2016年《射频电路设计》实验..
- 格式:doc
- 大小:1.01 MB
- 文档页数:22
《射频电路设计》课程教学大纲课程代码:0806608027课程名称:射频电路设计英文名称:Radio-frequency(RF) Circuit Design总学时:48 讲课学时:34 实验学时:14上机学时:课外学时:学分:3适用对象:电子信息工程专业本科四年制学生先修课程:《模拟电子技术》、《高频电子线路》一、课程性质、目的和任务本课程是电子信息工程专业的一门实用性很强的专业课。
本课程将运用大量的图解和实例,为学生讲解传输线原理、线性网络的匹配、滤波电路的设计、射频放大器等有源电路的设计,旨在使该专业的学生学习并掌握射频电路的基本概念以及射频电子线路设计原理等方面的知识。
为学生今后从事相关专业的工作,打下良好的基础。
二、教学基本要求射频电路设计内容涵盖频率为30MHz至4 GHz范围的电路设计,通过本课程的学习使学生能掌握采用分布参数等效电路进行射频电路的设计原理及方法,除了匹配及滤波等无源电路外,还要掌握线性有源网络和非线性有源网络的设计。
三、教学内容及要求1、射频电路设计基础教学内容:①射频电路的基本概念、应用领域与设计特点②波传播中的基本概念,传输线理论③二端口RF/微波网络的电路表示④基于S参数的分析方法。
教学要求:①理解射频电路和低频电路的区别②掌握基于S参数的分析方法2、无源电路设计教学内容:①Smith 圆图及其应用②匹配网络的设计③滤波电路的设计教学要求:①掌握用Smith圆图进行匹配设计的基本方法②掌握滤波电路的设计方法3、有源网络的线性和非线性设计教学内容:①有源网络中的稳定性及其分析②有源网络的噪声及其模型③放大器的增益④射频放大器的小信号设计⑤射频放大器的大信号设计⑥射频振荡器的设计⑦射频检波器和混频器的设计教学要求:①理解射频电路设计中所要考虑的三个方面:稳定性、增益、噪声②掌握射频放大器的小信号设计和大信号设计③掌握射频振荡器的设计,射频检波器和混频器的设计四、实践环节实验安排在本课程内,总计8个学时的实验:1、ADS软件的应用初步4学时2、微带滤波器的设计与仿真3学时3、阻抗匹配网络的设计与仿真3学时4、射频放大器的设计与仿真4学时五、课外习题及课程讨论为达到本课程的教学基本要求,鼓励学生结合实际电路设计多做相关课外习题,多进行电路的设计与仿真分析。
射频电路设计理论与应用答案【篇一:《射频通信电路设计》习题及解答】书使用的射频概念所指的频率范围是多少?解:本书采用的射频范围是30mhz~4ghz1.2列举一些工作在射频范围内的电子系统,根据表1-1判断其工作波段,并估算相应射频信号的波长。
解:广播工作在甚高频(vhf)其波长在10~1m等1.3从成都到上海的距离约为1700km。
如果要把50hz的交流电从成都输送到上海,请问两地交流电的相位差是多少?解:8??f?3?1?0.6???4km1.4射频通信系统的主要优势是什么?解:1.射频的频率更高,可以利用更宽的频带和更高的信息容量2.射频电路中电容和电感的尺寸缩小,通信设备的体积进一步减小3.射频通信可以提供更多的可用频谱,解决频率资源紧张的问题4.通信信道的间隙增大,减小信道的相互干扰等等1.5 gsm和cdma都是移动通信的标准,请写出gsm和cdma的英文全称和中文含意。
(提示:可以在互联网上搜索。
)解:gsm是global system for mobile communications的缩写,意为全球移动通信系统。
cdma英文全称是code division multiple address,意为码分多址。
???4???2?k?1020k??0.283331.6有一个c=10pf的电容器,引脚的分布电感为l=2nh。
请问当频率f为多少时,电容器开始呈现感抗。
解:?wl?f??1.125ghz2 既当f=1.125ghz0阻抗,f继续增大时,电容器呈现感抗。
1.7 一个l=10nf的电容器,引脚的分布电容为c=1pf。
请问当频率f 为多少时,电感器开始呈现容抗。
解:思路同上,当频率f小于1.59 ghz时,电感器呈现感抗。
1.8 1)试证明(1.2)式。
2)如果导体横截面为矩形,边长分别为a和b,请给出射频电阻rrf与直流电阻rdc的关系。
解:r??l?s ???l,s对于同一个导体是一个常量2s??a当直流时,横截面积dc当交流时,横截面积sac?2?a?2rdc?a??ac?a?? 661.9已知铜的电导率为?cu?6.45?10s/m,铝的电导率为?al?4.00?10s/m,金的电导率6为?au?4.85?10s/m。
电子科技大学通信射频电路实验报告学生姓名:学号:指导教师:实验一选频回路一、实验内容:1.测试发放的滤波器实验板的通带。
记录在不同频率的输入下输出信号的幅度,并绘出幅频响应曲线。
2.设计带宽为5MHz,中心频率为39MHz,特征阻抗为50欧姆的5阶带通滤波器。
3.在ADS软件上对设计出的带通滤波器进行仿真。
