利用函数单调性证明积分不等式(修改)
- 格式:doc
- 大小:260.50 KB
- 文档页数:4
「用微积分理论证明不等式的方法02762」微积分作为数学的一个重要分支,广泛应用于各个领域。
在证明不等式时,微积分理论可以提供很多有用的方法和手段。
下面,将介绍一些常用的用微积分理论证明不等式的方法。
一、用函数的单调性函数的单调性是研究不等式的一个重要工具。
对于单调递增的函数,可以利用其性质来证明不等式。
设函数f(x)在区间(a,b)上单调递增,若有a≤x<y<b,则有f(a)≤f(x)<f(y)≤f(b)。
同时,根据单调递增函数的性质,对于任意的a<b,有f(x)<f(y),那么对应的不等式也成立。
例如,要证明在区间[0,1]上,f(x)=x(1-x)<1/4,可以利用函数f(x)在该区间上的单调递增性。
当x<1/2时,有f(x)<f(1/2)=1/4;当x>1/2时,有f(x)<f(1/2)=1/4,因此不等式f(x)<1/4在区间[0,1]上成立。
二、用导数或微分的性质导数和微分是微积分的基本概念,它们对研究不等式也起到很大的作用。
通过研究函数的导数或微分的性质,可以得到不等式的证明。
例如,要证明在区间(a,b)上f(x)≤g(x),可以研究函数h(x)=f(x)-g(x),若能证明h(x)≤0,则不等式成立。
对h(x)求导,然后研究导数的正负性即可。
又如,要证明不等式f(x)≥g(x),可以考虑函数h(x)=f(x)-g(x),若能证明h'(x)≥0,则不等式成立。
通过导数或微分的性质,可以简化不等式的证明过程。
三、用积分的性质积分是微积分的重要工具之一,它在证明不等式中也有广泛的应用。
常用的方法有利用积分的性质来证明不等式的区间逐点性、平均值和中值定理等。
例如,若要证明在区间[a,b]上的函数f(x)满足不等式f(x)≥0,可以考虑利用积分的区间逐点性。
即对于任意一个x∈[a,b],都有f(x)≥0成立。
又如,若要证明函数f(x)在[a,b]上的平均值大于等于左端点和右端点的函数值之间的平均值,即(∫[a,b]f(x)dx)/(b-a)≥(f(a)+f(b))/2,可以利用积分的性质,将该不等式转化为函数f(x)-(f(a)+f(b))/2的积分大于等于0,然后再进行证明。
专题二函数考点4 函数单调性的5种判断方法及3个应用方向【方法点拨】一、函数单调性的判断及解决应用问题的方法1.判断函数单调性的常用方法(1)定义法;(2)图象法;(3)利用函数的性质“增+增=增,减+减=减”判断;(4)复合函数的单调性根据“同增异减”判断;(5)导数法2.求函数的单调区间先定定义域,在定义域内求单调区间.单调区间不连续时,要用“和”或“,“连接,不能用“U”连接.3.单调性的应用的三个方向(1)比较大小:将自变量转化到同一个单调区间内,利用函数的单调性比较大小;(2)解函数型不等式:利用函数单调性,由条件脱去“f”;(3)求参数值或取值范围:利用函数的单调性构建参数满足的方程(组)、不等式(组).【高考模拟】1.函数()||1f x x =-与()()2g x x x =-的单调递增区间分别为( ) A .[1,+∞),[1,+∞) B .(﹣∞,1],[1,+∞) C .(1,+∞),(﹣∞,1] D .(﹣∞,+∞),[1,+∞)【答案】A 【分析】先对()f x ,()g x 进行化简,再求单调区间即可. 【解析】 解:()1,111,1x x f x x x x -≥⎧=-=⎨-+<⎩,()f x ∴在[)1,+∞上单调递增,()()222()211g x x x x x x -=-==--, ()g x ∴在[)1,+∞上单调递增,故选:A.2.函数y =)A .3,2⎛⎤-∞- ⎥⎝⎦B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[)0,+∞D .(],3-∞-【答案】D 【分析】求出函数y =y =.【解析】由题意,230x x +≥,可得3x ≤-或0x ≥,函数y =(][),30,-∞-⋃+∞,令23t x x =+,则外层函数y =[)0,+∞上单调递增,内层函数23t x x =+在上(],3-∞-单调递减,在[)0,+∞上单调递增,所以,函数y =(],3-∞-.故选:D. 【点睛】方法点睛:求解函数的单调区间一般有以下几种方法:一是图象法,主要适用与基本初等函数及其在基本初等函数的基础上进行简单变化后的函数以及分段函数,可以借助图像来得到函数的单调区间;二是复合函数法,主要适用于函数结构较为复杂的函数,采用换元的思想将函数解析式分解为多层,利用同增异减的原理来求解;三是导数法,对于可导函数,可以解相应的导数不等式来求解函数的单调区间.3.