小学举一反三 三年级 第30周 “还原”解题
- 格式:doc
- 大小:22.00 KB
- 文档页数:4
新人教版小学数学三年级全册奥数(可编辑可打印)附参考答案在文档最后面第1讲寻找规律一、知识要点按照一定次序排列起来的一列数,叫做数列。
如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。
按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。
寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。
善于发现数列的规律是填数的关键。
二、精讲精练【例题1】在括号内填上合适的数。
(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()举一反三1:1.在下面的括号里填上合适的数。
(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()2.按规律填数。
(1)2,8,32,128,(),()(2)1,5,25,125,(),()3.先找规律再填数。
12,1,10,1,8,1,(),()【例题2】先找出规律,再在括号里填上合适的数。
(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()(3)3,4,7,3,4,10,3,4,13,(),(),()举一反三2:1.按规律填数。
(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()2.在括号里填上适当的数。
(1)18,3,15,4,12,5,(),()(2)1,15,3,13,5,11,(),()3.找规律填数。
(1)4,7,8,4,6,13,4,5,18,(),(),()(2)1,2,3,2,4,6,3,8,9,(),(),()【例题3】先找出规律,再在括号里填上合适的数。
(1)2,5,14,41,()(2)252,124,60,28,()(3)1,2,5,13,34,()(4)1,4,9,16,25,36,()练习3:1.按规律填数。
三年级奥数举一反三第293031周年龄问题还原法解题假设法解题第二十九周年龄问题专题简析:年龄问题可以说是前面所讲的和差问题及差倍问题的综合,要正确解答这类题,首先要弄清:两个不同年龄的人,年龄之差始终不变,但两个人年龄的倍数关系却在不断地变化。
年龄问题的主要特征是:大小年龄差是一个不变的量。
我们可以抓住差不变这个特点,利用和差、差倍等知识来分析解答这类应用题。
例题1 三年前爸爸年龄是女儿的4倍,爸爸今年43岁,女儿今年多少岁?思路导航:由题意可知爸爸今年43岁,则三年前爸爸的年龄是43-3=40岁,40岁正好是女儿年龄的4倍,女儿三年前的年龄是40÷4=10岁,今年女儿的年龄是10+3=13岁。
练习一1,四年前小林年龄是小丽的2倍,小林今年12岁,小丽今年多少岁?2,五年前爷爷年龄是孙子的7倍,孙子今年14岁,爷爷今年多少岁?3,儿子今年10岁,爸爸今年34岁。
几年前,爸爸的年龄是儿子的4倍?例题2 明明4岁时,妈妈年龄是明明的8倍。
今年明明12岁,妈妈今年多少岁?思路导航:妈妈的年龄是明明的8倍,那么妈妈与明明的年龄相差4×8-4=28岁。
妈妈与明明的年龄差是不变的,今年明明12岁,那么妈妈的年龄是12+28=40岁。
练习二1,玲玲7岁时,爸爸年龄是玲玲的5倍。
今年爸爸40岁,玲玲今年多少岁?2,爷爷63岁时,他的年龄是小青的9倍。
今年小青12岁,爷爷今年多少岁?3,两年前妈妈年龄是儿子的5倍,儿子今年9岁,妈妈今年多少岁?例题3 女儿今年3岁,妈妈今年33岁。
几年后,妈妈的年龄是女儿的7倍?思路导航:女儿今年3岁,妈妈今年33岁,她们的年龄差是33-3=30岁。