二、实验结果:(一)低通滤波器数据记录及幅频响应曲线频率1.0k 500k 1M 1.5M2.0M 2.5M3.0M 3.5M4..0M 4.5M5.0M /HzVpp/mv 1000 1010 1020 1020 1020 1050 952 890 832 776 736 频率/Hz 5.5M 6.0M 6.2M 6.4M 6.6M 6.8M 7.0M 7.2M 7.4M 7.6M 7.8M Vpp/mv 704 672 656 640 624 592 568 544 512 480 448 频率/Hz 8.0M 8.2M 8.4M 8.6M 8.8M 9.0M 9.2M 9.4M 9.6M 9.8M 10.0M Vpp/mv 416 400 368 376 320 288 272 256 224 208 192(二)带通滤波器数据记录及幅频响应曲线频率/MHz0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5Vpp/mv 0.4 0.8 0.4 0.6 0.8 0.6 0.8 0.8 1.4 1.1 6.0 4.0 23.8 频率/MHz7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4Vpp/mv 79.2 72.866.469.677.690.4108.8137.6183.2260 364 442 440频率/MHz 9.6 9.8 10.10.210.410.610.8 11.0 11.2 11.411.611.812.Vpp/mv 440 403 378 378 406 468 468 548 548 484 412 356 324频率/MHz 12.212.412.612.813.13.213.4 13.6 13.8 14.Vpp/mv308 300 236 156 104 66.445.6 32.4 24.0 18.三、仿真实验(一) 设计步骤 1.设计带宽为5MHz ,中心频率为39MHz ,特征阻抗为50欧姆的5阶带通滤波器。
实验一 匹配网络的设计与仿真一、实验目的1. 掌握阻抗匹配、共轭匹配的原理2. 掌握集总元件L 型阻抗抗匹配网络的匹配机理3. 掌握并(串)联单支节调配器、λ/4阻抗变换器匹配机理4. 了解ADS 软件的主要功能特点5. 掌握Smith 原图的构成及在阻抗匹配中的应用6. 了解微带线的基本结构 二、实验原理信号源的输出功率取决于U s 、R s 和R L 。
在信号源给定的情况下,输出功率取决于负载电阻与信号源内阻之比k 。
当R L =R s 时可获得最大输出功率,此时为阻抗匹配状态。
无论负载电阻大于还是小于信号源内阻,都不可能使负载获得最大功率,且两个电阻值偏差越大,输出功率越小。
1.共轭匹配222()s o L L s L U P I R R R R ==+2,s L s i sU R kR P R ==2(1)o ikP P k =+时,源输出功率最大,称作共轭匹配。
此时需在负载和信号源之间加一个阻抗变换网络 ,将负载阻抗变换为信号源阻抗的共轭。
2.阻抗匹配λ/4阻抗变换器三、用T 型匹配网络设计阻抗匹配网络要求:源阻抗(480-j 732) Ohm ,频率400MHz ,负载Z L =(20+j ×100) Ohm 1.原理图2.采用T 型匹配网络匹配过程*gZ =L Z ≠3.匹配结果4.相应的电路5.仿真结果四、设计微带单枝短截线匹配电路要求:源阻抗(480-j732) Ohm,频率400MHz,负载Z L=(69+j×81) Ohm 微带线板材参数:相对介电常数:2.65相对磁导率:1.0导电率:1.0e20损耗角正切:1e-4基板厚度:1.5mm导带金属厚度:0.01mm 1.原理图2.匹配网络3.仿真结果4.仿真结果。
射频电路原理实验报告实验目的本实验旨在通过搭建射频电路原理实验平台,探索射频信号的特性,并了解射频电路中的基本元件和原理。
实验器材与材料- 射频信号发生器- 射频功率放大器- 直流电源- 变压器- 电感- 电容- 电阻- 示波器- 天线实验步骤1. 首先,将射频信号发生器和示波器正确接入电路,并设置合适的工作频率和幅值。
2. 接下来,通过变压器将输入信号的电压转换成合适的射频信号,并将其输入到射频功率放大器中。
3. 将射频功率放大器的输出信号连接到天线,以实现信号的无线传输。
4. 在示波器上观察到放大器输入和输出的波形,并记录相关数据。
5. 调整射频信号发生器和射频功率放大器的参数,观察波形的变化,进一步了解射频信号的特性和电路的响应。
实验结果分析通过观察示波器上的波形,可以看出射频功率放大器能够有效地将输入信号放大,并通过天线将信号发送出去。
随着射频信号发生器输出频率的增加,波形的周期性变化也能够清晰地观察到,表明电路对不同频率的信号具有不同的响应特性。
同时,我们还可以通过记录的数据计算出电路的增益,并与理论数值进行对比。
通过比较实际测量结果和理论预期,可以评估电路的性能和实验的准确性。
实验总结与心得通过本实验,我对射频电路的基本原理和电路中的元件有了更深入的了解。
通过搭建实验平台,我能够直观地观察到射频信号的特性,并掌握了调节参数以实现不同频率响应的技巧。
在实验过程中,我也遇到了一些问题,比如调节信号发生器的频率不够精确,导致波形的观察和数据的测量不够准确。
为了解决这个问题,我学会了合理选择仪器和参数,以获得更精确的实验结果。
总的来说,本实验对我进一步理解和掌握射频电路原理和实验方法有着重要的意义,也为我今后的学习和研究打下了坚实的基础。
参考文献- 《射频电路设计与实验指导书》- 《电子电路基础》。
射频微波电路综合课程设计带通滤波器实验报告射频微波电路综合课程设计带通滤波器实验报告篇一:射频电路课程设计摘要滤波电路的综合设计是相当复杂的,需要好多理论知识和数学知识做铺垫,我们知道用于无线的模拟电路是在吉赫兹频段,高性能计算机、工作站,当然还有作为这方面例子的个人计算机,他们所使用电路的时钟频率不断的增加。
全球定位系统载波频率在122 7.60m hz~1575.42mh z范围,而此次课程设计主要向大家介绍最大平滑巴特沃兹微波电路和等波纹契比学夫微波电路设计方法。
当微波电路工作在射频的低端频段,可以使用集总参数的元件进行设计,利用集总参数的电感和电容,按照一定的设计规则选取合适的电路和元件的参数,就可以实现归一化低通滤波电路的设计。
然后通过利用频率变换就可以低通微波电路、高通微波电路、带通微波电路和带阻微波电路的设计。
