N 3 3 V dSMD Ni dli 6 6
2 2 A N dSMD Ni dli
dSMD
2 N d i li
3 N d i li
(2)质量中间直径(MMD) 大于或等于这一直径的所有液滴的总质量与小于或等于 这一直径的所有液滴的总质量相等。
M
K1,0
K1,0
8g ln(1 BT ) c pg 1
4qml ,0
d1,0 1
0
2 d1,0
K1,0
第四节 液滴燃烧
液滴的燃烧模型
• 单个液滴的燃烧模型,假设: – 液滴为均匀对称球体; – 液滴随风飘动,与空气间无相 对运动; – 燃烧极快,火焰面薄; – 火焰温度较高,向内向外同时 传热,液滴表面温度接近饱和 温度,燃烧温度等于理论燃烧 温度; – 忽略对流与辐射换热; – 忽略液滴周围的温度场不均匀 对热导率和扩散系数的影响; – 忽略斯蒂芬流。
g dT qml,0 dr 2 4 r c pg (T T1 ) Qlg
边界条件
r r1, T Tbw r , T Tg
qml,0 1 g Tg ( )r1 ln[c pg (Tg T1 ) Qlg ]Tbw 4 r c pg qml,0 4 r1
3、气动式雾化喷嘴
• 气动式雾化喷嘴又称介质式雾化喷嘴。它利用压缩空气或高 压蒸汽为雾化介质,将其压力转化为高速气流,使液体喷散 成雾状气流。 • 采用蒸汽为介质的雾化喷嘴又分为纯蒸汽雾化和蒸汽—机械 (压力)综合雾化两类喷嘴。
三、液体燃料雾化性能
• 一般可用一些特性参数来表征喷嘴的雾化性能。即雾化角、 雾化液滴细度、雾化均匀度、喷雾射程和流量密度分布等。 1、雾化角 喷嘴出口到喷雾炬外包络线的两条切线之间的夹角,也称 为喷雾锥角。α 喷嘴出口处的燃料细油滴组成雾化锥, 喷出的雾化气流不断卷吸炉内高温气体并 形成扩展的气流边界。