全性能选择ESC系统时,要关注其具备的安全性能,包括反应速度、精准性和稳定性。
一款优秀的ESC系统应该能够快速准确地感知车辆状态,并在紧急情况下迅速作出反应,保证乘车安全。
4. 车辆制造商推荐汽车制造商通常会根据品牌和车型的特点为车辆配备适合的ESC系统。
汽车电子稳定性程序(ESP)控制方法及联合仿真研究的开题报告一、研究背景和意义随着汽车行业的不断发展,汽车品质要求越来越高。
汽车行驶过程中,稳定性成为影响安全的一个重要因素,因此汽车电子稳定性程序(ESP)成为现代汽车必备的安全保障措施。
ESP的主要作用是控制车辆运动状态,通过对发动机、刹车和悬挂的控制,在车辆行驶过程中实时调节车辆的稳定性,使其处于最佳状态,从而提高车辆的安全性能。
随着汽车电子技术的发展,ESP系统的控制模型也变得越来越复杂。
传统的控制方法只能简单地基于车速和转向角进行控制,而现代的ESP系统需要考虑到更多的因素,比如膨胀系数、空气阻力等因素。
因此,需要进行更加精确的控制方法研究,以提高ESP系统的效率和稳定性,从而为汽车行业提供更加安全、高效的技术支持。
本研究旨在通过对ESP系统控制方法的研究,掌握ESP系统的设计和优化方法,为提高汽车安全性能提供技术支持。
二、研究内容和技术路线本研究将从以下几个方面进行研究:1. ESP系统原理及控制方法研究:对于ESP系统的原理进行深入研究,建立ESP系统控制方法的理论基础。
2. ESP系统控制方法仿真研究:通过MATLAB/Simulink软件建立ESP系统的仿真模型,研究不同控制方法对车辆稳定性的影响,并探究优化的控制方法。
3. ESP系统与车辆动力学的联合仿真研究:将ESP系统与车辆动力学模型进行集成,综合考虑车辆动力学和ESP系统的影响,探究ESP系统在不同路面条件下的控制方法,以及优化方法。
4. 实验验证:对于研究得出的优化控制方法进行实车试验,验证其在实际应用中的稳定性和效果。
技术路线如下图所示:图1 ESP技术路线图三、预期研究成果1. 系统地研究了ESP系统的原理及控制方法,掌握了ESP系统的设计和优化方法,提出了创新的ESP系统控制思路。
汽车底盘的电子稳定控制系统介绍随着汽车科技的不断进步,车辆的安全性能也得到了极大的提升。
其中,电子稳定控制系统作为一种重要的安全防护装置,发挥着至关重要的作用。
本文将介绍汽车底盘的电子稳定控制系统,包括其工作原理、主要组成部分以及作用。
一、工作原理汽车底盘的电子稳定控制系统通过一系列传感器感知车辆在行驶过程中的状态,如车速、转向角度、横摇角等。
然后利用电子控制单元(ECU)对这些数据进行实时监测和分析,判断车辆是否存在侧滑、失控等情况。
一旦系统检测到车辆出现异常情况,便会通过制动系统或发动机控制系统对车辆进行干预,以确保车辆稳定行驶。
二、主要组成部分汽车底盘的电子稳定控制系统主要由传感器、电子控制单元(ECU)、制动系统和发动机控制系统组成。
传感器通过感知车辆状态并将数据传输给ECU,ECU对数据进行分析处理并下达指令。
制动系统通过独立的制动单元对车轮进行制动干预,而发动机控制系统则通过调整油门位置来控制车辆的牵引力,从而使车辆保持稳定。
三、作用汽车底盘的电子稳定控制系统的作用主要体现在以下几个方面:1. 提高行驶稳定性。
当车辆在高速行驶或遇到突发情况时,系统可以及时感知并对车辆进行干预,防止侧滑、打滑等现象的发生,提高行驶稳定性。
2. 提升车辆操控性能。
系统可以实现对车轮的单独制动干预,使车辆更加灵活、稳定地转向,提升车辆的操控性能。
3. 提高驾驶舒适性。
系统可以在车辆悬挂系统、制动系统和发动机控制系统之间进行协调,优化车辆的驾驶性能,提高驾驶舒适性。
4. 提升驾驶安全性。
通过实时监测车辆状态并及时进行干预,系统可以有效减小车辆失控的风险,提升驾驶安全性。
综上所述,汽车底盘的电子稳定控制系统是一项重要的安全装置,可以有效提高车辆的行驶稳定性、操控性能和驾驶安全性,是现代汽车不可或缺的关键技术。
在未来,随着科技的不断创新,电子稳定控制系统将会不断完善,为车辆提供更加全面的安全保障。