她们年龄差不变,几年后,妈妈的年龄是女儿的3倍,把女儿的年龄看作1份,妈妈的年龄就有7份,相差7-1=6份,6份是30岁,所以几年后女儿的年龄是30÷6=5岁。
也就是说,5-3=2年后,妈妈的年龄是女儿的7倍。
第三十一周用假设法解题专题简析:假设是数学中思考问题的一常见的方法,有些应用题乍看很难求出答案,但是如果我们合理地进行假设,往往会使问题得到解决。
所谓假设法就是依照已知条件进行推算,根据数量上出现的矛盾,作适当的调整,从而找到正确答案。
我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个范例。
解答“鸡兔同笼”问题的基本关系式是:兔数=(总脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)用假设法解答类似“鸡兔同笼”的问题时,可以根据题意假设几个量相同,然后进行推算,所得结果与题中对应的数量不符合时,要能够正确地运用别的量加以调整,从而找到正确的答案。
例题1鸡、兔共30只,共有脚84只。
鸡、兔各有多少只?思路导航:假设全是鸡,共有脚:30×2=60只;比实际少:84-60=24只;这是因为把4只脚的兔子都按2只脚的鸡计算了。
每把一只兔子算作一只鸡,少算:4-2=2只脚,现在共少算了24只脚,说明把:24÷2=12只兔子按鸡算了。
所以,共有兔子12只,有鸡30-12=18只。
练习一1,鸡、兔共100只,共有脚280只。
鸡、兔各多少只?2,鸡、兔共50只,共有脚160只。
鸡、兔各几只?3,鸡、兔共45只,鸡的脚比兔的脚多60只。
鸡、兔各多少只?例题2 鸡、兔共笼,鸡比兔多30只,一共有脚168只,鸡、兔各多少只?思路导航:因为鸡比兔多30只,则可以把30只鸡的脚从总数中去掉,剩下的鸡兔就同样多了。
每一对鸡和兔共4+2=6只脚,用6去除剩下的鸡兔总脚数,就可求出兔的只数。
兔的只数:(168-2×30)÷(4+2)=18只;鸡的只数:18+30=48只。
练习二1,鸡兔共笼,鸡比兔多25只,一共有脚170只。
鸡、兔各几只?2,买甲、乙两种戏票,甲种票每张4元,乙种票每张3元,乙种票比甲种票多买了9张,一共用去97元。
两种票各买了几张?3,鸡兔共有脚48只,如果将鸡的只数与兔的只数互换则共有脚42只。
第三十周用还原法解题专题简析:“一个数加上3,乘3,再减去3,最后除以3,结果还是3,这个数是几?”像这样已知一个数的变化过程和最后的结果,求原来的数,我们通常把它叫做“还原问题”。
解答还原问题,一般采用倒推法,简单说,就是倒过来想。
解答还原问题,我们可以根据题意,从结果出发,按它变化的相反方向一步步倒着推想,直到问题解决。
同时,可利用线段图表格帮助理解题意。
例题1 一个减24加上15,再乘8得432,求这个数。
思路导航:我们可以从最后的结果432出发倒着推想。
最后是乘8得432,如果不乘8,那应该是432÷8=54;如果不加上15,应该是54-15=39;如果不减去24,那应该是39+24=63。
因此,这个数是63。
练习一1,一个数加上3,乘3,再减去3,最后除以3,结果还是3。
这个数是几?2,一个数的4倍加上6减去10,再乘2得88,求这个数。
3,一个数缩小2倍,再缩小2倍得80,求这个数。
例题2 一段布,第一次剪去一半,第二次又剪去余下的一半,还剩8米。
这段布原来长多少米?思路导航:根据题意,画出线段图。
?米8米余下的一半全长的一半从上面的线段图可以看出:剩下的8米和余下的一半同样多,那么原长的一半是:8×2=16米,原来长:16×2=32米。
练习二1,某水果店卖西瓜,第一次卖掉总数的一半,第二次卖掉剩下的一半,这时还剩10只西瓜。
原有西瓜多少只?2,某人乘船从甲地到乙地,行了全程的一半时开始睡觉,当他睡醒时发现船又行了睡前剩下的一半,这时离乙地还有40千米。
甲、乙两地相距多少千米?3,有一箱苹果,第一次取出全部的一半多1个,第二次取出余下的一半多1个,箱里还剩下10个。
