矩形容器设计计算
- 格式:xlsx
- 大小:545.93 KB
- 文档页数:3
(详细版)封闭容器体积计算方法总结封闭的体积计算在各个领域都有广泛的应用,比如在工程设计、物料储存和流体传输等方面。
本文将总结几种常见的封闭体积计算方法。
1. 矩形体积计算方法矩形常见于储罐、货箱等场景。
其体积可以通过以下公式计算:体积 = 长 ×宽 ×高2. 圆柱形体积计算方法圆柱形常见于储罐、管道等场景。
其体积可以通过以下公式计算:体积= π × 半径^2 ×高3. 球形体积计算方法球形常见于气球、球形储罐等场景。
其体积可以通过以下公式计算:体积 = (4/3) ×π × 半径^34. 锥形体积计算方法锥形常见于喷嘴、漏斗等场景。
其体积可以通过以下公式计算:体积= (1/3) × π × 半径^2 ×高5. 复杂形状体积计算方法对于复杂形状的,无法使用简单的几何体积公式计算。
此时,可以通过三维建模软件进行计算,或者将分解为多个简单几何体进行计算。
总结:封闭的体积计算方法因形状不同而有所差异。
对于常见的矩形、圆柱、球形和锥形,我们可以使用相应的几何体积公式进行计算。
对于复杂形状的,我们可以利用三维建模软件或分解为简单几何体来进行计算。
在实际应用中,必须对的形状和尺寸进行准确测量,以得到准确的体积计算结果。
请注意:本文提供的封闭体积计算方法仅供参考。
在实际应用中,应根据具体情况选择合适的计算方法,并注意测量的准确性和精度。
以上为对封闭容器体积计算方法的总结。
矩形装箱算法简介矩形装箱算法(Rectangle Packing Algorithm)是一种用于解决装箱问题的算法。
装箱问题是指将一系列矩形物体放置到一个或多个矩形容器中,使得物体之间不重叠且尽可能紧密地填充容器的问题。
矩形装箱算法的目标是找到一种最优的方式来放置这些物体,以最大程度地减少容器的浪费。
矩形装箱算法在物流、运输、仓储等领域具有广泛的应用。
通过合理地安排物体的摆放,可以节省空间、减少运输次数,从而提高效率和降低成本。
常见的矩形装箱算法1. 最佳适应算法(Best Fit Algorithm)最佳适应算法是一种贪心算法,它在每次放置物体时选择一个最佳的位置。
具体步骤如下: 1. 遍历所有的物体,对于每个物体,找到一个已有容器中剩余空间最小且能够容纳该物体的容器。
2. 将物体放置到选定的容器中,更新容器的剩余空间。
3. 如果找不到合适的容器,则创建一个新的容器,并将物体放置其中。
最佳适应算法的优点是能够尽可能地紧密填充容器,但缺点是计算复杂度较高。
2. 最均匀装箱算法(Most Uniform Packing Algorithm)最均匀装箱算法是一种启发式算法,它通过将物体按照尺寸进行排序,并将尺寸相似的物体放置在相邻的位置,以实现均匀的装箱效果。
具体步骤如下: 1. 将所有物体按照尺寸进行排序。
2. 从第一个物体开始,将其放置在第一个容器中。
3. 对于每个后续物体,选择一个已有容器,使得容器中的物体尺寸与该物体尺寸最接近,并将物体放置在该容器中。
4. 如果找不到合适的容器,则创建一个新的容器,并将物体放置其中。
最均匀装箱算法的优点是能够实现均匀的装箱效果,但缺点是可能会导致容器利用率较低。
3. 旋转装箱算法(Rotation Packing Algorithm)旋转装箱算法是一种考虑物体旋转的装箱算法。
它通过将物体旋转90度,以获得更好的放置效果。
具体步骤如下: 1. 将所有物体按照尺寸进行排序。