函数()f x 在区间()4,7-上是增函数,则使得()3=-y f x 为增函数的区间为( ) A .()2,3- B .()1,7-C .()1,10-D .()10,4--【答案】C 【分析】先将函数()3=-y f x 看作函数()f x 向右平移3个单位所得到,再判断增区间即可. 【解析】函数()3=-y f x 可以看作函数()f x 向右平移3个单位所得到,故由函数()f x 在区间()4,7-上是增函数,得()3=-y f x 在区间()1,10-上是增函数. 故选:C.4.函数()2f x x x =-的单调减区间是( ) A .[]1,2 B .[]1,0-C .[]0,2D .[2,)+∞【答案】A 【分析】将函数写成分段函数的形式,即()(2),2,(2),2,x x x f x x x x -⋅≥⎧=⎨-⋅<⎩再根据解析式得到函数的单调区间;【解析】()(2),2,(2),2,x x x f x x x x -⋅≥⎧=⎨-⋅<⎩∴直接通过解析式,结合二次函数图象得:(,1),(2,)-∞+∞递增,在[]1,2递减,故选:A.5.函数f (x )=x 2+2(a -1)x +2在区间(-∞,4)上递减,则a 的取值范围是( ) A .[3,)-+∞ B .(,3]-∞- C .(,5)-∞ D .[3,)+∞【答案】B 【分析】利用二次函数的性质,比较对称轴和区间端点的大小,列不等式可得a 的取值范围. 【解析】函数f(x)的对称轴是1x a =-,开口向上,则14a -≥,解得3a ≤- 故选:B6.若函数2()()f x ax a -=∈R 在(0,)+∞上单调递增,则实数a 的取值范围为( ). A .(1,)+∞ B .(,1)-∞ C .(0,)+∞ D .(,0)-∞【答案】D 【分析】直接由单调性的定义求解即可 【解析】解:任取12,(0,)x x ∈+∞,且12x x <,因为函数2()()f x ax a -=∈R 在(0,)+∞上单调递增,所以12()()f x f x <,即22120ax ax ---<,所以221211()0a x x -<,21212212()()0x x x x a x x +-⋅<⋅, 因为120x x <<,所以210x x +>,210x x ->,22120x x ⋅>,所以0a <. 故选:D7.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是( ) A .3a ≤- B .3a ≥-C .5a ≤D .5a ≥【答案】A【分析】求出二次函数的对称轴,根据单调区间与对称轴之间的关系建立条件,即可求出a 的取值范围. 【解析】 解:二次函数2()2(1)2f x x a x =+-+的对称轴为2(1)(1)12a x a a -=-=--=-,抛物线开口向上,∴函数在(-∞,1]a -上单调递减,要使()f x 在区间(-∞,4]上单调递减, 则对称轴14a -, 解得3a-.故选:A . 【点睛】本题主要考查二次函数的图象和性质,根据二次函数单调性与对称轴之间的关系是解决本题的关键. 8.“1m ”是“函数1()2ln f x x mx x=-+单调递减”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【分析】求出()y f x =的导函数,利用()y f x =单调递减,则()0f x '≤恒成立,求出m 的范围,比较所求范围和条件中给定范围的关系,得出结论. 【解析】 由221()f x m x x '=--,若函数()y f x =单调递减,必有当(0,)x ∈+∞时,2210m x x--≤恒成立,可化为2111m x ⎛⎫≥--+ ⎪⎝⎭,可得m 1≥.故“1m ”是“函数1()2ln f x x mx x =-+单调递减”的充分不必要条件. 故选:A. 9.若函数2()1f x x =-的定义域是(﹣∞,1)∪[2,5),则其值域为( ) A .(﹣∞,0)B .(﹣∞,2]C .10,2⎛⎤ ⎥⎝⎦D .1(,0),22⎛⎤-∞⋃ ⎥⎝⎦【答案】D 【分析】分x<1和x ∈[2,5)两种情况,利用反比例函数的性质得出函数的值域. 【解析】由题意可得:当x<1时,则x ﹣1<0所以y ∈(﹣∞,0) 当x ∈[2,5)时,则x ﹣1∈[1,4),所以y ∈1,22⎛⎤⎥⎝⎦所以函数的值域为1(,0),22⎛⎤-∞⋃ ⎥⎝⎦.故选:D.10.