箱里原有多少个苹果?例题3 甲、乙、丙三人各有一些连环画,甲给乙3本,乙给丙5本后,三人的本数同样多。
乙原来比丙多多少本?思路导航:因为乙给丙5本后,两人同样多,可知乙比丙多5×2=10本,而这10本中又有3本是甲给的,所以原来乙比丙多10-3=7本。
第30讲:“还原”解题专题简析:“一个数加上3,乘3,再减去3,最后除以3,结果还是3,这个数是几呢”像这样已知一个数的变化过程和最后的结果,求原来的数,这类问题我们通常把它叫做还原问题。
解答还原问题一般采用倒推法,简单说就是倒过来想。
解答还原问题,我们可以根据题意从结果出发,按它变化的相反方向一步步倒着推,直到问题解决。
同时可利用线段图、表格来帮助我们理解题意。
【例题1】小芳问爷爷现在多大年纪。
爷爷说:“把我的年龄加上25再除以4,减去15后乘10,正好是100岁。
”爷爷现在多少岁?【习题一】1、小明问爷爷今年多大年纪。
爷爷说:“把我的年龄加上18,除以4,再减去20,然后用9乘,恰好是27岁。
”爷爷今年多少岁?2、牧童正在草地上放羊,一位旅行者问牧童:“你这群羊有多少只?”牧童回答:“把我的羊的只数除以6,乘3,加上2,再乘2,正好等于100。
请你算算我有多少只羊?”3、四年级的小红与小英正在玩扑克牌游戏。
小红手中的牌“J”代表11,“Q”代表12,“K”代表13,小红叫小英从她手中任意抽一张牌,把代表这张牌的数先减去6,再加上9,然后除以3,最后乘以2.小英按照小红说的依次计算,最后把得数10告诉了小红。
请问小英抽到的是哪张牌?【例题2】甲、乙、丙三人各有一些连环画,甲给乙3本连环画、乙给丙5本连环画后,三个人连环画的本数同样多。
原来乙比丙多多少本连环画?【习题二】1、小松、小明、小航各有玻璃球若干个。
如果小松给小明10个玻璃球、小明给小航6个玻璃球后,三人玻璃球的个数同样多。
小明原来比小航多多少个玻璃球?2、甲、乙、丙三个组各有一些图书。
如果甲组借给乙组13本图书后,乙组又送给丙组6本图书,这时三个组图书的本数同样多。
原来乙组和丙组哪个组的图书多?多几本?3、甲、乙、丙三个小朋友各有年历卡若干张。
如果甲给乙13张年历卡,乙给丙23张年历卡,丙给甲3张年历卡,那么他们每人各有30张年历卡。
三年级奥数举一反三综合练习题及答案一、填空1 >△=O +O +O △xO =75 0=( ) △=( )2、将一张饼切一刀,最多可切成( ) 块,切两刀最多可切成( ) 块,切四刀最多可切成( ) 块。
3、一篮鸡蛋,3 个一数余1,5 个一数余2,7 个一数余3,这个蓝子一共有( ) 个鸡蛋。
4、小明家今年种菜的正方形的地比去年大,去年每边种105 棵,今年每边多种出 1 棵,那么今年比去年多种( ) 棵。
5、根据下列图形的排列规律,将每组的第三十个图形填在括号里。
①O3OO3OO3O……()②△OOO3OOO3O……()③O3O3O3OA……()6、有两个数:80 和81920 把第一个数乘以2,同时把第二个数除以2,( ) 次后两数相等。
7、一本书有132 页,在这本书的页码中,一共用了( ) 个数字。
8、五个连续单数的和是155,这五个数中最小的的一个是( ) 。
9、一把钥匙只能开一把锁,现有5 把钥匙5 把锁,但不知哪把钥匙开哪把锁,最多要试( ) 次,才能配好全部的钥匙和锁。
10、两个两位数相加,其中一个加数是73,另一个加数不知道,只知道另一个加数的十位数增加5,个位数增加1 ,那么求得的和的后两位数字是72,另一个加数原来是( ) 。
11、请你把31 个苹果分装在五个盒子里,使得无论拿几个苹果都不用打开盒子,只要把其中的一个或几个盒子拿走就可以了,那么这五个盒子中,装苹果最多的盒子里有( ) 个苹果。
12、将1-9 这九个数分别填入下图的九个圆圈内,使三角形每边的数之和是23。
13、在□里填上适当的数字,使下面算式成立。
0 11■6小5门I 6「「】14、下图中有()个三角形,()个正方形,()个长方形。