关键字:滤波电路平滑巴特沃兹微波电路等波纹契比学夫微波电路一引言通过对射频设计电路的学习,我们知道无线通信的快速发展,更紧凑的滤波器和混频器电路正在被设计和使用。
通常这些电路的工作频率高于1Ghz。
毫无疑问这种趋势将会继续下去,因此不仅要有独特性能的技术装置,而且要学会对高频电路中遇到的问题进行分析,我们知道随着频率的升高以及其相应的电磁波的波长变得可与分立电路元件的尺寸相比拟时,电阻、电容和电感这些元件的电响应就开始偏离他们的理想频率特性,下面将简单的向大家介绍一下本次滤波电路的设计方法,以及如何对其进行归一化。
《射频集成电路设计》课程设计报告LNA的设计和仿真专业:集成电路班级:电子0604学号:200681131姓名:高丕龙LNA的设计和仿真一.实验目的:1.了解低噪声放大器的工作原理及设计方法。
2.学习使用ADS软件进行微波有源电路的设计,优化,仿真。
3.掌握低噪声放大器的制作及调试方法。
二.原理简介1.低噪声放大器低噪声微波放大器(LNA)已广泛应用于微波通信、GPS接收机、遥感遥控、雷达、电子对抗、射电天文、大地测绘、电视及各种高精度的微波测量系统中,是必不可少的重要电路。
LNA是射频接收机前端的主要部分,它主要有以下四个特点:首先,它位于接收机的最前端,这就要求它的噪声系数越小越好。
为了抑制后面各级噪声对系统的影响,还要求有一定的增益,但为了不使后面的混频器过载,产生非线性失真,它的增益又不宜过大。
放大器在工作频段内应该是稳定的。
其次,它所接受的信号是很微弱的,所以低噪声放大器必定是一个小信号放大器。
而且由于受传输路径的影响,信号的强弱又是变化的,在接受信号的同时又可能伴随许多强干扰信号输入,因此要求放大器有足够的线型范围,而且增益最好是可调节的。
再次,低噪声放大器一般通过传输线直接和天线或者天线滤波器相连,放大器的输入端必须和他们很好的匹配,以达到功率最大传输或者最小的噪声系数,并保证滤波器的性能。
最后,它应具有一定的选频功能,抑制带外和镜像频率干扰,因此它一般是频带放大器。
LNA低噪声放大器的主要指标如下:1)工作频率与带宽2)噪声系数3)增益4).放大器的稳定性5)输入阻抗匹配6)端口驻波比和反射损耗在设计较高的频段低噪声放大器,通常选用场效应管FET和高电子迁移率晶体管(HEMT)。
影响放大器噪声系数的因素除了与所选用的选用元器件有关外,电路的拓扑结构是否合理也是非常重要的。
放大器的噪声系数和信号源的阻抗有关,放大器存在着最佳的信号源阻抗Zso,此时,放大器的噪声系数应该是最小的,所以放大器的输入匹配电路应该按照噪声最佳来进行设计,也就是根据所选晶体管的Гopt来进行设计。
大连理工大学本科实验报告课程名称:射频集成电路设计实验学院(系):电子信息与电气工程学部专业:集成电路设计与集成系统班级:学号:学生姓名:成绩:2016 年 6 月 5 日目录实验一分立电容电感匹配仿真实验 (3)一、实验目的 (3)二、设计平台 (3)三、实验原理 (3)四、实验步骤 (3)五、原理图设计 (3)1、匹配电路原理图: (3)2、匹配过程及网络响应图: (4)3、匹配网络电路图: (4)4、SMITH原图及仿真结果: (5)实验二微带线单支短截线匹配仿真实验 (6)一、实验目的 (6)二、设计平台 (6)三、实验原理 (6)四、实验步骤 (6)五、原理图设计 (6)1、匹配电路原理图: (6)2、匹配网络电路图: (7)3、SMITH原图及仿真结果: (7)五、实验心得 (8)实验一分立电容电感匹配仿真实验一、实验目的使用ADS2011仿真软件,用分立的电容电感元件串并联构成无源网络,使负载阻抗和源阻抗共轭匹配,实现电路的最大功率传输。
二、实验平台ADS2011仿真软件三、实验原理在射频电路设计中,阻抗匹配十分的重要。
阻抗匹配的通常做法是在源和负载之间插入一个无源网络,使负载阻抗与源阻抗共轭匹配,这种网络称为匹配网络。
本次实验的目的是实现电路的最大功率传输,阻抗匹配的具体思路如下图所示,其中是看向负载的输入阻抗,是看向信号源的源阻抗,和共轭;是负载看向左边的输出阻抗,和共轭,则整个电路实现最大功率的传输。
但若没有设计中间的匹配网络,那么看向左边的阻抗是,看向右边的阻抗是,阻抗不共轭,产生反射信号,即有功率损失。
故电路设计当中需要在输入阻抗和输出阻抗中间插入一个匹配网络来实现阻抗变换,使变换成,使其与共轭,消除反射信号,实现最大功率传输。
由于分立元件在高频是会产生寄生效应,由其组成的匹配网络一般用于1GHz及更低的频段。
故本次实验的S参数网络的扫描频段为1MHz到100MHz。
如果要求匹配网络的工作频段在1GHz以上时,应采用为微带线的分布参数元件来实现。
上海电力学院射频电路设计大作业实验报告实验名称:低通滤波器专业:通信工程姓名:班级:学号:一、实验目的1、了解基本低通、带通和高通滤波器的设计方法。
2、利用实验模块进行实际测量,以掌握滤波器的特性。
二、实验内容1、完成低通滤波器P1端口的S11的测量,记录数据;并与示波器观察的结果比较。
2、完成低通滤波器P1、P2端口S21的测量,记录数据;并与示波器观察的结果比较。
三、实验原理1、滤波器的原理滤波器的用途是抑制无用信号,而使有用信号顺利通过。
通过滤波器时不衰减或很小衰减的频带称为通带,衰减超过某一规定值的频带称为阻带,位于通带和阻带之间的频带称为过渡带。
根据通带和阻带所处范围的不同,滤波器可分为低通、高通、带通和带阻四种。
滤波器种类繁多,按构成的元器件,可分为无源滤波器和有源滤波器(含运放)两种;按处理的对象,可分为模拟滤波器和数字滤波器;按滤波器原型的频率响应,可分为巴特沃斯滤波器、切比雪夫滤波器和椭圆型滤波器等。
本实验以较常使用的巴特沃斯滤波器和切比雪夫滤波器为例,说明其设计方法。
