共轭效应
- 格式:ppt
- 大小:3.89 MB
- 文档页数:36
共轭效应又称离域效应,是指共轭体系中由于原子间的相互影响而使体系内的π电子(或p电子)分布发生变化的一种电子效应称为共轭效应。
共轭体系能降低体系π电子云密度的基团有吸电子的共轭效应,能增高共轭体系π电子云密度的基团有给电子的共轭效应。
单双建交替出现的体系或双键碳的相邻原子上有p轨道的体系均为共轭体系。
在共轭体系中,π电子(或p电子)的运动范围已经扩展到整个共轭体系,这种现象称为电子离域。
π电子的离域会降低体系的能量,降低的能量称为离域能。
共轭体系越大,离域能越大。
共轭效应方向判断,取代基的共轭效应和诱导效应方向有的一致,有的不一致。
氨基的共轭效应是给电子的,其诱导效应是吸电子的,其共轭效应大于诱导效应,总的电子效应是给电子的,而氯原子的共轭效应是给电子的。
其诱导效应是吸电子的,其共轭效应小于诱导效应,总的电子效应是吸电子的。
共轭效应的特点,只能在共轭体系中传递,无论共轭体系有多大,共轭效应能贯穿于整个共轭体系中。
共轭效应是有机化学中一种重要的分子内稳定效应,对于反应过程中的反应中间体来说,共轭效应能够起到一定的稳定作用。
下面我们将通过举例说明来详细解释共轭效应对反应中间体的稳定作用。
1. 什么是共轭效应?在有机化学中,共轭效应是指分子中含有共轭结构的化合物,通过共轭π电子体系的共享能够影响化合物的稳定性和反应性。
共轭结构通常指的是相邻的两个双键或者一个双键和一个孤对电子的相互作用。
共轭效应可以影响分子的光学性质、电子结构以及化学反应。
2. 共轭效应对反应中间体的稳定作用在有机化学反应中,反应中间体是指在反应过程中形成的、并不立即参与反应的中间物质。
共轭效应对反应中间体的稳定作用主要体现在以下几个方面:2.1 共轭效应对碳离子中间体的稳定作用当反应过程中生成了碳离子中间体时,共轭效应可以通过共轭π电子体系的电子云分布来稳定碳离子,使其形成共轭结构,减少电子孤对的紧张,降低中间体的能量,从而增加反应的速率和选择性。
1,3-丁二烯在发生负离子加成反应时,产生的负离子中间体比较稳定,主要是由于共轭效应的存在。
2.2 共轭效应对自由基中间体的稳定作用同样地,共轭效应也能够对自由基中间体的稳定起到一定作用。
通过共轭结构中π电子的共享,可以减少自由基的不稳定性,增加其稳定性。
这种稳定性不仅能够帮助中间体保存更长时间,也能影响反应的产率和选择性。
苯的自由基取代反应中,共轭效应使得苯环上生成的自由基更加稳定,也更容易与其他分子发生反应。
3. 共轭效应的应用举例在有机合成和药物化学领域,共轭效应的稳定作用得到了广泛的应用。
药物分子中的共轭结构可以增加化合物的稳定性,提高其在体内的代谢稳定性,延长其药效持续时间。
共轭效应还可以影响有机合成反应的产率和产物选择性,为有机合成化学提供了重要的理论基础和实际指导。
通过以上例子我们可以看出,共轭效应在有机化学反应中对于稳定反应中间体起到了重要的作用。
研究共轭效应对于理解有机化学反应的机理、提高合成效率以及设计合成新药物等方面具有重要意义。
离域现象H2C=CH2,π键的两个π电子的运动范围局限在两个碳原子之间,这叫做定域运动。
共轭效应CH2=CH-CH=CH2中,可以看作两个孤立的双键重合在一起,π电子的运动范围不再局限在两个碳原子之间,而是扩充到四个碳原子之间,这叫做离域现象。
共轭效应这种分子叫共轭分子。
共轭分子中任何一个原子受到外界试剂的作用,其它部分可以马上受到影响。
这种电子通过共轭体系的传递方式,叫做共轭效应。
特点沿共轭体系传递不受距离的限制。
共轭效应,由于形成共轭π键而引起的分子性质的改变叫做共轭效应。
共轭效应主要表现在两个方面。
电子效应的一种。
组成共轭体系的原子处于同一平面,共轭体系的p电子,不只局限于两个原子之间运动,而是发生离域作用,使共轭体系的分子产生一系列特征,如分子内能低、稳定性高、键长趋于平均化,以及在外电场影响下共轭分子链发生极性交替现象和引起分子其他某些性质的变化,这些变化通常称为共轭效应。
共共轭效应轭效应是指在共轭体系中电子离域的一种效应是有机化学中一种重要的电子效应.它能使分子中电子云密度的分布发生改变(共平面化),内能减少,键长趋于平均化,折射率升高,整个分子更趋稳定。