若关于x 的不等式342xx a+-在[0x ∈,1]2上恒成立,则实数a 的取值范围是( )A .(-∞,1]2-B .(0,1]C .1[2-,1]D .[1,)+∞【答案】D 【分析】利用参数分离法进行转化,构造函数求函数的最大值即可得到结论. 【解析】解:由题意知,342xx a +-在(0x ∈,1]2上恒成立,设3()42x f x x =+-,则函数在102⎛⎤ ⎥⎝⎦,上为增函数,∴当12x =时,()12max 113()4211222f x f ==+-=-=, 则1a , 故选:D . 【点睛】 关键点睛:本题的关键是将已知不等式恒成立问题,通过参变分离得到参数的恒成立问题,结合函数的单调性求出最值.11.若01m n <<<且1mn =,则2m n +的取值范围是( )A.)+∞ B .[3,)+∞C.)+∞D .(3,)+∞【答案】D 【分析】先利用已知条件构造函数()2(),01f m m m m+<<=,再求其值域即得结果. 【解析】由01m n <<<且1mn =知,22m n m m +=+,故设()2(),01f m m m m+<<=, 设1201m m <<<,则()1212121212222()()1f m f m m m m m m m m m ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 12120,01m m m m -<<<,即1222m m >,故()1212210m m m m ⎛⎫--> ⎪⎝⎭,即12()()f m f m >, 函数2()f m m m =+在()0,1上单调递减,2(1)131f =+=,故函数的值域为(3,)+∞. 故选:D. 【点睛】方法点睛:利用定义证明函数单调性的方法(1)取值:设12,x x 是该区间内的任意两个值,且12x x <; (2)作差变形:即作差,即作差12()()f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形; (3)定号:确定差12()()f x f x -的符号;(4)下结论:判断,根据定义作出结论. 即取值---作差----变形----定号----下结论. 12.函数()()2404xf x x x x x =++>+的最小值为( ) A .2 B .103C .174D .265【答案】C 【分析】 令4t x x =+,利用基本不等式求得4t ≥,构造函数()1g t t t=+,证明出函数()g t 在[)4,+∞上为增函数,由此可求得函数()f x 的最小值. 【解析】令4t x x =+,则21144x x t x x==++,因为0x >,所以44t x x =+≥=,又2414x y x t x x t =++=++,令()1g t t t=+,其中4t ≥, 任取1t 、[)24,t ∈+∞且12t t >,即124t t >≥,则()()()()()121221121212121212111t t t t t t g t g t t t t t t t t t t t --⎛⎫⎛⎫--=+-+=-+= ⎪ ⎪⎝⎭⎝⎭, 124t t >≥,120t t ∴->,121t t >,()()120g t g t ∴->,即()()12g t g t >,所以,函数()g t 在[)4,+∞上为增函数,因此,()()min 1174444f xg ==+=. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.13.若函数1y ax =+在区间[]1,3上的最大值是4,则实数a 的值为( ) A .-1 B .1C .3D .1或3【答案】B 【分析】分0a >和0a <两种情况求解,0a >时,1y ax =+在区间[]1,3上为增函数,从而可求出其最大值,当0a <时,1y ax =+在区间[]1,3上为减函数,从而可求出其最大值,进而可得答案 【解析】解:当0a >时,1y ax =+在区间[]1,3上为增函数,则当3x =时,y 取得最大值,即314a +=,解得1a =;当0a <时,1y ax =+在区间[]1,3上为减函数,则当1x =时,y 取得最大值,即14a +=,解得3a =舍去, 所以1a =, 故选:B14.函数2y ax =+在[1,2]上的最大值与最小值的差为3,则实数a 为( ) A .3 B .-3 C .0 D .3或-3【答案】D 【分析】讨论a 的取值,判断函数的单调性,求出函数的最值,作差即可求解. 