离散元颗粒仿真软件EDEM资料(二)
- 格式:pdf
- 大小:567.34 KB
- 文档页数:16
主要的离散元软件介绍离散元方法(DEM)首次于20世纪70年代由CundallandStrack 在《A discrete numerical model for granular assemblies》一文提出,并不断得到学者的关注和发展。
PFC3D模拟效果该方法最早应用于岩石力学问题的分析,后逐渐应用于散状物料和粉体工程领域。
由于散状物料通常表现出复杂的运动行为和力学行为,这些行为难以直接使用现有基本理论,尤其是基于连续介质理论的方法来解释,而进行实验研究则成本高、周期长,DEM仿真技术的应用范围将会越来越广。
(1)商用软件目前开发离散元商用程序最有名的公司要属由离散元思想首创者Cundall加盟的ITASCA国际工程咨询公司。
该公司开发的二维UDEC(universal distinct element code)和三维3DEC(3-dimensional distinct elementcode)块体离散元程序,主要用于模拟节理岩石或离散块体岩石在准静或动载条件下力学过程及采矿过程的工程问题。
该公司开发的PFC2D和PFC3D(particle flow code in 2/3 dimensions)则分别为基于二维圆盘单元和三维圆球单元的离散元程序。
它主要用于模拟大量颗粒元的非线性相互作用下的总体流动和材料的混合,含破损累计导致的破裂、动态破坏和地震响应等问题。
EDEM是世界上第一个用现代化离散元模型科技设计的用来模拟和分析颗粒的处理和生产操作的通用CAE软件。
使用EDEM,可以快速、简便的为颗粒固体系统建立一个参数化模型,可以导入真实颗粒的CAD模型来准确描述它们的形状。
现在大量应用于欧美国家中的采矿、煤炭、石油、化工、钢铁和医药等诸多领域。
中国科学院非连续介质力学与工程灾害联合实验室与极道成然科技有限公司联合开发了国内最新的离散元大型商用软件GDEM,该软件基于中科院力学所非连续介质力学与工程灾害联合实验室开发的CDEM算法,将有限元与块体离散元进行有机结合,并利用GPU加速技术,可以高效的计算从连续到非连续整个过程。
机械工程学院级硕士研究生一级学科实验任务书实验人员:实验成绩:指导老师:实验时间:实验学时:2学时实验地点:实验名称:颗粒系统的离散元模拟与测试实验实验设备:EDEM软件实验内容:1)EDEM软件开发及应用2)EDEM软件操作过程3)基于EDEM的箱体浇注实验设计基于EDEM的箱体浇注实验设计一.实验目的和任务1.设计一个箱体浇注实验,并给出实验方案的设计过程和流程图;2.在流动场条件下施加振动对固体颗粒运动的影响,试图得到颗粒在复杂的铸件结构下的充型状态图等,并分析各个振动条件(振动自由度、频率、振幅)对充型情况影响程度的大小。
3.分析参数对充型过程的影响,找出最佳实验方案。
二.实验内容1.实验原理利用EDEM与Fluent固液耦合的方法研究在固液两相流的条件下,机械振动对铸造充型过程的影响,随着计算机模拟技术的发展,将计算机模拟技术和铸造过程相结合已经成为一种趋势。
铸造过程数值模拟可以预测铸件的缺陷,如缩孔、缩松、裂纹、气孔及浇不足等,并通过图像直观地显示其位置和大小,从而为技术人员提供参考。
在生产前制定合理的工艺方案,可以减少多次试制造成的浪费。
通过观察温度场,技术人员可以分析气孔和浇不足等缺陷;观察金属液体充型时的流场分布情况,可以分析浇注系统是否合理;通过对凝固过程的分析可以预测缩孔、缩松、应力集中和裂纹等缺陷。
通过对充型和凝固过程的分析,可以寻找最优的铸造参数。
2.实验设计过程首先是设计出合理的减速机箱体的铸造尺寸,完成箱体的三维建模,然后利用ProCAST对静止条件下的模型进行简单充型,通过EDME-Fluent进行耦合,设定耦合参数,进行实验,调节参数的大小,记录实验结果,并整理。
接着对实验结果进行耦合分析,寻找最优的铸造参数,然后确定最佳铸造方案。
其流程图如下图所示:减速机箱体浇注的实验流程图3.实验具体步骤(1)根据实际情况,计算出毛坯件尺寸要留有加工余量,并用proe或solidworks完成三维建模,模具示意图如下图所示:图1 减速机箱体模具示意图(2)进行ProCAST充型仿真,将三维建模图形转为igs格式,导入ProCAST软件进行网格划分,之后选择材料、边界条件、界面传热条件,在由计算机求解转化为可视化结果或者结果分析。
《edem 多球颗粒接触面积变形量》1. 引言作为一种专门用于离散元素模拟的软件,edem 多球颗粒是目前工程领域中非常重要的工具之一。
它通过对颗粒间的相互作用进行建模和模拟,可以帮助工程师和研究人员更好地理解和分析颗粒材料的行为。
在使用 edem 多球颗粒软件进行模拟时,接触面积和变形量是两个非常重要的参数,它们直接影响着颗粒材料的力学性质和行为。
本文将从深度和广度的角度探讨 edem 多球颗粒、接触面积和变形量的相关内容,希望能够给读者带来一些启发和思考。
2. 理论基础在进行 edem 多球颗粒模拟时,接触面积是一个非常重要的参数。
它指的是两个颗粒之间实际接触的表面积,通常用来描述颗粒间的力学性质和相互作用。
接触面积的大小直接影响着颗粒间的摩擦力、压缩变形等力学现象,因此在模拟过程中需要对接触面积进行准确的计算和分析。