编辑本段基本介绍“共轭效应是稳定的”是有机化学的最最基本原理之一.但是,自30年代起,键长平均化,4N+2芳香性理论,苯共轭效应环D6h构架的起因,分子的构象和共轭效应的因果关系,π-电子离域的结构效应等已经受到了广泛的质疑.其中,最引人注目的是Vollhardt等合成了中心苯环具有环己三烯几何特征的亚苯类化合物,Stanger等合成了键长平均化,但长度在0.143~0.148nm的苯并类衍生物.最近(1999年),Stanger又获得了在苯环中具有单键键长的苯并类化合物.在理论计算领域,争论主要表现在计算方法上,集中在如何将作用能分解成π和σ两部分.随着论战的发展,作用能分解法在有机化学中的应用不断地发展和完善,Hückel理论在有机化学中的绝对权威也受到了挑战.为此,简要地介绍了能量分解法的发展史,对Kollma法的合理性提出了质疑.此外特别介绍了我们新的能量分解法,及在共轭效应和芳香性的研究中的新观点和新的思维模式。
共轭效应的特点共轭效应是指当两个或多个相邻的π键中的一个键被攻击或受到其他化学反应的影响时,另一个键也会受到影响的现象。
这种影响可以是键长的改变、键能的变化、电子密度的重新分布等。
共轭效应是有机化学中一个重要的概念,它对于分子的稳定性、反应性以及光学、电子等性质的理解具有重要意义。
它在有机分子的结构与性质之间建立了联系,为有机化学的研究提供了理论基础。
共轭效应的特点主要包括以下几个方面:1. 共轭效应可以改变π键的键长。
共轭体系中,由于π电子的共享,使得相邻的π键中的电子云变得不对称,导致键长的改变。
共轭效应可以使π键变得更加紧凑,减小键长,增强了键的紧密性。
2. 共轭效应可以改变π键的键能。
共轭体系中,由于电子云的重叠,使得键能降低。
共轭效应可以使π键的共轭体系中的π电子云更加稳定,增强键的稳定性。
3. 共轭效应可以改变π键的电子密度。
共轭体系中,由于π电子的共享,使得电子密度的分布发生变化。
共轭效应可以使π电子云在共轭体系中重新分布,使得电子密度在分子中的不同位置发生变化,从而改变了分子的性质。
4. 共轭效应可以影响分子的光学性质。
共轭体系中,由于π电子的共享,使得分子能够吸收较长波长的光,从而呈现颜色。
共轭效应可以影响分子的吸收光谱,改变分子的颜色。
5. 共轭效应可以影响分子的反应性。
共轭体系中,由于π电子的共享,使得分子的反应活性增强。
共轭效应可以使分子更易受到攻击,发生化学反应,增加反应的速率。
共轭效应在有机化学中具有广泛的应用。
例如,共轭效应可以用来解释分子的稳定性、反应性以及光学性质。
在有机合成中,共轭效应可以用来设计和合成具有特定性质的分子。
在药物设计中,共轭效应可以用来改变药物分子的性质,增强药物的活性。
在材料科学中,共轭效应可以用来改变材料的光学、电子等性质,设计新型的功能材料。
共轭效应是有机化学中一个重要的概念,它对于分子的结构与性质之间的关系具有重要意义。
共轭效应可以改变π键的键长、键能、电子密度等性质,影响分子的光学、电子等性质。
共轭效应共轭效应(conjugated effect) ,又称离域效应,是指共轭体系中由于原子间的相互影响而使体系内的π电子(或p电子)分布发生变化的一种电子效应。
凡共轭体系上的取代基能降低体系的π电子云密度,则这些基团有吸电子共轭效应,用-C表示,如-COOH,-CHO,-COR;凡共轭体系上的取代基能增高共轭体系的π电子云密度,则这些基团有给电子共轭效应,用+C表示,如-NH2,-OH,-R。
1离域现象共轭效应H2C=CH2,π键的两个π电子的运动范围局限在两个碳原子之间,这叫做定域运动。
CH2=CH-CH=CH2中,可以看作两个孤立的双键重合在一起,π电子的运动范围不再局限在两个碳原子之间,而是扩充到四个碳原子之间,这叫做离域现象。
如图,这种分子叫共轭分子。
共轭分子中任何一个原子受到外界试剂的作用,其它部分可以马上受到影响。
这种电子通过共轭体系的传递方式,叫做共轭效应。
2特点沿共轭体系传递不受距离的限制。
共轭效应,由于形成共轭π键而引起的分子性质的改变叫做共轭效应。
共轭效应主要表现在两个方面。
①共轭能:形成共轭π键的结果使体系的能量降低,分子稳定。
例如CH2=CH—CH=CH2共轭分子,由于π键与π键的相互作用,使分子的总能量降低了,也就是说, CH2=CH—CH=CH2分子的能量比两个不共轭的CH2=CH2分子的能量总和要低。
所低的数值叫做共轭能。
②键长:从电子云的观点来看,在给定的原子间,电子云重叠得越多,电子云密度越大,两个原子结合得就越牢固,键长也就越短,共轭π键的生成使得电子云的分布趋向平均化,导致共轭分子中单键的键长缩短,双键的键长加长。
共轭效应共轭效应是电子效应的一种。