设计压力,MPa 常压加固柱型号HW300X300X12X12设计温度,℃50加固柱截面系数,cm³1115容器长L,mm 10000加固柱间距L p,mm450容器宽W,mm 6000型钢和宽度W方向水平布置,底板型钢支撑实际跨距,mm200容器高H,mm 8000加固圈型号等边角钢50X50X5型钢材料Q235A 加固圈惯性矩,cm411.21壁板材料Q235A 顶边加固件型号等边角钢50X50X5设温壁板材料许用应力[σ]t,MPa 135顶边加固件惯性矩,cm411.21常温型钢许用应力[σ]b,MPa135介质名称水材料弹性模量E t,MPa 191000介质密度ρ,Kg/m31000顶板加强筋型号等边角钢100X100X12顶板加强筋沿L方向上的间距A=L T,mm200钢板负偏差C1,mm0.8钢材密度ρM=,Kg/m³7850顶板加强筋截面系数,cm³29.48顶板加强筋沿W方向上的间距B=W T,mm200腐蚀裕量C2, mm2底板厚度δbn,mm8拉杆近似直径,m m 26.2211623拉杆直径,mm加速度g,N/Kg9.81顶板名义厚度δT ,mm4实际的加固圈数量及各段间距H1,mm H2,mm H3,mm H4,mm H5,mm H6,mm4250016001500130011000推荐的加固圈数量及各段间距H1H2H3H4H5H61480032000000 2360024002000000 3296020001680136000 4248016801440128011200各段壁板厚度δin,mm 101618181801.设计条件示意图。
1T106常压60硫酸铵溶液1.26E-060.801500长L mm10000宽W mm8000高H mm 12000Q235B Q235B 11319600042H 1H 2H 3172004800——25400360030003444030002520437202520216053000300020003H 1H 2H 353000300020004Lc=Lp=1500ρ=0.000001264Hc=h 1=H 1=3000g=9.81E t19600041.75A=Lp=1500ρ=0.000001264h 1=H 1=3000g=9.81E t =196000NB/T47003.1-2009《钢制焊接常压容器》容器尺寸设计条件(原始条件)设备位号设计压力 Mpa 设计温度 ℃介质名称介质密度 Kg/mm 3钢板负偏差C 1 mm 设计温度下器壁材料许用应力[σ]t MPa 设计温度下器壁材料弹性模量E t MPa器壁材料加固件材料E型(垂直横向联合加固型)根据加固圈的个数及段间距的实际布置情况调整加强圈间距腐蚀裕量C 2 mm 加固柱间距L p mm加固圈数量n确定推荐的加固圈间距(如下表)nn顶边加固件设计顶边加固件所需的惯性矩I c,T cm 4H i ,mmH i ,mm分段对加固件及壁板作强度、刚度分析根据加固件所需的惯性矩、《SH3046-92》表5.2.1以及焊接扶手栏杆的方便选择的包边角钢项目第一段第二段第三段B=H i 300030002000h i =∑H i 300060008000B/A 22 1.333333333αi0.049250.049250.03465βi 0.05470.05470.03656n第一段4每道加固圈单位长度上的载荷F i ,KN 111.59856该加固圈实际惯性矩I i ,KN 249.8156541该道加固圈壁板的计算厚度δi ,mm 10.46127094该道加固圈壁板的设计厚度δi +C,mm 10.46127094该道加固圈壁板的名义厚度δi,n ,mm 10该道加固圈壁板的有效厚度δi,e ,mm9.2该道壁板最大挠度f i,max ,mm 33.74738682该道壁板许用挠度[f],mm 11.05330086刚度结论合格7A=Lp=1500ρ=0.000001264B=H 1680g=9.81δin ,max25[σ]t 113C=0.80.03723770.3418-135843加固柱的最大间距L p,max =加固柱所需截面系数 Zp各段的分析结果如下表项目加固柱的设计查图8-7得α=0.0285H 4H 5H 6————————————2040————192016800200010001000H 4H 5H 