2、巴特沃斯和切比雪夫低通滤波器原型的衰减特性(1)、巴特沃斯低通滤波器原型巴特沃斯滤波器又称最大平坦滤波器。
其特性曲线的数学表达式为:210lg[1()]nPA dB ωεω=+(6-1) 式中ε满足关系式10lg(1)P A ε+= (6-2)其中P ω是通带的截止频率,P A 为其对应的衰减;参数n 为滤波器的阶数。
这种衰减特性曲线之所以称为最大平坦曲线,是由于式(6-1)方括号中的量在0ω=处(21n -)阶的导数为零。
大多数场合,最大平坦滤波器的P ω定义为衰减3dB 的通带截止点。
巴特沃斯滤波器的阶数n 取决于阻带的截止频率S ω(S P ωω>)所对应的最小衰减S A ,即:210lg[1()]nS S PA ωεω+≥ (6-3) 联立(6-2)和(6-3)式可得:10101101lg()2101lg()SP A A S Pn ωω-⋅-≥(6-4)3、低通巴特沃斯滤波器的设计方法 步骤一:确定规格。
射频电路实验报告(二)引言概述:在本射频电路实验报告中,我们将深入研究射频电路的性能分析和设计原理。
通过实验,我们将探索射频电路的频率响应、放大器设计、滤波器设计、混频器设计和功率放大器设计等主题。
通过这些实验,我们将进一步理解射频电路的特性和应用。
正文:一、频率响应分析实验1.1 频率响应的定义和测量方法1.2 计算器测量频率响应的原理和步骤1.3 频率响应测量结果的分析和解释1.4 频率响应矫正及其实现方法1.5 频率响应对射频电路性能的影响二、放大器设计实验2.1 放大器的基本工作原理和分类2.2 放大器电路参数的选择和计算2.3 各类放大器电路的设计方案比较2.4 放大器设计的仿真与实现2.5 放大器的性能指标测试与分析三、滤波器设计实验3.1 滤波器的分类和工作原理3.2 滤波器设计的基本步骤和方法3.3 低通、高通、带通和带阻滤波器设计比较3.4 滤波器的仿真和优化3.5 滤波器的性能测试和分析四、混频器设计实验4.1 混频器的基本原理和分类4.2 混频器电路的设计方案选择4.3 混频器性能的仿真和优化4.4 混频器的输出信号分析和波形观测4.5 混频器设计中的注意事项和技巧五、功率放大器设计实验5.1 功率放大器的工作原理和应用领域5.2 功率放大器的设计要求和参数选取5.3 功率放大器电路的优化和仿真5.4 功率放大器输出功率和效率的测试与分析5.5 功率放大器的线性度和稳定性分析总结:通过本次射频电路实验,我们深入了解了频率响应分析、放大器设计、滤波器设计、混频器设计和功率放大器设计等关键主题。
我们掌握了相应的测量方法、设计步骤和特性分析技巧。
这些实验为我们进一步理解射频电路的性能表现和应用提供了有力支持,为我们未来的射频电路设计和研究工作奠定了基础。
射频电路实验报告引言射频电路是电子工程中的重要组成部分,广泛应用于通信、无线电、雷达等领域。
本实验旨在通过实践,深入了解射频电路的基本原理和设计方法。
实验目的1.理解射频电路的基本原理;2.学会设计并制作射频电路;3.掌握射频电路测试方法。
实验器材1.射频信号发生器2.射频功率放大器3.射频频谱分析仪4.射频电路板5.线缆、连接器等实验步骤步骤一:准备工作1.确保实验器材和设备的正常工作状态;2.根据实验要求,选择适当的射频电路板和元器件。
步骤二:电路设计与布局1.根据实验要求,设计射频电路的整体结构和工作原理;2.根据设计要求,选择电容、电感等元器件,并进行电路布局。
步骤三:电路制作1.使用射频电路板和元器件制作射频电路;2.确保电路布局合理、连接可靠。
步骤四:电路测试1.连接射频信号发生器、射频功率放大器和射频频谱分析仪等设备;2.设置合适的频率、功率和其他参数;3.测试射频电路的性能和特性。
步骤五:数据分析与结果讨论1.根据实验数据,分析射频电路的性能;2.比较实验结果与设计要求,讨论可能的原因和改进措施。
结论通过本实验,我们了解了射频电路的基本原理、设计方法和测试技术。
实验结果表明,设计的射频电路在一定范围内符合预期要求。
在今后的学习和实践中,我们将进一步深入研究射频电路的原理和应用,不断提升自己的技术水平。
参考文献[1] 电子工程师丛书编委会. 射频电路设计与实验[M]. 人民邮电出版社, 2008.[2] 张旭, 张阳, 何震. 射频电路[M]. 电子工业出版社, 2014.。
一、实习背景随着无线通信技术的快速发展,射频电路设计在电子工程领域扮演着越来越重要的角色。
为了深入了解射频电路设计的基本原理和实际应用,提高自己的实践能力,我于2023年在XX公司进行了为期一个月的射频电路设计实习。
二、实习目的1. 掌握射频电路设计的基本原理和方法;2. 学习射频电路仿真软件的使用,提高仿真能力;3. 了解射频电路在实际产品中的应用,提高实际操作能力;4. 提升团队协作和沟通能力。
三、实习内容1. 射频电路基础知识学习在实习期间,我首先学习了射频电路的基本原理,包括射频信号的传输、调制、解调等。
通过查阅资料和参加培训,我对射频电路的基本概念、技术指标、设计方法和常见问题有了初步的认识。
2. 射频电路仿真软件学习为了提高仿真能力,我学习了射频电路仿真软件的使用。
主要学习了以下软件:(1)Agilent Advanced Design System(ADS):该软件是一款功能强大的射频电路仿真工具,可以用于射频电路的设计、仿真和优化。
(2)Cadence Spectre:该软件是一款广泛应用于射频电路仿真的工具,具有丰富的仿真功能和良好的用户体验。
3. 射频电路设计实践在实习过程中,我参与了以下射频电路设计项目:(1)射频低噪声放大器(LNA)设计:针对某型号无线通信产品,设计一款低噪声放大器,以满足产品对信号增益和噪声系数的要求。
(2)射频功率放大器(PA)设计:针对某型号无线通信产品,设计一款功率放大器,以满足产品对输出功率和线性度的要求。