ESP—汽车电子稳定系统仿真研究一、概要随着科技的不断发展,汽车行业在追求高性能、低成本和长寿命的也面临着更加复杂的操控环境和安全隐患。
为了提高汽车的安全性能和操控稳定性,越来越多的电子设备被应用到汽车上,其中最具代表性的就是汽车电子稳定系统(ESP)。
本文将对ESP进行仿真研究,探讨其在不同驾驶场景下的性能表现和潜在的改进方向。
本文首先介绍了ESP系统的基本原理和组成,包括轮速传感器、加速度传感器、制动压力传感器等,以及它们如何协同工作以实现车辆稳定控制。
通过建立ESP仿真模型,分析了其在不同路面条件、驾驶员操作和车辆运行状态下的性能表现。
针对仿真结果中存在的问题提出了相应的改进措施和建议。
本文通过对ESP系统的深入研究和仿真分析,为进一步提高汽车电子稳定系统的性能提供了有价值的参考和借鉴。
二、ESP系统的关键技术ESP系统,即汽车电子稳定程序,是现代汽车主动安全防御系统的重要组成部分。
它通过集成多种传感器和控制系统,实时监测并控制车辆的运动状态,以提供卓越的运动性能和稳定性。
在ESP系统中,关键技术主要包括:数据采集与处理:ESP系统依赖于大量的传感器来实时获取车辆关键状态信息,如车轮速度、加速度、角速度等。
这些传感器产生的数据经过精确的处理,以便实时传送给控制器。
数据采集与处理技术直接影响到ESP系统的性能和准确性。
控制算法执行:ESP系统根据接收到的传感器数据进行决策,并生成相应的控制指令来调整车辆的行驶方式。
这包括制动、节气门和转向控制等多个方面。
控制算法执行是ESP系统实现稳定控制的核心。
车辆动态模型建立:为了精确地预测车辆的动态行为,ESP系统采用了先进的车辆动态模型。
该模型考虑了车辆的质量分布、质心位置、悬挂系统和轮胎力学特性等多种因素。
通过建立准确的车辆动态模型,ESP系统能够更有效地预测和处理各种复杂路况。
实时性与稳定性:ESP系统在设计过程中充分考虑了实时性和稳定性两个重要指标。
浅谈汽车电子稳定程序前言随着汽车行驶速度的提高,道路行车密度的增大,汽车行驶安全性已经受到了高度关注。
汽车的行驶安全性能要求不断提高,汽车安全系统已经成为汽车研究发展的重要部分。
汽车安全性包括主动安全性和被动安全性两大类。
汽车主动安全是指事故发生前的安全,即实现事故预防和事故回避,防止事故发生。
主动安全性是指通过事先预防,避免或减少事故发生的能力。
被动安全性是指汽车在发生意外事故时对乘员进行有效保护的能力。
汽车的主动安全性因其防患于未然,所以越来越受到汽车厂商和消费者的重视,越来越多的先进技术也被应用到汽车主动安全装置上。
主动安全性的好坏决定了汽车产生事故发生概率的多少,而被动安全性的好坏主要决定了事故后车内成员的受伤严重程度。
目前广泛运用的汽车主动安全性系统主要有防抱死制动系统(ABS)、驱动防滑系统〔ASR〕、牵引力控制系统 (TCS)、汽车电子稳定程序系统(ESP),汽车电子制动力分配系统(EBD), 紧急刹车辅助系统 (EBA)、汽车自适应巡航速度控制系统(ACC)等,保证汽车在危险状况下行驶的安全性。
上述这些系统具有智能化的控制作用,根据车辆的行驶状况,自动地完成对汽车制动性能、转向辅助等的控制,无需人的主动性操作,可见汽车安全系统已经向智能型方向发展。
摘要本文探讨了ESP系统的原理、发展和现状。
简要讨论汽车 ESP 系统的结构及关键技术。
介绍新奥迪 A4轿车 ESP系统的组成、电控系统、液压单元及工作过程。
关键词:电子稳定程序,主动安全性,操纵稳定性,模糊控制传感器液压控制单元电子控制单元ESP系统实际是一种牵引力控制系统,与其他牵引力控制系统比较,ESP不但控制驱动轮,而且可控制从动轮。
如后轮驱动汽车常出现的转向过多情况,此时后轮失控而甩尾,ESP便会刹慢外侧的前轮来稳定车子;在转向过少时,为了校正循迹方向,ESP则会刹慢内后轮,从而校正行驶方向。
ESP系统是汽车上一个重要的系统,通常是支持ABS及ASR 的功能。
它通过对从各传感器传来的车辆行驶状态信息进行分析,然后向ABS、ASR发出纠偏指令,来帮助车辆维持动态平衡。
ESP可以使车辆在各种状况下保持最佳的稳定性,在转向过度或转向不足的情形下效果更加明显。