【解析】解:①当0a =时,2=2y ax =+,不符合题意;②当0a >时,2y ax =+在[]1,2上递增,则()()2223a a +-+=,解得3a =; ③当0a <时,2y ax =+在[]1,2上递减,则()()2223a a +-+=,解得3a =-.综上,得3a =±, 故选:D .15.已知函数24()2tx t f x x --+=+在区间[1,2]-上的最大值为2,则实数t 的值为( )A .2或3B .1或3C .2D .3【答案】A 【分析】 函数()24422tx t f x t x x --+==-+++,4[1,2],[1,4]2x t t t x ∈--+∈--+,根据绝对值的最大值为2进行分类讨论检验即可. 【解析】 由题函数()24422tx t f x t x x --+==-+++,4[1,2],[1,4]2x t t t x ∈--+∈--+ ()24422tx t f x t x x --+==-+++的最大值为4t -或1t -当41t t -≥-时,即52t ≤时,最大值42t -=解得:2t =;当41t t -<-时,即52t >时,最大值12t -=解得:3t = 综上所述:t 的值等于2或3. 故选:A 【点睛】解决本题的关键是利用单调性求出42t x -++的范围,再结合绝对值的性质进行求解. 16.若函数12,02()(21)3,2log x x f x a x a x <<⎧⎪=⎨⎪-+⎩的值域为R ,则实数a 的取值范围为( ) A .1[2,1)B .1(0,)7C .1[7,1)2D .1[2,1]【答案】C 【分析】根据分段函数的值域为R ,具有连续性,由12log y x =是减函数,可得(21)3y a x a =-+也是减函数,故得210a -<,(21)231a a -⨯+-,可得答案. 【解析】解:函数12,02()(21)3,2log x x f x a x a x <<⎧⎪=⎨⎪-+⎩的值域为R , 由12log y x =是减函数,(21)3y a x a ∴=-+也是减函数,故得210a -<, 解得:12a <, 函数()f x 的值域为R ,12(21)23log 21a a -⨯+=-,解得:17a. ∴实数a 的取值范围是1[7,1)2.故选:C .17.若函数()f x 是R 上的减函数,0a >,则下列不等式一定成立的是( ) A .2()()f a f a < B .1()f a f a ⎛⎫<⎪⎝⎭C .()(2)f a f a <D .2()(1)f a f a <-【答案】D 【分析】根据函数单调性,以及题中条件,逐项判断,即可得出结果. 【解析】因为函数()f x 是R 上的减函数,0a >,A 选项,()21a a a a -=-,当1a >时,2a a >,所以2()()f a f a <;当01a <<时,2a a <,所以2()()f a f a >,即B 不一定成立; B 选项,当1a >时,1a a >,所以1()f a f a ⎛⎫< ⎪⎝⎭;当01a <<时,1a a <,所以1()f a f a ⎛⎫> ⎪⎝⎭,即B 不一定成立;C 选项,0a >时,2a a >,则()(2)f a f a >,所以C 不成立;D 选项,()2221311024a a a a a ⎛⎫--=-+=-+> ⎪⎝⎭,则21a a >-;所以2()(1)f a f a <-,即D一定成立. 故选:D.18.已知函数2()f x x bx c =++,且(2)()f x f x +=-,则下列不等式中成立的是( ) A .(4)(0)(4)f f f -<< B .(0)(4)(4)f f f <-< C .(0)(4)(4)f f f <<- D .(4)(0)(4)f f f <<-【答案】C 【分析】由(2)()f x f x +=-,即可得到()f x 图象的对称轴为1x =,所以根据图象上的点离对称轴的距离即可比较出(0),(4),(4)f f f -的大小关系. 【解析】由(2)()f x f x +=-得()f x 图象的对称轴为1x =,所以()f x 在(,1]-∞上单调递减,在[1,)+∞上单调递增,且(4)(2)f f =-, 所以(0)(2)(4)(4)f f f f <-=<-, 故选:C. 【点睛】方法点睛:该题考查的是有关函数值的比较大小的问题,解题方法如下:(1)首先根据题中所给的函数解析式,判断函数类型,根据题中所给的条件,判断出函数图象的对称轴;(2)利用对称性,将自变量所对应的函数值进行转换; (3)根据函数的单调性求得结果.19.