(3)射频滤波器设计:针对某型号无线通信产品,设计一款滤波器,以满足产品对频率选择性和带外抑制的要求。
在设计过程中,我遵循以下步骤:(1)分析需求:根据产品需求,确定射频电路的设计指标。
(2)电路设计:根据设计指标,选择合适的器件和电路拓扑结构。
(3)仿真优化:使用仿真软件对电路进行仿真,分析电路性能,并进行优化。
(4)实验验证:将设计好的电路制作成样品,进行实验验证,确保电路性能满足设计要求。
引言概述射频实验是电子工程领域中重要的实验之一。
射频技术广泛应用于通信系统、雷达、无线电波传播等领域。
本文将详细介绍射频实验的实验过程、实验原理和实验结果,帮助读者了解射频实验的基本知识以及实验的设计与分析。
正文内容1.射频实验简介1.1实验目的1.2实验器材和仪器1.3实验流程2.设计射频信号发生器2.1原理介绍2.2设计要求2.3设计步骤2.3.1选择合适的振荡器2.3.2构建放大器电路2.3.3连接滤波器和调谐器2.4实验结果与分析3.射频放大器设计与制作3.1常见射频放大器结构3.2设计要求3.3设计步骤3.3.1选择放大器类型3.3.2计算放大器参数3.3.3进行电路布局和绘制PCB3.4实验结果与分析4.射频滤波器设计与实现4.1原理介绍4.2设计要求4.3设计步骤4.3.1选择滤波器类型4.3.2计算滤波器参数4.3.3绘制电路图和制作滤波器4.4实验结果与分析5.射频天线设计与测试5.1常见天线类型5.2天线设计要求5.3设计步骤5.3.1选择适合的天线类型5.3.2计算天线参数5.3.3放置和调试天线5.4实验结果与分析总结射频实验可以帮助学习者深入了解射频技术,并在实践中掌握实验设计和分析的方法。
本文以射频信号发生器、射频放大器、射频滤波器和射频天线为主线,对射频实验进行了详细阐述。
每个部分都包括实验目的、器材、原理、设计步骤、实验结果与分析等内容,使读者能够全面了解射频实验的过程和原理,并能够根据实际需求进行相应的设计和分析。
通过本文的学习,读者将能够在射频领域中具备一定的实践能力,并为将来的研究或工作奠定基础。
射频实验报告射频实验报告引言射频(Radio Frequency,简称RF)技术在现代通信领域中扮演着重要的角色。
本篇文章将介绍一次射频实验的设计、过程和结果,以及对射频技术的一些思考。
实验设计本次实验旨在研究射频信号的传输和接收过程,以及信号的强度和频率对传输质量的影响。
实验所需的设备包括信号发生器、功率放大器、天线和频谱分析仪。
实验过程首先,我们设置信号发生器产生一个特定频率的射频信号。
然后,通过功率放大器将信号放大到适当的强度。
接下来,将天线连接到功率放大器的输出端,并将其放置在合适的位置。
最后,使用频谱分析仪来检测和分析接收到的射频信号。
实验结果通过实验,我们观察到以下几个结果:1. 强度对传输质量的影响:我们发现,信号强度越大,接收到的信号质量越好。
当信号强度过小时,信号可能会受到噪音的干扰,导致传输质量下降。
2. 频率对传输质量的影响:我们测试了不同频率的射频信号,并观察到在某些频率下,信号的传输质量更好。
这可能与信号在特定频率下的传输特性有关。
3. 天线位置的影响:我们尝试了不同的天线放置位置,并发现天线距离信号源的距离和天线的方向对接收到的信号强度和质量有明显影响。
合理选择天线位置可以优化信号的接收效果。
对射频技术的思考射频技术在无线通信、雷达、无线电广播等领域具有广泛应用。
通过本次实验,我们对射频信号的传输和接收过程有了更深入的了解。
然而,射频技术也存在一些挑战和限制。
1. 信号干扰:射频信号容易受到其他电子设备或环境中的干扰。
这种干扰可能导致信号质量下降,甚至使信号无法传输。
2. 频谱资源有限:射频信号的传输需要占用特定的频谱资源。
随着无线通信的普及和增长,频谱资源变得越来越紧张,如何合理利用频谱资源成为一个重要问题。
3. 安全性问题:射频技术在无线通信中广泛应用,但也容易受到黑客攻击和信息窃取的威胁。
保护射频通信的安全性是一个重要的研究方向。
结论通过本次射频实验,我们对射频信号的传输和接收过程有了更深入的了解。
实验三RFID标签的设计、制作及测试一、【实验目的】在实际的生产过程中,RFID电子标签在设计并测试完成后,都是在流水线上批量制造生产的。
为了让学生体会RFID标签天线设计的理念和工艺,本实验为学生提供了一个手工蚀刻制作RFID电子标签的平台,再配合微调及测试,让学生在亲自动手的过程中,不断地尝试、提炼总结,从而使学生对RFID标签天线的设计及生产工艺,有进一步深刻的理解。
二、【实验仪器及材料】计算机一台、HFSS软件、覆铜板、Alien Higgs芯片、热转印工具、电烙铁、标签天线实物,UHF测试系统,皮尺三、【实验内容】第一步(设计):从UHF标签天线产品清单中,挑选出一款天线结构,或者自己设计一款标签天线结构,进行HFSS建模画图第二步(制作):将第一步中设计好的标签模型用腐蚀法进行实物制作第三步(测试):利用UHF读写器测试第二步中制作的标签实物性能四、【实验要求的知识】下图是Alien(意联)公司的两款标签天线,型号分别为ALN-9662和ALN-9640。
这两款天线均采用弯折偶极子结构。
弯折偶极子是从经典的半波偶极子结构发展而来,半波偶极子的总长度为波长的一半,对于工作在UHF频段的半波偶极子,其长度为160mm,为了使天线小型化,采用弯折结构将天线尺寸缩小,可以适用于更多的场合。
ALN-9662的尺寸为70mm x 17mm,ALN-9640的尺寸为94.8mm x 8.1mm,之所以有不同的尺寸是考虑到标签的使用情况和应用环境,因为天线的形状和大小必须能够满足标签顺利嵌入或贴在所指定的目标上,也需要适合印制标签的使用。