ESP一般需要安装转向传感器、车轮传感器、侧滑传感器、横向加速度传感器等。
ESP系统包含ABS(防抱死刹车系统)及ASR(驱动防滑转系统),是这两种系统功能上的延伸。
因此,ESP称得上是当前汽车防滑装置的最高级形式。
ESP系统由控制单元及转向传感器(监测方向盘的转向角度)、车轮传感器(监测各个车轮的速度转动)、侧滑传感器(监测车体绕垂直轴线转动的状态)、横向加速度传感器(监测汽车转弯时的离心力)等组成。
控制单元通过这些传感器的信号对车辆的运行状态进行判断,进而发出控制指令。
有ESP与只有ABS 及ASR的汽车,它们之间的差别在于ABS及ASR只能被动地作出反应,而ESP则能够探测和分析车况并纠正驾驶的错误,防患于未然。
ESP对过度转向或不足转向特别敏感,例如汽车在路滑时左拐过度转向(转弯太急)时会产生向右侧甩尾,传感器感觉到滑动就会迅速制动右前轮使其恢复附着力,产生一种相反的转矩而使汽车保持在原来的车道上。
当然,任何事物都有一个度的范围,如果驾车者盲目开快车,任何安全装置都难以保全。
汽车 ESP 系统的结构及关键技术下图是现在比较典型的汽车ESP控制系统的结构,包括:传统制动系统(真空助力器、管路和制动器)、传感器(4个轮速传感器、方向盘转角传感器、侧向加速度传感器、横摆角速度传感器、制动主缸压力传感器)、液压调节器、汽车稳定性控制电子控制单元(ECU)和辅助系统(发动机管理系统)。
博世ESP 系统的硬件结构图一、传感器①轮速传感器轮速传感器用于检测轮速信号。
目前采用的轮速传感器有电磁感应式和霍尔式两种。
电磁感应式轮速传感器的低速响应比较差,而霍尔传感器有较好的低速响应特性。
②方向盘转角传感器方向盘转角传感器用以测量方向盘的转角。
方向盘转角传感器通常分为编码器和电位计式两种。
光学编码器式传感器的测量精度高,使用寿命长,但是它通常测量的是相对位置,因此需要对零点进行识别,而电位计可以直接测量绝对位置,但是它的使用寿命低。
③侧向加速度传感器加速度传感器用于测量侧向加速度。
加速度传感器有很多种,有利用压电石英谐振器的力-频特性进行加速度的测量,还有就是使用衰减弹簧质量系统进行加速度测量。
④横摆角速度传感器横摆角速度传感器是根据陀螺原理进行测量的,一般采用微机械系统结构,在传感器内部采用压电元件产生振动,通过测量振动系统的科式力来求解汽车的横摆角速度[36-37]。
随着以硅原料为基础的微机械测量系统的发展,近期出现了能同时测量侧向加速度和横摆角速度的高精度传感器。
二、液压调节器液压调节器是汽车ESP控制系统的主要执行机构,其基本结构与ABS/ASR液压调节器相似,只是为了提高响应速度,汽车ESP控制系统的液压调节器比ABS/ASR液压调节器多了预压泵(PCP: PrechargePump) 和压力生成器(PGA: Pressure Generator Assembly)。
上图为Bosch公司的HU5.0液压调节器。
HU5.0液压调节器分为MC1和MC2两个独立的管路,分别控制前轮和后轮。
每一制动轮缸通过两个电磁阀EV和AV的通断来产生升压、降压和保压状态。
当EV和AV都处于断电状态时处于升压状态,都处于通电状态时处于降压状态,当EV处于通电状态而AV处于断电状态时处于保压状态,EV 处于断电状态而AV处于通电状态的组合是禁止出现的。
Spk为低压蓄能器,用于维持低压状态;RFP为回油泵,它把低压蓄能器中的制动液送回主油路,用于补偿降压过程中损失的制动液,保持油路的连续;D为串联的阻尼器,用于吸收液压调节造成的压力脉动。
以上部分与ABS液压调节器的结构基本一致。
汽车ESP控制系统的液压调节器要求在驾驶员没有踩制动踏板时也要产生足够的轮缸压力,因此在ABS液压调节器的基础上又增加了两种控制电磁阀(VLV和USV)以产生这种功能。
当VLV和USV均断电的情况下,在PCP未启动时EV阀前端的压力就是由驾驶员通过踩制动踏板产生的。
当VLV和USV均通电时,VLV与主油路相连,USV切断与主油路通路,这时回油泵RFP 启动,使得制动管路产生汽车稳定性控制所需要的压力。