若定义在R 上的偶函数()f x 在[)0,+∞上是减函数,则下列各式一定成立的是( ) A .()()06f f < B .()()32f f -> C .()()13f f -> D .()()58f f -<-【答案】C 【分析】由偶函数及在[)0,+∞上是减函数,知在(,0]-∞上是增函数,即可判断各项的正误. 【解析】A :在[)0,+∞上是减函数,即()()06f f >,错误;B :(3)(3)f f -=,()f x 在[)0,+∞上是减函数,有()()32f f <,即()()32f f -<,错误; C :(1)(1)f f -=,()f x 在[)0,+∞上是减函数,有()()31f f <,即()()13f f ->,正确; D :由题意,()f x 在(,0]-∞上是增函数,()()58f f ->-,错误; 故选:C20.设函数()f x 是(),-∞+∞上的减函数,又若a R ∈,则( ) A .()()2f a f a >B .()()2f a f a < C .()()2f a a f a +<D .()()211f a f +≤【答案】D 【分析】利用特殊值法可判断ABC 选项的正误,利用函数的单调性可判断D 选项的正误. 【解析】对于A 选项,取0a =,则2a a =,()()2f a f a ∴=,A 选项错误; 对于B 选项,取0a =,则2a a =,所以,()()2f af a =,B 选项错误;对于C 选项,取0a =,则2a a a +=,所以,()()2f a a f a +=,C 选项错误;对于D 选项,对任意的a R ∈,211a +≥,所以,()()211f a f +≤,D 选项正确.故选:D.21.函数()f x 的定义域为,(1)0,()f f x '=R 为()f x 的导函数,且()0f x '>,则不等式()()20x f x ->的解集是( )A .(,1)(2,)-∞⋃+∞B .(,1)(1,)-∞⋃+∞C .(0,1)(2,)+∞D .(,0)(1,)-∞⋃+∞【答案】A 【分析】依题意可得()f x 再定义域上单调递增,又()10f =,即可得到1x <时,()0f x <;1 x >时,()0f x >;再分类讨论分别计算最后取并集即可;【解析】解:由题意可知()f x 在(),-∞+∞单调递增,又()10f =,1x <时,()0f x <;1 x >时,()0f x >; 对于()()2 0x f x ->,当2x >时,不等式成立, 当12x <<时,()20, 0x f x -<>,不等式不成立; 当1x <时,20x -<,且()0f x <, 不等式成立不等式的解集(,1)(2,)-∞⋃+∞ 故选:A .22.已知定义在R 上的函数()f x 的导函数为'()f x ,且满足'()()0f x f x ->,()20212021f e =,则不等式1ln 3f x ⎛⎫<⎪⎝⎭)A .()6063,e +∞B .()20210,eC .()2021,e +∞D .()60630,e【答案】D 【分析】由题意构造新函数()()xf x F x e =,得到函数的单调性,对问题进行变形,由单调性转化为求解不等式问题,即可得到结果 【解析】 由题可设()()x f x F x e=,'()()0f x f x ->,则2'()()'()()'()0x x x xf x e f x e f x f x F x e e--==>, 所以函数()F x 在R 上单调递增,2021(2021)(2021)1f F e==,将不等式1ln 3f x ⎛⎫< ⎪⎝⎭1ln 311ln ln 3311ln ln 33x x x f x f x e e e ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⋅=, 可得1ln 13F x ⎛⎫< ⎪⎝⎭,即1ln (2021)3F x F ⎛⎫< ⎪⎝⎭,有1ln 20213x <,故得60630x e <<,所以不等式1ln 3f x ⎛⎫< ⎪⎝⎭()60630,e ,故选:D. 【点睛】关键点睛:本题的解题关键是构造新函数,然后运用函数单调性求解不等式,通常情况构造新函数的形式如:()()xf x F x e =、()()F x xf x =或者()()f x F x x =等,需要结合条件或者问题出发进行构造.23.已知函数2()121xf x =-+,且()41(3)xf f ->,则实数x 的取值范围是( ). A .(2,)+∞ B .(,2)-∞C .(1,)+∞D .