6200010001000∠80×80×6 ( I c,T=73.49),mm,mm便选择相应第四段第五段第六段20001000100012000 1000011000120001.3333330.6666666670.6666666670.034650.00730.0073需查图8-70.03650.016880.01688第二段第三段第四段第五段第六段175.6644198.39744179.79768————393.2283444.1167184402.480776————25.6247826.8071929630.3964996815.06978#VALUE!25.6247826.8071929630.3964996815.06978#VALUE!202225252519.221.224.224.224.2 11.138368.5883229677.423595881 4.005352#VALUE!17.303317.5801270219.4551270218.18686#VALUE!合格合格合格合格合格。
体积与容积的关系体积和容积是描述物体所占空间大小的概念,它们之间存在着密切的关系。
本文将从定义、计算公式以及实际应用等方面来探讨体积与容积的关系。
一、定义体积用来描述一个物体所占的空间大小,常用于三维图形的度量,单位通常是立方米(m³)或立方厘米(cm³)。
容积是指容器所能容纳的物体的空间大小,也常用于度量物体的大小,单位也是立方米(m³)或立方厘米(cm³)。
二、计算公式1. 体积的计算公式不同形状的物体有不同的计算公式,以下是常见几何体的体积计算公式:- 立方体体积即边长的立方,公式为 V = a³,其中 V 为体积,a 为边长。
- 长方体体积即长、宽、高的乘积,公式为 V = lwh,其中 V 为体积,l、w、h 分别为长、宽、高。
- 圆柱体体积为底面积乘以高,公式为V = πr²h,其中 V 为体积,π 为圆周率,r 为底面半径,h 为高。
2. 容积的计算公式容积的计算公式与体积一样,主要根据不同形状的容器选择相应的公式计算。
- 圆柱形容器的容积计算公式和体积相同,为V = πr²h,其中 V 为容积,π 为圆周率,r 为底面半径,h 为高。
- 矩形容器的容积计算公式为 V = lwh,其中 V 为容积,l、w、h 分别为长、宽、高。
三、体积和容积之间存在着紧密的关系,可以简单理解为容积是体积的一种特殊形式。
体积通常用于描述实际物体的大小,而容积则更多地用于描述容器的大小。
当容器为空时,容积即为零,而体积通常不为零,因为在空间中存在着物质。
当容器被物体填满时,容积等于物体的体积。
这是因为容器所能容纳的物体正好填满了整个容器的空间。
四、实际应用体积与容积的概念在生活中有着广泛的应用。
1. 工程建筑在建筑施工中,需要计算土方的体积,以便合理安排土方的运输和堆放。
通过计算场地的尺寸,可以确定所需的土方体积,并做出相应的施工准备。
矩形容器强度计算(D型)序号名称符号数据来源计算公式计算结果单位常规已知条件1容器自身选择材料选择S304082加强结构材料选择S304083容器自身选择材料弹性模量查手册193000Mpa 4容器自身选择材料许用应力查手册137Mpa 5顶边加固件型号选择50×56顶边加固件惯性矩查手册112100mm4 7横向加固件型号选择63×88横向加固件惯性矩查手册411000mm4 9容器总宽设计1500mm 10容器总长设计2400mm 11容器总高设计1100mm 12容器内介质密度工况输入0.000001kg/mm3 13重力加速度常数9.8m/s2顶边加固件计算14第一道横向加固件距顶边距离h1设计635mm 15顶边加固件所需惯性矩I cT计算61419.98mm4 16判断选型是否有效有效第一段板壁厚度计算17第一道横向加固件距顶边距离H1设计635mm 18第二道横向加固件距顶边距离h2设计1100mm 