15、1,3,5,7,9,11……999按从小到大的顺序排列,得出一个多位数1357911131517•…999,这个多位数是()位数。
16、老师把一套竞赛题分给三名同学来完成,将这套题的一半还多5道分给了李强,将剩下的一半少2道题分给了王红,最后剩下26道题给了杨光,这套竞赛题共有()道题。
第30周“还原”解题专题简析:“一个数加上3,乘3,再减去3,最后除以3,结果还是3,这个数是几?”像这样已知一个数的变化过程和最后的结果,求原来的数,我们通常把它叫做“还原问题”。
解答还原问题,一般采用倒推法,简单说,就是倒过来想.解答还原问题,我们可以根据题意,从结果出发,按它变化的相反方向一步步倒着推想,直到问题解决。
同时,可利用线段图表格帮助理解题意。
例1 小芳问爷爷现在多大年纪。
爷爷说:“把我的年龄加上25再除以4,减去15后乘10,正好是100岁。
”问爷爷现在多少岁?练习一:1.小明问爷爷今年多大年纪。
爷爷说:“把我的年纪加上18,除以4,再减去20,然后用9乘,恰好是27岁。
”问爷爷现在多少岁?2.牧童正在草地上放羊,一位旅行者问牧童:“你这群羊有多少只?”牧童回答:“把我的羊的只数除以6,乘以3,加上2,再乘2,正好等于100.请你算算我有多少只羊?”3.四年级的小红与小英正在玩扑克牌游戏。
小红手中的牌“J”代表11、“Q"代表12、“K”代表13,小红叫小英任意抽一张牌,把代表这张牌的数字先减去6,再加上9,然后除以3,最后乘2,小英依次算好后告诉小红最后的得数是10,请问小英抽到的是哪张牌?例2 甲、乙、丙三人各有一些连环画,甲给乙3本连环画、乙给丙5本连环画后,三个人连环画的本数同样多.乙原来比丙多多少本连环画?练习二:1.小松、小明、小航各有玻璃球若干个.如果小松给小明10个玻璃球,小明给小航6个玻璃球后,三人玻璃球的个数同样多。
小明原来比小航多几个玻璃球?2.甲、乙、丙三个组各有一些图书。
如果甲组借给乙组13本图书后,乙组又送给丙组6本图书,这时三个组图书的本数同样多.原来乙组和丙组哪个组的图书多?多几本?3.甲、乙、丙三个小朋友各有年历卡若干张.如果甲给乙13张年历卡,乙给丙23张年历卡,丙给甲3张年历卡,那么他们每人各有30张年历卡。
问原来三人各有年历卡多少张?例3 李奶奶卖鸡蛋,她上午卖出鸡蛋总数的一半多10个,下午又卖出剩下的鸡蛋的一半多10个,最后还剩65个鸡蛋没有卖出.李奶奶原来有多少个鸡蛋?练习三1.竹篮内有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,还剩6个李子,竹篮内原有李子多少个?2.王叔叔四月份工资若干元,他从工资中拿出一半多10元存入银行,又拿出余下的一半多5元买米、油,剩下80元买菜.王叔叔四月份工资多少元?3.妈妈买来一些橘子,小明第一天吃了一半多2个,第二次吃了剩下一半少2个,还剩下5个橘子,妈妈买了多少个橘子?例4 小红、小青、小宁都喜爱画片。
三年级奥数举一反三概述本文档旨在介绍三年级奥数中的一种重要解题方法:举一反三。
通过举一反三的方法,学生可以从已解决的问题中总结出一般性的解题思路,从而应用于类似的问题。
举一反三的基本原则举一反三是通过观察和归纳,推广已有的解题方法和经验,以解决类似但稍有不同的问题。
以下是几个举一反三的基本原则:1. 发现问题的相似之处:在遇到新问题时,要仔细观察并找出与已解决问题的相似之处。
相似之处可以是问题的形式、特征、解题方法等。
2. 推广解题思路:在找到相似之处后,将已有的解题思路推广应用到新问题上。
也就是说,根据已解决问题的解题思路和方法,对新问题进行类似的操作。
3. 验证解题结果:完成推广后,要验证解题结果的正确性。
确保新问题的解答符合预期,并与已解决问题的解答一致。
举一反三的实践步骤举一反三是一个灵活的思维过程,以下是一般的实践步骤:1. 理解已解决问题:首先,要完全理解已解决问题的解题思路和方法。
弄清楚问题的关键特征和解题过程。
2. 寻找相似之处:然后,仔细观察新问题,寻找与已解决问题的相似之处。