(,1)-∞【答案】D 【分析】用导数判断函数()f x 的单调性,再解不等式即可. 【解析】 因为()()22ln 2021x xf x -=<+',所以函数2()121x f x =-+在R 上单调递减, 由于()41(3)xf f ->所以413x-<,得1x <故选:D 【点睛】关键点点晴:判断函数()f x 的单调性是解题的关键.24.已知定义在R 上的函数()f x 满足()13f =,对x ∀∈R 恒有()2f x '<,则()21f x x ≥+的解集为( ) A .[)1,+∞ B .(],1-∞C .()1,+∞D .(),1-∞【答案】B 【分析】构造新函数()()21F x f x x =--,利用导数判断()F x 单减,又(1)0F =可解1x ≤. 【解析】令()()21F x f x x =--,则()()2F x f x ''=-, 又因为对x ∀∈R 恒有()2f x '< 所以()()20F x f x ''=-<恒成立, 所以()()21F x f x x =--在R 上单减. 又(1)(1)210F f =--=, 所以()0F x ≥的解集为(],1-∞ 故选:B 【点睛】利用单调性解不等式通常用于: (1)分段函数型不等式; (2)复合函数型不等式;(3)抽象函数型不等式; (4)解析式较复杂的不等式;25.已知函数f (x ) f (2a 2-5a +4)<f (a 2+a +4) ,则实数a 的取值范围是( ) A .1,2⎛⎫-∞ ⎪⎝⎭∪(2,+∞)B .[2,6)C .10,2⎛⎤ ⎥⎝⎦∪[2,6)D .(0,6)【答案】C 【分析】由解析式知()f x 在定义域上递增,由已知函数不等式有2222544a a a a ≤-+<++,即可求解a 的取值范围. 【解析】由题意,()f x 在[2,)+∞上单调递增,∵22(254)(4)f a a f a a -+<++,即2222544a a a a ≤-+<++, ∴260a a -<或22520a a -+≥,可得26a ≤<或102a <≤. 故选:C 【点睛】关键点点睛:利用函数的单调性,列不等式求参数的范围.易错点是定义域容易被忽略.26.已知函数()f x 的图象关于y 轴对称,当0x ≥时,()f x 单调递增,则不等式(2)(1)f x f x >-的解集为__________. 【答案】1(,1)(,)3-∞-⋃+∞ 【分析】由题意可得()f x 为偶函数,再由偶函数的性质可将(2)(1)f x f x >-,转化为(2)(1)f x f x >-,再由当0x ≥时,()f x 单调递增,可得21x x >-,从而可求出x 的范围 【解析】解:依题意,()f x 为偶函数,当0x ≥时,()f x 单调递增,要满足(2)(1)f x f x >-,则要求21x x >-,两边平方得22412x x x >-+,即23210x x +->,即(1)(31)0x x +->,解得1(,1)(,)3x ∈-∞-⋃+∞. 故答案为:1(,1)(,)3-∞-⋃+∞.27.设()xf x a x =+,若()36f =,则不等式()()21f x f x ->的解集为____________.【答案】()1,+∞ 【分析】先由()36f =,解出a ,讨论()xf x a x =+的单调性,利用函数单调性解不等式即可.【解析】因为()xf x a x =+,且()36f =,,所以33a =,解得1a =>.()(),ln 1x x f x f a x a x a =+∴=+' ln 0,ln 111,x x a a a a a >∴>∴>+,()x f x a x ∴=+在R 上单增.()()21f x f x ->可化为:21x x ->解得:1x >.不等式()()21f x f x ->的解集为()1,+∞ 故答案为:()1,+∞ 【点睛】利用单调性解不等式通常用于: (1)分段函数型不等式;(2)复合函数型不等式;(3)抽象函数型不等式;(4)解析式较复杂的不等式;28.已知定义域为R 的奇函数()f x 在区间(0,)+∞上为严格减函数,且()20f =,则不等式(1)01f x x +≥-的解集为___________.【答案】[]3,1-- 【分析】先由定义域为R 的奇函数()f x 在区间(0,)+∞上为严格减函数,且()20f =,画出()f x 的草图,结合图像对(1)01f x x +≥-进行等价转化,解不等式即可.