例如,硬纸板盒或纸板箱、航空公司行李条、身份识别卡、图书等。
ALN-9662天线版图ALN-9640天线版图五、【画图练习】为了熟悉HFSS画图方法,先练习画出以下4幅图形六、【实验步骤】第一步:根据以下要求进行HFSS 的建模仿真天线结构和尺寸:可参照“UHF 标签天线产品清单”,或者标签实物,选择其中一种,估算或用尺子测量其实际尺寸,进行HFSS建模。
【射频实验报告】射频电路实验报告[模版仅供参考,切勿通篇使用]射频电路实验报告学专学生指导学年第学期院:信息与通信工程学院业:电子信息科学与技术姓名:学号:教师:李永红日期: 20xx 年10 月28日实验一滤波器设计一、实验目的掌握基本的低通和带通滤波器的设计方法。
学会使用微波软件对低通和高通滤波器进行设计和仿真,并分析结果。
二、预习内容滤波器的相关原理。
滤波器的设计方法。
三、实验设备microwave office软件四、理论分析滤波器的种类:按通带特性分为低通、高通、带通及带阻四种。
按频率响应分为巴特沃斯、切比雪夫及椭圆函数等。
按使用原件又可分为l-c 性和传输线型。
五、软件仿真设计一个衰减为3db ,截止频率为75mhz 的[切比雪夫型1db 纹波lc 低通滤波器并且要求该滤波器在100mhz 至少有20db 的衰减。
图1-1切比雪夫型1db 纹波lc 低通滤波器电路图图1-2 模拟仿真结果六、结果分析经过仿真,得到了两种滤波器的频率特性的到了结果。
红色的曲线为低通滤波器,蓝色的为带通滤波器,两种滤波器的特性可以鲜明地在图上看出差别。
低通滤波器在低频区域。
是通带,通带非常的平缓,纹波较低,但是截至段不是很陡。
带通滤波器具有较好的陡峭特性,但是相对而言,通带比较窄而且纹波较大。
实验二放大器设计一、实验目的掌握射频放大器的基本原理与设计方法。
学会使用微波软件对射频放大器进行设计和仿真,并分析结果。
二、预习内容放大器的基本原理。
放大器的设计方法。
三、实验设备microwave office软件四、理论分析射频晶体管放大器常用器件为bjt 、fet 、mmic 。
放大器电路的设计主要是输入/输出匹配网络。
输入匹配网络可按低噪声或高增益设计。
输出匹配网络要考虑尽可能高的增益。
五、软件仿真设计一900mhz 放大器。
其中电源为12vdc ,输出入阻抗为50ω。
at4151之s 参表如下列图2-1 900mhz放大器电路图图2-2 模拟仿真结果六、结果分析:本设计是设计一个放大器,其通频段是0到900mhz, 然后根据图上的蓝色和红色曲线可见lc 组成的网络的幅频特性曲线,可见这个网络在900mhz 左右会对信号有一个比较大的衰减,因此必须对输出网络进行阻抗匹配,而且匹配网络的中心频率在900mhz 左右,才可以做好阻抗匹配。
射频电路设计实验报告----Wilkinson功率分配器的设计一、实验目的1.掌握功率分配器的原理及基本设计方法。
2.学会使用电磁仿真软件ADS对功分器进行仿真。
3.掌握功分器的实际制作和测试方法,提高动手设计能力。
二、实验仪器微波无源试验箱一台、矢量分析仪一台、电脑一台三、实验原理威尔金森功率分配器为一三端口网络,如图信号由1端口输入、从端口2、3输出。
理想的3dB微带威尔金森功分器,当1口有输入而其他端口匹配时,端口2、3有等幅同相的输出,并且都比输入信号滞后90°且2、3端口对应的两个支路完全隔离。
四、实验内容(一)技术指标1、中心频率f0=1GHz2. 带宽BW:0.9GHz—1.1GHz3. 各端口匹配:Vswr<1.5(s11,)4. 工作频带内输入端口的回波损耗:S11<-18dB5. 工作频带内的传输损耗:-3.4dB<=S21<=-2.6dB6. 两个输出端口间的隔离度S23<=-20dB(二)功率分配器的建模(三)功率分配器的仿真附近S11衰减很大,大于35dB,说明返回到1端口的能量很小S22为2端口的反射系数,反应了2端口的回波损耗,同样在工作频率附近绝对值很大。
S21为1端口到2端口的传输系数,理想情况下2、3端口应平分功率,故应为3dB,由于存在介质损耗角正切等原因,实际略大于3dB。
S23反应2、3端口之间的隔离度,在1GHz附近大于30dB,说明隔离度较好。
(四)实物的制作与测试下图为制作的实物上图为1端口输入时2、3端口的输出关系S21为3.35dB S23为28.9dB五、实验总结1在用ADS进行建模,设置各个器件的参数时要注意不要忘记加单位2.测试的结果与仿真的结果基本相等,说明制作的功分器满足了实验的技术指标与要求。
射频电路设计理论与应用答案【篇一:《射频通信电路设计》习题及解答】书使用的射频概念所指的频率范围是多少?解:本书采用的射频范围是30mhz~4ghz1.2列举一些工作在射频范围内的电子系统,根据表1-1判断其工作波段,并估算相应射频信号的波长。
解:广播工作在甚高频(vhf)其波长在10~1m等1.3从成都到上海的距离约为1700km。
如果要把50hz的交流电从成都输送到上海,请问两地交流电的相位差是多少?解:8??f?3?1?0.6???4km1.4射频通信系统的主要优势是什么?解:1.射频的频率更高,可以利用更宽的频带和更高的信息容量2.射频电路中电容和电感的尺寸缩小,通信设备的体积进一步减小3.射频通信可以提供更多的可用频谱,解决频率资源紧张的问题4.通信信道的间隙增大,减小信道的相互干扰等等1.5 gsm和cdma都是移动通信的标准,请写出gsm和cdma的英文全称和中文含意。
(提示:可以在互联网上搜索。
)解:gsm是global system for mobile communications的缩写,意为全球移动通信系统。
cdma英文全称是code division multiple address,意为码分多址。