可以考虑问题的形式、数据、求解目标等方面。
3. 推广解题思路:将已解决问题的解题思路和方法应用到新问题上。
进行类似的操作、推导或计算,以得到新问题的解答。
4. 验证解题结果:最后,要对新问题的解答进行验证。
确保解答正确,并与已解决问题的解答一致。
举一反三的优势和应用举一反三是提高问题解决能力和思维灵活性的重要方法。
以下是举一反三的一些优势和应用:1. 培养问题发现和归纳总结能力:通过举一反三,学生能够培养观察和发现问题相似之处的能力,并将其归纳总结为一般性的解题方法和思路。
2. 提高问题解决效率:举一反三能够帮助学生快速解决类似问题,避免从头开始思考和解决。
3. 拓展解题思路和方法:通过推广已有的解题思路,学生能够进一步拓展自己的解题思路和方法,提高问题解决的灵活性和多样性。
总结举一反三是三年级奥数中的一种重要解题方法,通过观察、总结和应用已解决问题的解题思路和方法,可以快速解决类似的问题。
美的少年艺术学院三年级数学思想训练 1 班第 1 次培训课讲课设计讲课教师:吕晶上课时间:3 月8 日礼拜六用假设法解题31 周《假设解题》讲课内容:贯串交融第专题简析:假设是数学中思虑问题的一常有的方法,有些应用题乍看很难求出答案,可是假如我们合理地进行假设,常常会使问题获得解决。
所谓假设法就是依据已知条件进行计算,依据数目上出现的矛盾,作适合的调整,进而找到正确答案。
我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个典范。
解答“鸡兔同笼”问题的基本关系式是:兔数 =(总脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)用假设法解答近似“鸡兔同笼”的问题时,能够依据题意假设几个量相同,此后进行计算,所得结果与题中对应的数目不吻合时,要能够正确地运用其他量加以调整,进而找到正确的答案。
例题 1鸡、兔共30只,共有脚84只。
鸡、兔各有多少只?思路导航:假设全部是鸡,共有脚:30×2=60 只;比实质少: 84-60=24 只;这是由于把 4 只脚的兔子都按 2 只脚的鸡计算了。
每把一只兔子算作一只鸡,少算:4-2=2 只脚,此刻共少算了 24 只脚,说明把:24÷2=12 只兔子按鸡算了。
因此,共有兔子12 只,有鸡 30-12=18 只。
练习一1,鸡、兔共 100 只,共有脚 280 只。
鸡、兔各多少只?2,鸡、兔共 50 只,共有脚 160 只。
鸡、兔各几个?3,鸡、兔共 45 只,鸡的脚比兔的脚多60 只。
鸡、兔各多少只?例题 2 鸡、兔共笼,鸡比兔多 30 只,一共有脚 168 只,鸡、兔各多少只?思路导航:由于鸡比兔多 30 只,则能够把 30 只鸡的脚从总数中去掉,剩下的鸡兔就相同多了。
每一对鸡和兔共 4+2=6 只脚,用 6 去除剩下的鸡兔总脚数,即可求出兔的只数。
兔的只数:(168-2×30)÷( 4+2)=18只;鸡的只数: 18+30=48 只。
第1讲找规律一、知识要点按照一定次序排列起来的一列数,叫做数列。
如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。
按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。
寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。
善于发现数列的规律是填数的关键。
二、精讲精练【例题1】在括号内填上合适的数。
(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()练习1:在括号内填上合适的数。
(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()(3)2,8,32,128,(),()(4)1,5,25,125,(),()(5)12,1,10,1,8,1,(),()【例题2】先找出规律,再在括号里填上合适的数。