组成共轭体系的原子处于同一平面,共轭体系的p电子,不只局限于两个原子之间运动,而是发生离域作用,使共轭体系的分子产生一系列特征,如分子内能低、稳定性高、键长趋于平均化,以及在外电场影响下共轭分子链发生极性交替现象和引起分子其他某些性质的变化,这些变化通常称为共轭效应。
共轭效应又称离域效应(delocalization effect)。
存在于共轭体系中的一种极性(静态)和极化(动态的)现象。
是一个分子在“静止”状态以及在微扰状态(例如在反应过程中)的特性。
在单双键交替出现的共轭分子中,可以看做两个孤立的双键用一个单键联合在一起,π电子的运动范围由两个碳原子之间扩充到四个碳原子之间,因此称为离域现象。
在外界的影响下,共轭效应能使电子分布移并在化学特性上有所反映。
例如(1)电性:离域π键的形成增加了物质的电导。
(2)颜色:离域π键的形成扩大了π电子的活动范围,使体系能量降低,能级间隔变小,由σ键的紫外光区移至离域π键的可见光区。
含离域π键的化合物往往是染料、生色剂和指示剂等。
酚酞在碱性溶液中变红就是因为扩大了π电子的离域范围。
(3)酸碱性:苯酚呈酸性,苯胺呈碱性。
前者是因为电离掉H+后离域范围稳定存在;后者是因为本来分子中就有离域π键,不易电离,可接受H+。
(4)化学反应性能:芳香化合物的芳香性、游离基的稳定性,丁二烯类的1,4加成等都和离域π键的生成有关。
共轭效应在共轭体系分子中,由于原子间的相互影响和π电子云的离域,引起分子内能降低、体系趋向稳定、键长趋于平均化,以及某些性质的变化等效应,称为共轭效应。
产生共轭效应的必要条件是,组成共轭体系的各个原子必须处在同一平面上。
这样才能使参加共轭的每个原子的p轨道相互平行而发生侧面重叠。
反之,会减弱、甚至使共轭效应完全消失。
例如,1,3-丁二烯分子具有共轭效应,而环辛四烯由于组成环的八个碳原子不在同一平面上,因而使共轭效应受到影响。
红外光谱基团频率分析及应用基团频率和特征吸收峰物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。
多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到。
这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律。
C等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。
共轭效应共轭效应(conjugated effect) ,又称离域效应,是指共轭体系中由于原子间的相互影响而使体系内的π电子(或p电子)分布发生变化的一种电子效应。
凡共轭体系上的取代基能降低体系的π电子云密度,则这些基团有吸电子共轭效应,用-C表示,如-COOH,-CHO,-COR;凡共轭体系上的取代基能增高共轭体系的π电子云密度,则这些基团有给电子共轭效应,用+C表示,如-NH2,-OH,-R。
H2C=CH2,π键的两个π电子的运动范围局限在两个碳原子之间,这叫做定域运动。
CH2=CH-CH=CH2中,可以看作两个孤立的双键重合在一起,π电子的运动范围不再局限在两个碳原子之间,而是扩充到四个碳原子之间,这叫做离域现象。
共轭效应这种分子叫共轭分子。
共轭分子中任何一个原子受到外界试剂的作用,其它部分可以马上受到影响。
这种电子通过共轭体系的传递方式,叫做共轭效应。
特点沿共轭体系传递不受距离的限制。
共轭效应,由于形成共轭π键而引起的分子性质的改变叫做共轭效应。
共轭效应主要表现在两个方面。
①共轭能:形成共轭π键的结果使体系的能量降低,分子稳定。
例如CH2=CH-CH=CH2共轭分子,由于π键与π键的相互作用,使分子的总能量降低了,也就是说, CH2=CH-CH=CH2分子的能量比两个不共轭的CH2=CH2分子的能量总和要低。
所低的数值叫做共轭能。
②键长:从电子云的观点来看,在给定的原子间,电子云重叠得越多,电子云密度越大,两个原子结合得就越牢固,键长也就越短,共轭π键的生成使得电子云的分布趋向平均化,导致共轭分子中单键的键长缩短,双键的键长加长。
共轭效应是电子效应的一种。
组成共轭体系的原子处于同一平面,共轭体系的p电子,不只局限于两个原子之间运动,而是发生离域作用,使共轭体系的分子产生一系列特征,如分子内能低、稳定性高、键长趋于平均化,以及在外电场影响下共轭分子链发生极性交替现象和引起分子其他某些性质的变化,这些变化通常称为共轭效应。