???4???2?k?1020k??0.283331.6有一个c=10pf的电容器,引脚的分布电感为l=2nh。
请问当频率f为多少时,电容器开始呈现感抗。
解:?wl?f??1.125ghz2 既当f=1.125ghz0阻抗,f继续增大时,电容器呈现感抗。
1.7 一个l=10nf的电容器,引脚的分布电容为c=1pf。
请问当频率f 为多少时,电感器开始呈现容抗。
解:思路同上,当频率f小于1.59 ghz时,电感器呈现感抗。
1.8 1)试证明(1.2)式。
2)如果导体横截面为矩形,边长分别为a和b,请给出射频电阻rrf与直流电阻rdc的关系。
解:r??l?s ???l,s对于同一个导体是一个常量2s??a当直流时,横截面积dc当交流时,横截面积sac?2?a?2rdc?a??ac?a?? 661.9已知铜的电导率为?cu?6.45?10s/m,铝的电导率为?al?4.00?10s/m,金的电导率6为?au?4.85?10s/m。
实验三RFID标签的设计、制作及测试一、【实验目的】在实际的生产过程中,RFID电子标签在设计并测试完成后,都是在流水线上批量制造生产的。
为了让学生体会RFID标签天线设计的理念和工艺,本实验为学生提供了一个手工蚀刻制作RFID电子标签的平台,再配合微调及测试,让学生在亲自动手的过程中,不断地尝试、提炼总结,从而使学生对RFID标签天线的设计及生产工艺,有进一步深刻的理解。
二、【实验仪器及材料】计算机一台、HFSS软件、覆铜板、Alien Higgs芯片、热转印工具、电烙铁、标签天线实物,UHF测试系统,皮尺三、【实验内容】第一步(设计):从UHF标签天线产品清单中,挑选出一款天线结构,或者自己设计一款标签天线结构,进行HFSS建模画图第二步(制作):将第一步中设计好的标签模型用腐蚀法进行实物制作第三步(测试):利用UHF读写器测试第二步中制作的标签实物性能四、【实验要求的知识】下图是Alien(意联)公司的两款标签天线,型号分别为ALN-9662和ALN-9640。
这两款天线均采用弯折偶极子结构。
弯折偶极子是从经典的半波偶极子结构发展而来,半波偶极子的总长度为波长的一半,对于工作在UHF频段的半波偶极子,其长度为160mm,为了使天线小型化,采用弯折结构将天线尺寸缩小,可以适用于更多的场合。
ALN-9662的尺寸为70mm x 17mm,ALN-9640的尺寸为94.8mm x 8.1mm,之所以有不同的尺寸是考虑到标签的使用情况和应用环境,因为天线的形状和大小必须能够满足标签顺利嵌入或贴在所指定的目标上,也需要适合印制标签的使用。
例如,硬纸板盒或纸板箱、航空公司行李条、身份识别卡、图书等。
ALN-9662天线版图ALN-9640天线版图五、【画图练习】为了熟悉HFSS画图方法,先练习画出以下4幅图形六、【实验步骤】第一步:根据以下要求进行HFSS 的建模仿真天线结构和尺寸:可参照“UHF 标签天线产品清单”,或者标签实物,选择其中一种,估算或用尺子测量其实际尺寸,进行HFSS建模。
绘制弯折结构时主要用到:画矩形面,合并,对称复制绘制缝隙结构时主要用到:画矩形面,画线,挖空视图调整主要用以下三个按钮:,,注意天线中间要留有2mm乘以2mm大小的空隙,用于焊接芯片。
第二步:标签天线实物制作:本次实验采用热转印的方法进行标签制作,具体步骤此处不详细叙述,应注意以下两点:1、图纸的生成:上一步在HFSS中创建的模型可导出为AutoCAD的dxf文件,注意该HFSS图纸导出方法,只能导出XOY(Z=0)面的图纸信息,如果需要的图层不在XOY面上,则需要在HFSS中将图层位移到XOY面,再做导出操作。
接下来,参照视频“AutoCAD 打印过程”,用AutoCAD软件进行图纸打印。
2、芯片焊接:如下图所示,本实验中用的芯片集成模块是将芯片制成可焊接封装,通过引出针脚来实现芯片与外部天线的链接。
芯片有三个引脚,其中位于一侧的OPEN引脚是悬空的,无需焊接,另外两个引脚RF1和RF2分别焊接到天线的两个焊点上。
使用电烙铁和焊锡将芯片焊接到天线上,推荐先在天线焊点焊锡,然后使用镊子夹住芯片对准焊点,用电烙铁融化焊锡即可完成焊接。
完成天线刻蚀和芯片焊接后,一个完整的标签即制作完成。
SOT封装的Alien Higgs-3芯片第三步:标签性能测试部署读写器及天线,调整读写器的频率、功率等参数,测试该标签性能,记录标签的最大读取距离、频率特性等性能指标。
根据测试结果评估该标签的性能是否满足设计要求。
按照上图所示方式将标签天线对准UHF读写器天线,并沿图中所示虚线向远离读写器方向移动标签,找出能否成功读取的临界点,记录读取距离。
在读写频率设置为915.4-921.8(33-49),功率等级设置为20的条件下,分别测试并记录本次制作的标签的EPC码和读取距离七、【实验结果】1、将标签天线的实物图粘贴于此2、填写本次制作的标签的EPC码和读取距离实验五L形匹配网络设计一、【实验目的】阻抗匹配的概念是射频电路设计中最基本也是最重要的概念之一,贯穿射频电路设计的始终。
要实现最大功率传输,必须使传输线与负载匹配,同时使负载阻抗与源阻抗共轭匹配。
当今业界进行射频电路设计采用的是商用的射频仿真软件,其中最具代表性的是安捷伦公司的ADS软件。
本次实验通过阻抗匹配的设计实例,作为ADS的入门,为将来从事射频设计工作打下基础。
有兴趣的同学课后可以自学徐兴福编著的《ADS2008射频电路设计与仿真实例》。
二、【实验仪器及材料】PC机一台,ADS2008仿真软件三、【实验内容】利用ADS软件设计阻抗匹配电路四、【实验要求的知识】实验前先熟悉教材中第6章关于阻抗匹配的内容,并在PC机上安装好ADS2008软件。