(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()练习2:按规律填数。
(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()(3)18,3,15,4,12,5,(),()(4)1,15,3,13,5,11,(),()(5)1,2,5,14,(),()【例题3】先找出规律,再在括号里填上合适的数。
(1)2,5,14,41,()(2)252,124,60,28,()(3)1,2,5,13,34,()(4)1,4,9,16,25,36,()练习3:按规律填数。
(1)2,3,5,9,17,(),()(2)2,4,10,28,82,(),()1 / 150(3)94,46,22,10,( ),( ) (4)2,3,7,18,47,( ),( ) 【例题4】根据前面图形里的数的排列规律,填入适当的数。
(1)(3)练习4:找出排列规律,在空缺处填上适当的数。
三年级数学思想训练——复原问题知识导航三年级数学思想训练——复原问题。
精典例题例1:某数加上5,乘以5,减去5,除以5,其结果等于5,这个数是多少?思路点拨从后往前推 , 本来是加法 , 三年级数学思想训练——复原问题法 , 推回去是加法;本来是乘法 ,推回去是除法;本来是除法 , 推回去是乘法。
从最后一步推起 , “除以 5, 其结果等于 5”能够求出被除数: 5×5=30;再看倒数第 2 步, “减去 5”得 25, 能够求出被减数: 25+5=30;而后看倒数第3 步 , “乘以 5”得 30, 能够求出被乘数: 30÷ 5=6;最后看第 1 步 , “某数加上 5”得 6, 某数为 6-5=1。
模拟练习某数加上 3, 乘以 5, 再减去 8, 等于 12。
求某数。
例2:某人去银行取款,第一次取了存款的一半多50元,第二次取了余下的一半多100元。
这时他的存折上还剩 1250 元。
他原有存款多少元?思路点拨从例 1 可知 , 要想复原 , 就得反过来做也就是倒推。
由“第二次取余下的一半多 100 元”可知 , “余下的一半少100 元”是1250 元, 进而“余下的一半”是1250+100=1350(元)。
余下的钱(余下一半钱的2 倍)是:1350×2=2700(元)用相同道理可算出“存款的一半”和“原有存款”。
综合算式是: [ (1250+100)× 2+50] ×2=5500(元)。
模拟练习妈给家里买了一些水果 , 第一天他们一家三口吃了所有的一半 , 次日又吃了剩下的一半 , 第三天吃了剩下的一半还多一个 , 这时只剩下 2 个桃子。
问:小明妈妈买了多少个桃子。
0 / 4例3:小明在做一道加法式题时,因为粗心,将这个位上的5看作9,把十位上的8看作3,结果所得的和是123。
正确的答案应是多少?思路点拨要求正确的和 , 就要知道两个正确的加数。
第30周“还原”解题
专题简析:
“一个数加上3,乘3,再减去3,最后除以3,结果还是3,这个数是几?”像这样已知一个数的变化过程和最后的结果,求原来的数,我们通常把它叫做“还原问题”。
解答还原问题,一般采用倒推法,简单说,就是倒过来想。
解答还原问题,我们可以根据题意,从结果出发,按它变化的相反方向一步步倒着推想,直到问题解决。
同时,可利用线段图表格帮助理解题意。
例1 小芳问爷爷现在多大年纪。
爷爷说:“把我的年龄加上25再除以4,减去15后乘10,正好是100岁。
”问爷爷现在多少岁?
练习一:
1.小明问爷爷今年多大年纪。
爷爷说:“把我的年纪加上18,除以4,再减去20,然后用9乘,恰好是27岁。
”问爷爷现在多少岁?
2.牧童正在草地上放羊,一位旅行者问牧童:“你这群羊有多少只?”牧童回答:“把我的羊的只数除以6,乘以3,加上2,再乘2,正好等于100.请你算算我有多少只羊?”