【解析】()f x 是定义域为R 的奇函数,且在区间(0,)+∞上为严格减函数,有()20f =,∴()f x 在区间(,0)-∞上为严格减函数且()20f =,可作出()f x 的草图:不等式(1)01f x x +≥-可化为:()1010x f x ->⎧⎨+≥⎩或()1010x f x -<⎧⎨+≤⎩对于()1010x f x ->⎧⎨+≥⎩,当1x >时()12,10x f x +>+<,无解;对于()1010x f x -<⎧⎨+≤⎩,当1x <时()12,10x f x +<+≤,由图像观察,210x -≤+≤解得:31x -≤≤- 所以不等式(1)01f x x +≥-的解集为[]3,1--.故答案为:[]3,1-- 【点睛】常见解不等式的类型:(1)解一元二次不等式用图像法或因式分解法; (2)分式不等式化为标准型后利用商的符号法则; (3)高次不等式用穿针引线法; (4)含参数的不等式需要分类讨论.29.已知函数()()23log 440f x ax x =-+>在x ∈R 上恒成立,则a 的取值范围是_________.【答案】4,3⎛⎫+∞ ⎪⎝⎭【分析】由题意,把函数()()23log 440f x ax x =-+>在x ∈R 上恒成立转化为2430ax x -+>对x ∈R上恒成立,列不等式解得a 的范围. 【解析】()()23log 440f x x x α=-+>恒成立,即()2233log 44log 1430ax x ax x -+>⇔-+>恒成立,所以0a =时显然不成立.当0a ≠时()0Δ16120a a >⎧⎨=-<⎩得43a <,所以4,3a ⎛⎫∈+∞ ⎪⎝⎭.故答案为:4,3⎛⎫+∞ ⎪⎝⎭【点睛】(1)求参数的范围是常见题型之一,处理的方法有两种:①不分离参数,直接求最大值或最小值,解不等式;②分离参数法.(2)解指、对数型的不等式,通常化为同底的结构,利用函数的单调性解不等式.30.设函数3,1()1+1,1x x f x x x x ≤⎧⎪=⎨->⎪⎩,则不等式()26()f x f x ->的解集为_________.【答案】()3,2- 【分析】先判断函数的单调性,再解抽象不等式. 【解析】当1x >时,31+1y x x=-是增函数,此时1y >; 当1x ≤时, y x =是增函数,此时1y ≤, 所以函数()f x 是单调递增函数,()()2266f x f x x x ->⇔->,解得:32x -<<,所以不等式的解集是()3,2-. 故答案为:()3,2-。
不等式是高等数学中的一个重要工具。
运用它可以对变量之间的大小关系进行估计,并且一些重要的不等式在现代数学的研究中发挥着重要作用。
这里首先介绍几个常用的不等式,然后再介绍证明不等式的一些方法。
几个重要的不等式 1.平均值不等式设12,,,n a a a 非负,令111()(0)nrr r kk M a a r n =⎛⎫=≠ ⎪⎝⎭∑(当r<0且至少有一0ka =时,令()0r M a =),111()()nkk A a M a a n ===∑,112()()111nn H a M a a a a -==++,11()nnk k G a a =⎛⎫= ⎪⎝⎭∏,称r M 是r 次幂平均值,A 是算数平均值,H 是调和平均值,G 是几何平均值,则有()()()H a G a A a ≤≤,等式成立的充要条件是12,na a a ===;一般的,如果s>0,t<0,则有()()()t s M a G a M a ≤≤,等式成立的充要条件是12,na a a ===。
2.赫尔德(Holder )不等式设()0,0,1,2,,,1,2,,j i j a a i n j m>>==,且11mjj a==∑,则1111111()()()()m mnnna a a a m m iiii i i i a a a a ===≤∑∑∑,等式成立的充要条件是(1)()(1)()11,1,2,,m i i nnm kki i a a i n aa=====∑∑。
3.柯西-许瓦兹(Cauchy-Schwarz )不等式设,,1,2,,i i a b i n =为实数,则112222111||n nni i i i i i i a b a b ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑。
4.麦克夫斯基(Minkowsk)不等式 设()0,1,2,,,1,2,,,1j i a i n j m r >==>,则111(1)()(1)()111[()][()][()]nnnm r r m r r r r iiiii i i a aa a===++≤++∑∑∑,等式成立的充要条件是(1)()(1)()11()(),1,2,,()()rm ri i nnr m r kki i a a i n aa=====∑∑。
