容器支腿计算
- 格式:xls
- 大小:50.50 KB
- 文档页数:3
第五章 支腿的设计计算1.载荷计算支腿平面内计算的最不利工况是:满载小车在悬臂极限位置,起重机不动或带载荷偏斜运动并制动,同时有风载荷作用。
支腿承受的载荷有:结构设备重量、小车载荷、运动冲击力、偏斜侧向力及工作风力。
1) 一根梁上的起升载荷与小车自重:361(12080)9.8110 1.1 1.079102p N =⨯+⨯⨯⨯=⨯∑ 2) 大车的自重刚性支腿上端以上的自重35699.8110 6.77102G G N ==⨯⨯=⨯静总上刚性支腿下端以上的自重 3569189.81108.53102G G G N =+=+⨯⨯=⨯静总下刚()柔性支腿下端以上的自重 3569129.81107.95102G G G N =+=+⨯⨯=⨯静总柔下柔()3)小车的惯性力为:34809.8110 2.810142142xc Hx G P N ⨯⨯===⨯⨯⨯小车与货物的风载荷41.6250(1628.8) 1.7910w P cqA N ==⨯⨯+=⨯4)垂直于门架平面的风载荷1.604401/w q q N m =⨯=门5)大车支腿以上桥架作用在支腿上的惯性力42 6.23610414H G Gx F N +==⨯⨯静总惯风载荷42.5104Fw Pw N ⨯===⨯主(384+16+4)25046)作用与支腿架的风载荷和支腿自重惯性力:464/A q N m =刚536/A q N m =柔1043.8/H q N m =刚695.8/H q N m =柔 7) 偏斜运行侧向载荷 Ps小车满载跨中4s18.0910P N ==⨯ 小车满载极限位置5s2 1.06210P N =⨯2.支腿内力计算(1)门架平面的支腿内力计算柔性支腿与主梁铰接,因此门架平面按静定简图进行内力计算:○1满载小车位于臂端,c 点受弯矩11c M H h =32(23)LH P h k =⨯+∑21I hk I L=•12911140.70.30.7 1.095100.39.347107.69310mmy y I I I =+=⨯⨯+⨯⨯=⨯刚下刚上1142 3.78510x I I mm ==⨯0.1189k =653131.07910 4.4810214.5(20.11893)H N ⨯=⨯⨯=⨯⨯⨯⨯+561 4.481014.5 6.5010c M N m =⨯⨯=⨯•○2小车惯性和风载荷:4425()(2.810 1.7910)14.56.6510c A H WM H h P P h N m==+=⨯+⨯⨯=⨯•○3支腿风载荷 2221140114.5 4.21522c w M q h N m ==⨯⨯=•○4偏斜运行侧向力为Ps 引起内力51.06210s P N=⨯521 1.06210M SB N m ==⨯•B 1=1m5461.0621014.51.539910c l c sM M M Ph N m N m====⨯⨯•=⨯•(2)在支腿平面内的支腿内力在支腿平面内支腿与桥架连接相对为柔性连接,支腿与下横梁为刚性连接○1大车制动惯性力PH 和风载荷Pw 作用引起内力: 61() 1.26710H w M P P h N m =+=⨯•62121 1.26710M N B M N m =-=⨯•22() 3.958H w hN P P N B=+=○2作用于支腿平面的风载荷与支腿自重惯性力21222a H q q M h M +==刚性支腿2514641043.814.5 1.58102M N m +=⨯=⨯•柔性支腿 2512536695.814.5 1.295102M M N m +==⨯=⨯•3.支腿强度计算门架平面内,刚性支腿上端截面受到弯矩。
1、计算条件容器设计压力p=0.6MPa 容器壳设计温度t=50℃设计温度下材质许用应σ]=容器筒体内直径Di=2800mm 容器总高度Ho= 容器筒体名义厚度δn=12mm 支撑高度/支座底板离地面 厚度附加量C=C1+C2=1mm 支座底板到壳体质心 壳体保温层厚度δt=0mm 偏心载荷Ge= 操作状态下设备总质量mo=35000kg 偏心距Se=2、水平风载荷实取风载作用外直径D0=2824mm考虑到公式计算值可能不全面 风载作用外 设置地区10m高度处的基本风压qo=550N/m2 查GB50009 壳体质心距地面高度H t=附录E中表E.5风载荷Pw=12114.96N 风压高度变化3、水平地震力 重力加速度g=9.81m/s2 地震载荷Pe= 地震影响系数a=0.24按表20选取水平载荷P=4、支座承受载荷 选用支座型号:A1JB/T4712.3表3~表5支座数量n= 支座的筋板和底板材料:Q235A 支座本体允许载荷[Q]=250KN不均匀系数k= b2=280mm计算支座安装尺寸D = l2=300mm 查JB/T4712.3表3~表5s1=130mm实际支座安装尺寸D =δ3=14mm 支座实际承受=5、支座处圆筒所受支座弯矩校核(带垫板支座)支座载荷校 设计温度下筒体材料许用应力[σ]=113mm支座处圆筒所受的支座 筒体有效厚度δe=11mm 由此查找[ML]设计压力p=0.6MPa 壳体许用弯矩[ML]=支座处圆筒所受的支座弯矩校支座尺寸容器壳体材质:Q235B许用应力[σ]=113MPa 查许用应力表容器总高度Ho=6500mm离地面高度H=5000mm体质心距离h=1500mm偏心载荷Ge=10000N偏心距Se=2000mm作用外直径D0=2824mm体质心距地面高度H t=6500mm 按此值及地面类别选取系数fi 度变化系数fi=1按Ht及地面类别查表22地震载荷Pe=82404N水平载荷P=85432.74N支座数量n=4一般为4个,承受静力载荷,直径≤700mm的容器可以采用2个不均匀系数k=0.83支座安装尺寸D=3178.222mm支座安装尺寸D=3178mm际承受载荷Q=153.0478KN载荷校核结论:合格!的支座弯矩ML=26.01813KN.m用弯矩[ML]=37.34KN.m 以[σ]、δe、p查JB/T4712.3附录B中表B.1~B.4并采用内插法弯矩校核结论:合格!内插法公式:X1=0.8 Y1=0.026968X=0.866667 Y=0.032675X2=0.9 Y2=0.035529。
支腿-裙座的区别支腿-裙座的区别裙座应该是从承重量和受力以及稳定性上都要好于支腿,一般用于塔器或者比较大、重的立式容器。
支腿相对来说只能用于直径小重量轻的设备,支腿首选标准JB/T4713-92(不知道新标准是否开始执行)。
裙座要通过计算校核的细高形的塔器,较大且重的立式容器,一般都采用裙座。
它可承受较大的风载;设备和裙座的连接呈环状,应力均匀,稳定性好,连接可靠。
制作、安装较支腿难点。
一.支座设备支座用来支承设备重量和固定设备的位置。
支座一般分为立式设备支座、卧式设备支座和球形容器支座。
立式设备支座分为悬挂式支座、支承式支座、腿式支座和裙式支座四种。
卧式设备支座分为鞍式支座、圈式支座和支腿三种。
球形容器支座分为柱式、裙式、半埋式、高架式支座四种。
1.悬挂式支座(JB/T4725-92)悬挂式支座又称耳座,一般由两块筋板及一块底版焊接而成。
耳座的优点是简单,轻便;缺点是对器壁易产生较大的局部应力。
●耳座适用范围(JB/T4725-92):适用于公称直径不大于4000mm的立式圆筒形容器。
●耳座数量一般应采用四个均布,但容器直径小于等于700mm时,支座数量允许采用2个。
●耳式支座标准中分为A、AN(不带垫板),B、BN(带垫板)四种; A、AN型用于一般立式设备,B、BN型用于带保温的立式设备。
●支座与筒体连接处是否加垫板,应根据容器材料与支座连接处的强度或刚度决定。
对低温容器的支座,一般要加垫板。
对于不锈钢制设备,当用碳钢制作支座时,为防止器壁与支座在焊接的过程中,不锈钢中合金元素的流失,也需在支座与筒连接处加垫板。
●JB/T4725-92特点:1.考虑支座弯矩对容器圆筒所产生的局部应力,避免筒体由于局部应力过大有可能引起失效。
局部径向弯矩包括设备自重、水平载荷(风载荷或地震载荷)及偏心载荷所产生的弯矩。
2.提出了支座的制造要求,以保证支座的制造质量。
若容器壳体有热处理要求时,支座垫板应在热处理前焊接在器壁上。
支腿强度计算对高度及直径比较小的立式容器常常采用支腿支撑的形式。
一般采用4个支腿,本体直径较小时采用3个支腿,直径较大时采用支腿不少于6个。
这里介绍的支腿强度计算方法是在比较设备设计手册和JIS 标准中支腿强度计算方法的基础上,考虑中国规范的要求和工程实用性形成的。
1 适用范围1.1 本计算方法适用于安装在刚性基础,且同时符合下列条件的容器:1.1.1 容器高度比不大于51.1.2 总高度不大于10m1.2 当容器超出1.1所规定的尺寸限制时,水平地震力和水平风载荷应按JB4710-92计算,不能使用本文所述的简化计算方法。
2 载荷的考虑2.1 本计算考虑了地震载荷、风载荷、自重、偏心载荷和管道载荷等。
通过对安装工况、操作工况和试验工况的分析,计算时取最危险的情况对各个部件进行计算。
2.2 操作工况考虑风载荷和地震载荷同时作用时,仅取0.25倍风载荷与地震载荷组合工况。
2.3 试验工况不考虑地震载荷,仅考虑0.3倍的风载荷组合工况。
2.4 地震载荷和风载荷的计算采用简化的计算方法(见JB/T4725-92附录A )。
2.5 虽然JB4710-92规定地震设防烈度为8度时才考虑垂直地震力,但是在工程中,地震设防烈度为8度的情况较多,在此均考虑垂直地震力的影响。
2.6 本文各计算式中垂直地震力F ev 仅在考虑地震影响时计入。