19第一道加固圈单位长度上载荷F1计算 3.117217N/mm20第一道加固圈所需惯性矩I cT1计算290259.7mm4第一道加固圈选型是否有效有效21查图系数按标准B/A0.26458322壁厚计算系数а1查图8-70.003823第一段壁板计算厚度δ计算 1.727044mm 24根据计算结果选择壁板厚度δ1e设计5mm第一段壁板刚度计算25查图系数按标准B/A0.26458326刚度计算系数β1查图8-70.002527许用挠度【f】计算24.8450428变形最大挠度f1max计算10.69763mm29判断选型是否有效有效第二段板壁厚度计算30第一道横向加固件距顶边距离h1设计635mm 31第二道横向加固件距顶边距离h2设计1100mm 32第三道横向加固件距顶边距离h3设计0mm 33第二道加固圈单位长度上载荷F2计算-1.79948N/mm 34第二道加固圈所需惯性矩I cT1计算-167559mm4第二道加固圈选型是否有效有效35查图系数按标准B/A0.1937536壁厚计算系数а1查图8-70.0018437第一段壁板计算厚度δ计算 2.809301mm 38根据计算结果选择壁板厚度δ1e设计5mm第二段壁板刚度计算39查图系数按标准B/A0.1937540刚度计算系数β2查图8-70.0000841许用挠度【f】计算23.0640942变形最大挠度f1max计算16517137mm 43判断选型是否有效请重新选择备注序号名称符号数据来源容器总长设计容器总宽设计容器总高设计最终选择壁厚容器自身重量顶边加固件总长顶边加固件单位长度重量顶边加固件总重横向加固件总长横向加固件单位长度重量横向加固件总重设备总重量方案一板厚顶边加固件规格方案二板厚顶边加固件规格方案三板厚顶边加固件规格)矩形容器强度计算(D型)计算(D型)计算公式计算结果单位备注2400mm1500mm1100mm5478.065kg7.8m3.77kg29.406kg7.8m25kg195kg702.471kg横向加固件规格总重横向加固件规格总重横向加固件规格总重。
1、类型说明:
加固圈数量n
E型(垂直横向联合加固型)矩形容器
E型矩形容器为四边简支,有顶边和垂直、横向加固件,设计压力为常压,仅承受液体静压的矩形容器。
本计算对壁板,顶板(可选)和底板作强度、刚度分析,对加固件作刚度分析。
604.964188cm49.45256545cm4
48.17cm4
结论:不合格合格111.212693mm
结论:选用合格
8、顶板强度计算(如不作顶板设计,此可忽略)查图8-15得α=0.048234 1.6885607mm δ=δt+C1+C2= 2.1885607mm 顶板的名义厚度δtn取为:6mm
当无拉杆时选用当有拉杆时选用拉杆材质是否是普通碳钢:(碳钢填1,其他填0)当无拉杆时,Hc=H,Lc=L,顶边加固件所需的惯性矩I cT 为:当有拉杆时,Hc=H,Lc=Lp,顶边加固件所需的惯性矩I cT 为:
拉杆的最小直径d min 为:顶板承受自重所需的计算厚度δt:选用的顶边加固件惯性矩为:
9、顶板刚度校核(如不作顶板设计,此可忽略)
查图8-15得β
=0.044374
顶板有效厚度δte: 5.5mm
2.2671066mm
23.75
结论:选用合格
6472.8493mm3= 6.472849cm3
顶板加强筋选用:
20.47
cm3
结论:
11、底板设计
底板计算厚度δb:6.1020518
mm δ= 6.6020518mm
8mm
610.04515mm 结论:合格2)、在平基础上全平面支撑的底板
最终取底板厚度:
8mm
最终取底板名义厚度为型钢的最大跨距Lb,max为:当底板整个表面被支撑时,底板最小厚度常用4mm~6mm,(或与壁板等厚),并考虑腐蚀裕度。
T,W 顶板加强筋截面系数:L100X100X8合格顶板最大挠度f T,max :顶板的许用挠度[f]:。