由于在低温下制动液粘性很高,为了提高主动制动(驾驶员不踩制动踏板)时压力建立的响应速度,引入了预压泵PCP, PCP启动后,由PGA产生的压力通过VLV阀施加到回油泵的吸油端,使之产生一定的预压,从而提高响应速度。
PCP运行过程中会产生一些泡沫,为了防止这些泡沫进入制动系统而影响制动效果,于是在PCP与主油路间增加了压力生成器(PGA),用于阻断泡沫并能传递PCP产生的压力。
此外,PGA还可以协调驾驶员踩下的压力与PCP产生的压力之间的关系,把二者中的较大的压力传递到主油路。
三、电子控制单元电子控制单元(ECU: Electronic Control Unit)是汽车ESP控制系统的核心部件,它是控制逻辑的载体,且用来处理各种传感器信号,驱动执行机构动作,从而构成控制闭环。
ECU一般具有两个微处理器,一个用来计算控制逻辑,一个用于故障诊断和处理,两个微处理器通过内部总线相互交换信息。
除了微处理器以外,ECU还包括电源管理模块、传感器信号输入模块、液压调节器驱动模块、各种指示灯接口以及CAN总线通讯接口等。
现在的ECU大多与液压调节器安装在一起,通过电磁线圈与电磁阀阀芯之间的电磁耦合连接,这样不仅减少了连线的长度,又结构紧凑[18]。
四、 ESP 系统研究的关键技术ESP 系统的开发有赖于以下几个关键技术的突破:①传感技术的改进。
在ESP 系统中使用的传感器有汽车横摆角速度传感器、侧向加速度传感器、方向盘转角传感器、制动压力传感器及节气门开度传感器等,它们都是ESP 系统中不可缺少的重要部件。
提高他们的可靠性并降低成本一直是这方面的开发人员追求的目标。
②体积小、重量轻、低成本液压制动作动系统的结构设计。
③ECU 的软、硬件设计。
由于ESP 的ECU 需要估计车辆运行的状态变量和计算相应的运动控制量,所以计算处理能力和程序容量要比ABS 系统大数倍。
一般采用多CPU 结构。
而ECU 软计算的研究则是研究的重中之重,基于模型的现代控制理论已经很难适应ESP 这样一个复杂系统的控制,必须寻求鲁棒性较强的非线性控制算法。
④通过CAN 完善控制功能。
ESP 的ECU 与发动机、传动系的ECU 通过CAN互联,使其能更好地发挥控制功能。
例如自动变速器将当前的机械传动比、液力变矩器变矩比和所在档位等信息传给ESP,以估算驱动轮上的驱动力。
当ESP 识别出是在低附着系数路面时,它会禁止驾驶员挂低档。
在这种路面上起步时,ESP会告知传动系ECU 应事先挂入二档,这将显著改善大功率轿车的起步舒适性。
新奥迪 A4(Audi New A4)轿车ESP系统一汽大众公司2005 年10 月25 日推出了全新奥迪A4 中级轿车。
全新奥迪A4 装备了 2.0T FSI 汽油直喷涡轮增压发动机,使其功率达到了147 千瓦/200 马力;全新奥迪A4 引入全新安全科技和电子装备,如安全带未系报警装置,主动式头枕(为标准装备)、2 级释放式安全气囊等,使其主动、被动安全的高水平得到进一步升级;奥迪最高级别版本的ESP 系统BOSCH8.0 也在国产全新奥迪A4 上首次得到应用,这一系统通过防抱死制动和牵引力控制限制轮胎滑动,极大提升了行驶的安全性。
其中ESP(Electronic Stability Program)系统是先进的安全系统,它集中了车辆防抱死装置(ABS)、紧急制动辅助装置(EBA)、电子制动力分配装置(EBD)、防滑装置(ASR)等主动安全装置功能,而其最突出的优点是:当车辆转向时,如发生转向不足或转向过度或是车辆实际运行轨迹偏离驾驶员操作轨迹时,ESP 就会发挥作用,纠正车辆运行轨迹偏差。
ESP 能够保证车辆在减速、制动、行驶、转向工作状态下有效稳定的操控安全性。
一、新奥迪 A4 轿车 ESP 系统的组成新奥迪A4 轿车的ESP 系统由传感器、控制单元和执行元件三部分组成,概况如下图所示。
ESP 系统部件组成示意图ESP 系统主要元件介绍如下:1.方向盘转角传感器G85 G85 位于转向灯开关和方向盘之间,是ESP 系统独有的一个元器件。
G85 向控制单元传送方向盘转动角度,测量的角度为正负540 度,对应方向盘转动3 圈。
信号供ESP 电控单元计算方向盘旋转方向,通过高速网将方向盘转动方向、旋转速度和旋转角度信息传递给ESP 计算机。