3 载荷计算3.1 水平地震力mg P e e α5.0=m ——对应于各种工况的设备质量:m 0——设备操作质量(包括壳体及其附件,内部介质及保温层的质量),kgm w ——设备充水质量(水压试验时),kgm min ——设备最小质量(安装工况时),kge α——地震系数,对7、8、9度地震分别取0.23、0.45、0.90P e ——水平地震力,N3.2 垂直地震力e ev P F 4875.0=F ev ——垂直地震力,N3.3 水平风载荷6001095.0-⨯=H D q f P O i W D O ——容器外径,mm,有保温层时取保温层外径f i ——风压高度变化系数,按设备质心所处高度取H 0——设备迎风有效高度,mmq 0——10m 高度处的基本风压值,N/m 2求取支点反力:水平力R 和垂直力F VM水平力R=P 1+P垂直力F VM 的求解见3.53.5 支座反力——垂直力F VM 的计算令设备外直径为D 0,计算弯矩为M,则:计算弯矩M3110)(-⨯++=PL gS G H P M e e3D VM 3.5.3.3 上述两种计算结果对比3/33/2>故在计算时取第二种情况下计算的结果,即:32D M F VM =4/222/1+>故在计算时取第二种情况下计算的结果,即:2D M F VM =F VM :4 许用应力支腿各部件的许用应力按JB4710-92的规定。
第50卷第3期石油化工设备Vol.50No.3 2021年5月PETRO-CHEMICAL EQUIPMENT May2021文章编号:1000-7466(2021)03-00043-04大型列管式反应器支腿设计计算高永平(森松(江苏)重工有限公司,上海201323)摘要:某台大型列管式反应器的设备支撑采用支腿支撑,支腿规格尺寸已超出NB/T47065.2—2018《容器支座第2部分:腿式支座》中许用的容器支座的范围,需要进行应力设计计算与校核&参考GB/T151—2014《热交换器》、NB/T47041—2014《塔式容器》及GB/T50761—2018《石油化工钢制设备抗震设计标准》、NB/T47065.1-5-2018《容器支座》及GB50010—2010《混凝土结构设计规范》等相关文献标准,落实了支腿设计校核的全过程*该设备现在已投入使用,运行状况良好,验证了计算方法的可靠性*关键词:反应器;大型列管式;支腿;设计;计算中图分类号:TE58;TQ050.2文献标志码:A doi:10.3969/j.issn.1000-7466.2021.03.007Design and Calculation of Leg Support for Large Tubular ReactorGAO Yong-ping(Morimatsu(Jiangsu)Heavy Industry Co.Ltd.#Shanghai201323#China)Abstract:The support type of a large tubular reactor is the leg supports.The size of the leg support has exceeded the allowable range in NB/T47065.2—2018"'Vessel Supports一Part2:LegSupports'and the stress design calculation,verification need to be performed.The whole process of supporting leg calculation was carried out by referring to relevant standards of G B/T151一2014"Heat Exchangers',NB/T47041一2014 &Vertical Vessels Supported bySkirt',GB/T50761一2018"Standardfor Se8s mic De s ignfor Pe t roc h e m ic al Steel Equipment',NB/T47065.1—5—2018"Vessel Support'and GB50010一2010"'Code for Design of Concrete Structures'.The equipment now has been put into use and is running well,verifying the reliability of the calculation method.Key words:reactor$large tubular type$leg support;design$calculation随着生产、制造、检验等技术的进步#以及市场需求的日益增长,单台设备的规格参数呈大型化的发展趋势[13]o森松(江苏)重工有限公司为某企业设计的1台大型甲基丙烯酸甲酯(MMA)氧化反应器,超出了GB/T151-2014《热交换器.⑷适用的范围,属大型列管式固定管板热交换器。