五、【范例:利用史密斯圆图设计L形匹配网络】先通过一个范例进行练习,设计过程如下:1)创建项目(Project)①启动ADS软件,弹出主视窗②选择主视窗中[File]菜单>[New Project],弹出[New Project]对话框,如下图所示,在“Name”文本框中输入新建工程的名字Match1,同时在“Project Technology Files”下拉框中选择工程使用的长度单位为millimeter。
选择完毕后点击[OK]按钮,弹出原理图向导,点击[Cancel]按钮关闭向导,弹出原理图编辑视窗。
2)创建原理图(Schematic)①在弹出原理图编辑视窗中,当前显示为untitled,表示未命名,选择[File]菜单>[Save Design ],弹出[Save Design as]对话框②在[Save Design as]对话框中,输入文件名Match1,然后单击[保存]按钮,将原理图命名为Match1.3)利用史密斯圆图设计L形匹配网络本设计指标如下:设计集总参数L形匹配网络中心频率为1GHz负载由10Ω的电阻和1.6nH的电感串联而成要求负载与50Ω的传输线相匹配设计步骤如下:①在新建的原理图Match1中,选择[tool]菜单>[Smith Chart]命令,弹出[Smith Chart Utility]窗口,在该窗口中,需要设置Freq(频率)和Z0(传输线特性阻抗),这里默认设置为Freq=1GHz,Z0=50Ω,与本次设计需求一致,故无需修改。
单击[Define Source/Load Network Terminations]按钮,弹出“Network Terminations”对话框,按照下图所示进行设置: 选中[Enable Source Termination]选中[Enable Load Termination]在[Load Impedance]项中,选择Series RL,R=10Ω,L=1.6nH②回到原理图Match1的编辑窗口中,在左上角的元件库一栏,点击“Lumped Components”右边的下拉箭头,在下拉列表中选择倒数第3个的[Smith Chart Matching ]元件库,选好后在左侧的元件面板中将显示唯一的元件图标,这个图标代表史密斯圆图元件,将该元件插入到原理图中,如下图所示。
③下面设计匹配网络:选中原理图中的史密斯圆图元件选中[Smith Chart Utility]窗口中的[Build ADS Circuit]按钮,弹出“Smart Component Sync”对话框,选择“Update Smart Component from Smith Chart Utility”选项,单击OK按钮选中[Smith Chart Utility]窗口中的[Auto 2-element Match]按钮,弹出[Network Selector]窗口,选中该窗口中左边的“串联电容,并联电感”图标,关闭该窗口,回到[Smith Chart Utility]窗口,在右下角会观察到出现了匹配电路图,如下图所示,单击图中的电容,可以查看电容的数值,是5.29579pF,同样单击电感能看到电感的数值为3.97887nH。
在[Smith Chart Utility]窗口的左半边,可以观察到经过L形匹配网络后阻抗的移动路径,负载(方形标记)阻抗点先经过等电阻圆,再经过等电导圆,最终到达圆心的匹配点。
这样我们就完成了L形匹配网络的设计。
④在原理图中观察子电路现在原理图中的史密斯圆图元件已经有了子电路,下面观察子电路,步骤如下:单击原理图中的史密斯圆图元件然后单击原理图工具栏中的按钮,进入子电路,如下图所示,从图中可以看出,子电路由L=3.98nH的电感和C=5.3pF的电容组成。
在原理图的工具栏中,单击按钮,从子电路退出。
⑤在原理图中仿真匹配网络选择左上角的元件库为[Lumped Components],在左侧的元件面板中,选择电阻R和电感L,分别插入到原理图中,将电阻的阻值设置为10Ω,电感的感值设置为1.6nH。
放置过程中可用Ctrl+R对元件进行90度旋转单击工具栏中的按钮,将电阻和电感连接起来,并将电感接地,如下图所示,这构成负载电路。
选择左上角的元件库为[Simulation-S_Param],在左侧的元件面板中,选择,插入原理图中,并将其接地。
单击工具栏中的按钮,将Term、匹配电路和负载电路连接起来,如下图所示。
在左侧的元件面板中,选择S参数仿真控件SP,插入原理图的画图区,对SP 仿真控件设置扫频范围如下:⏹频率扫描的起始值为0.5GHz⏹频率扫描的终止值为1.5GHz⏹频率扫描的步长为0.01GHz点击OK按钮现在可以对原理图进行仿真了,目的是观察加入匹配网络后的参数曲线,在原理图工具栏中单击按钮,运行仿真,仿真结束后,数据显示弹窗自动弹出,初始状态没有任何数据显示,用户自己选择需要显示的数据和数据显示的方式。
在数据显示视窗中,单击左侧面板中的按钮,在弹出的对话框中,选择要显示的数据为S(1,1)并点击>>Add>> 按钮,选择dB单位,添加到Trace中,点击OK,则S11曲线将显示在数据显示区中,点击工具栏中的按钮,添加一个Marker,可以在曲线上标记出中心频率处的S11值,如下图所示,可以看出,中心频率为1GHz,对应的S11为-57.194dB,表示在中心频率处的匹配良好。
六、【设计题】完成第五部分的范例练习后,根据以下设计需求,设计一个L形匹配网络,并完成第七部分思考题。
本设计指标如下:要求采用下图所示的L形匹配网络中心频率为500MHz负载为(90+j75)Ω要求负载与特性阻抗为75Ω的传输线相匹配七、【思考题】1)将第六部分的设计结果截图粘贴到以下空白处a)包含Term,匹配电路和负载电路的完整原理图b)S11曲线(标注出中心频率处的S11数值)提示:将读出的S11由dB单位换算成倍数单位,结合S11的物理意义进行分析。