而变形量,则是指颗粒在受力作用下发生的形变程度,它可以用来描述颗粒材料的弹性和塑性行为。
在实际工程中,颗粒材料的变形量对于材料的抗压性能和稳定性具有重要的影响。
3. 深入探讨3.1 edem 多球颗粒模拟edem 多球颗粒软件通过对颗粒之间相互作用力的建模和仿真,可以帮助工程师和研究人员更好地理解颗粒材料的行为。
在进行模拟时,软件会准确地计算每个颗粒颗粒之间的接触面积,并根据力学原理对颗粒的运动和相互作用进行模拟。
通过对 edem 多球颗粒模拟的结果进行分析,可以深入了解颗粒材料的力学特性和行为规律。
3.2 接触面积的重要性接触面积是描述颗粒之间相互作用的重要参数之一。
在实际工程中,颗粒材料的摩擦力、压缩变形等力学现象都与接触面积有着密切的关系。
准确地计算和理解颗粒间的接触面积对于预测材料的力学行为非常重要。
3.3 变形量的影响变形量是描述颗粒材料受力变形的重要参数。
在进行模拟和分析时,需要关注颗粒材料在受力作用下的变形程度,这可以帮助工程师更好地理解材料的力学性质和应力分布情况。
基于离散元方法的EDEM软件介绍2012年09月离散元方法简介传统的力学研究都是建立在连续性介质假设的基础上的,即认为研究对象是由相互连接没有间隙的大量微团构成。
然而,这种假设在有些领域并不适用,如:岩土力学。
1971年,CUNDALL提出的一种处理非连续介质问题的数值模拟方法,离散元方法(Discrete Element Method,简称DEM),理论基础是结合不同本构关系(应力-应变关系)的牛顿第二定律。
随后,这种方法被越来越广泛的应用于涉及颗粒系统地各个领域。
通过求解系统中每个颗粒的运动学和动力学方程(碰撞力及场力),不断地更新位置和速度信息,从而描述颗粒系统行为。
EDEM软件介绍EDEM主要由三部分组成:Creator、Simulator和Analyst。
Creator是前处理工具,完成几何结构导入和颗粒模型建立等工作;Simulator是求解器,用于模拟颗粒体系的运动过程;Analyst是后处理工具,对计算结果进行各种处理。
图1.1 EDEM结构框架及功能Creator——EDEM的前处理工具EDEM的前处理工具Creator主要完成建模工作,包括:材料参数设置,确定颗粒形状、颗粒产生方法、几何设备导入及运动特性描述等。
Creator的颗粒几何形状建模现实世界中,颗粒状物质形状各异、千差万别,而形状对颗粒体系的运动情况又有着重要的影响。
EDEM的前处理工具可以精确描述颗粒的几何外形,Creator 通过球面填充技术,将颗粒的表面用若干球面的组合表征,不仅能体现颗粒的非球形特征,又可以使颗粒的接触满足球面接触的物理模型。
图1.2 颗粒建模界面图1.3 采用球面填充方法表征颗粒形状图1.4 各种形状的颗粒颗粒工厂技术EDEM特有的颗粒工厂技术(Particle Factory TM),可以根据用户需要,设置颗粒的初始位置、生成速率、颗粒种类、粒径分布等。
图1.5 按正态分布生成的颗粒图1.6 指定颗粒生成的位置(红色区域)EDEM的材料数据库EDEM的材料数据库允许客户将所关注领域内的各种材料整理成库,在每次建模仿真时,直接从库里导出,不仅减少了用户建模时查找数据的繁琐工作,实现了相关数据的管理和积累。
edempy 案例Edempy案例:基于Edempy的离散元分析模拟1. Edempy是一种基于离散元方法的软件工具,用于模拟和分析颗粒材料的力学行为和相互作用。
2. Edempy具有直观的用户界面和强大的计算能力,可以帮助用户快速建立复杂的颗粒模型并进行精确的分析。
3. 使用Edempy进行离散元分析,可以对不同颗粒材料的行为进行详细的研究,包括颗粒的运动、变形、断裂等。
4. Edempy可以模拟不同类型的颗粒材料,包括颗粒状土壤、岩石、粉末、颗粒填充物等,适用于各种工程和科学领域的研究。
5. 在Edempy中,用户可以定义颗粒的物理性质、几何形状和边界条件,以及模拟过程中的各种力和相互作用。
6. Edempy提供了丰富的分析工具和可视化功能,可以对模拟结果进行详细的分析和后处理,包括力学参数、应力分布、变形情况等。
7. 使用Edempy进行离散元分析可以帮助工程师和科学家更好地理解和预测颗粒材料的行为,为工程设计和科学研究提供可靠的依据。
8. Edempy的模拟结果可以与实验数据进行对比和验证,从而提高模型的准确性和可靠性。
9. Edempy具有良好的可扩展性和灵活性,可以根据用户的需求进行定制和扩展,满足不同应用场景的需求。
10. Edempy的使用不仅限于学术研究,还可以应用于工程设计、地质勘探、粉体工程等领域,为实际工程和科学问题提供解决方案。
总结:Edempy是一种基于离散元方法的软件工具,用于模拟和分析颗粒材料的力学行为和相互作用。
它具有直观的用户界面和强大的计算能力,可以帮助用户快速建立复杂的颗粒模型并进行精确的分析。
通过定义颗粒的物理性质、几何形状和边界条件,以及模拟过程中的各种力和相互作用,可以对不同颗粒材料的行为进行详细的研究。
Edempy提供了丰富的分析工具和可视化功能,可以对模拟结果进行详细的分析和后处理,为工程设计和科学研究提供可靠的依据。
同时,Edempy具有良好的可扩展性和灵活性,可以应用于不同领域的需求,为实际工程和科学问题提供解决方案。