3.四年级的小红与小英正在玩扑克牌游戏。
小红手中的牌“J”代表11、“Q”代表12、“K”代表13,小红叫小英任意抽一张牌,把代表这张牌的数字先减去6,再加上9,然后除以3,最后乘2,小英依次算好后告诉小红最后的得数是10,请问小英抽到的是哪张牌?
例2 甲、乙、丙三人各有一些连环画,甲给乙3本连环画、乙给丙5本连环画后,三个人连环画的本数同样多。
乙原来比丙多多少本连环画?
练习二:
1.小松、小明、小航各有玻璃球若干个。
如果小松给小明10个玻璃球,小明给小航6个玻璃球后,三人玻璃球的个数同样多。
小明原来比小航多几个玻璃球?
2.甲、乙、丙三个组各有一些图书。
如果甲组借给乙组13本图书后,乙组又送给丙组6本图书,这时三个组图书的本数同样多。
原来乙组和丙组哪个组的图书多?多几本?
3.甲、乙、丙三个小朋友各有年历卡若干张。
如果甲给乙13张年历卡,乙给丙23张年历卡,丙给甲3张年历卡,那么他们每人各有30张年历卡。
问原来三人各有年历卡多少张?
例3 李奶奶卖鸡蛋,她上午卖出鸡蛋总数的一半多10个,下午又卖出剩下的鸡蛋的一半多10个,最后还剩65个鸡蛋没有卖出。
李奶奶原来有多少个鸡蛋?
练习三
1.竹篮内有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,还剩6个李子,竹篮内原有李子多少个?
2.王叔叔四月份工资若干元,他从工资中拿出一半多10元存入银行,又拿出余下的一半多5元买米、油,剩下80元买菜。
王叔叔四月份工资多少元?
3.妈妈买来一些橘子,小明第一天吃了一半多2个,第二次吃了剩下一半少2个,还剩下5个橘子,妈妈买了多少个橘子?
例4 小红、小青、小宁都喜爱画片。
如果小红给小青11张画片,小青给小宁20张画片,小宁给小红5张画片,那么他们三人的画片张数同样多。
已知他们三人共有画片150张,他们三人原来各有画片多少张?
练习四:
1.甲、乙、丙三筐苹果共90千克。
如果从甲筐取出15千克苹果放入乙筐,从乙筐取出20千克苹果放入丙筐,从丙筐取出17千克苹果放入甲筐,这时三筐苹果就同样重。
甲、乙、丙筐原来各有苹果多少千克?
2.三年级三个班共有学生156人,若从三(1)班调5人到三(2)班,从三(2)班调8人到三(3)班,从三(3)调4人到三(1)班,这时三个班的人数正好相同。
三个班原来各有学生多少人?
3.小林、小方、军军、小敏四个好朋友都爱看书。
如果小林给小方10本书,小方给军军12本书,军军给小敏20本书,小敏再给小林14本书,这时四个人数的本数同样多。
已知他们共有112本书,他们四人原来各有多少本书?
例5 李明、王平两人一起搬运图书60本。
李明先搬了一些,王平看他搬得太多,就拿走了一半,李明不肯,王平就给了他10本,这时李明比王平多4本图书。
问李明最初搬了多少本图书?
练习五:
1.现有26块砖,兄弟俩争着搬。
弟弟抢着搬了一些,哥哥看弟弟搬得太多,就抢去一半,弟弟不服,哥哥就还给弟弟5块砖,这时两人一样多。
问弟弟最初准备搬多少块砖?
2.两棵树上共有麻雀28只,从第一棵树上飞走一半麻雀到第二棵树,又从第二棵树上飞走3只麻雀到第一棵树,这时第二棵树上的麻雀比第一棵树上的麻雀多6只。
问最初第一棵树上有多少只麻雀?
3.甲、乙两桶水各若干千克。
如果从甲桶倒出和乙桶同样多的水放入乙桶,再从乙桶倒出和甲桶同样多的水放入甲桶,这时两桶水恰好都是24千克。
问甲、乙两桶原来各有水多少千克?。