㊀㊀解题技巧与方法㊀㊀152㊀数学分析中几类证明不等式的方法数学分析中几类证明不等式的方法Һ郭㊀鑫㊀(天津师范大学,天津㊀300222)㊀㊀ʌ摘要ɔ在学习数学分析时我们常会见到一些不等式,当然,其中有一些著名的不等式无论是在解题还是在实际应用中都有重要的作用.笔者认为解决这些不等式的证明应该先找到对应的数学分析知识点,所以,本文中结合数学分析的知识点列举了四种常用的证明不等式的思路.本文中在每一种方法后附加了例题及解答,一些题目是选择了教材上的典型例题,还有一些是考研题目及其改编.不等式的证明往往有多种证明方法,还望读者多思考出更多不同的证明方法.ʌ关键词ɔ不等式;数学分析;积分;证明为了加深对数学分析中不等式证明的理解和掌握,本文在数学分析的基础上研究并整理了几种证明不等式的方法,也节选了典型例题辅助讲解.本文属于综述型论文,归纳总结了前人的理论成果并加上自己的理解与补充,希望本文可以帮助读者对于不等式问题有初步的解题思路,并借此探索更多的关于不等式的证明方法.一㊁几个著名不等式(一)Jensen不等式如果f(x)为[a,b]上的凸函数,那么对任何xiɪ[a,b],λi>0(i=1,2, ,n),ðni=1λi=1有f(ðni=1λixi)ɤðni=1λifxi().证明㊀当n=1时,结论显然成立;当n=2时,由凸函数的定义可以知道f(λ1x1+λ2x2)ɤλ1f(x1)+λ2f(x2)成立.假设n-1时命题成立,则对任意x1,x2, ,xnɪ[a,b],以及λi>0,ðni=1λi=1,令μi=λi1-λn>0(i=1,2, ,n-1),可以得到μ1+μ2+ +μn-1=1,由归纳假设得fðn-1i=1μixi()ɤðn-1i=1μif(xi),所以ðni=1λixi()=f((1-λn)㊃λ1x1+λ2x2+ +λn-1xn-11-λn+λnxn)ɤ(1-λn)㊃fλ1x1+λ2x2+ +λn-1xn-11-λnæèçöø÷+λnf(xn)ɤ(1-λn)㊃[μ1f(x1)+μ2f(x2)+ +μn-1f(xn-1)]+λnf(xn)=λ1f(x1)+λ2f(x2)+ +λnf(xn).由数学归纳法可知原命题成立.例1㊀求证:(abc)a+b+c3ɤaabbcc,其中a,b,c均为正数.提示㊀令f(x)=xlnx,运用Jensen不等式即证.(二)平均值不等式任意ai>0(i=1,2, ,n),有n1a1+1a2+ +1anɤna1 anɤa1+a2+ +ann.证明㊀设f(x)=lnx,则fᵡ(x)<0,从而f(x)为凹函数,所以由Jensen不等式可得fa1+a2+ +annæèçöø÷ȡf(a1)+f(a2)+ +f(an)n,即lnna1a2 an=1n(lna1+lna2+ +lnan)ɤlna1+a2+ +ann.因为f(x)为增函数,所以na1a2 anɤa1+a2+ +ann,同理n1a1㊃1a2㊃ ㊃1anȡ1a1+1a2+ +1ann,即得结论.注:此题还可运用条件极值证明.(三)Schwarz不等式若f(x)和g(x)在[a,b]上可积,则ʏbaf(x)g(x)dx()2ɤʏbaf2(x)dx㊃ʏbag2(x)dx.证明㊀因为f(x),g(x)在[a,b]上可积,所以f(x)+tg(x)在[a,b]上可积,从而ʏba(f(x)+tg(x))2dx=ʏbaf2(x)dx+ʏba2tf(x)g(x)dx+ʏbat2g2(x)dxȡ0,(∗)将(∗)式看作自变量t的一元二次函数,则Δ=4ʏbaf(x)g(x)dx()2-4ʏbaf2(x)dx㊃ʏbag2(x)dxɤ0,结论得证.推论㊀(柯西不等式)对任意ai,bi有ðni=1aibi()2ɤðni=1ai2㊃ðni=1bi2.例2㊀若f(x),g(x)都在[a,b]上可积,则有闵可夫斯基(Minkowski)不等式:ʏba(f(x)+g(x))2dx[]12ɤʏbaf2(x)dx[]12+ʏbag2(x)dx[]12.提示㊀不等式两边平方,化简,利用Schwarz不等式.(四)Hadamard不等式设f(x)为[a,b]上的连续凸函数.求证:fa+b2()ɤ1b-aʏbaf(x)dxɤf(a)+f(b)2.提示㊀利用凸函数的性质,证明详细过程见下页.二㊁利用函数单调性与极值解决不等式问题(一)利用单调性解决不等式问题函数的单调性是较为简单直接的证明不等式的方法,对于可导函数f(x)可以通过fᶄ(x)的正负判断f(x)的增减性,从而利用具体自变量的取值得到不等式.此类题目的关键在于构建合适的f(x).(例题中涉及几类常用的构造函数的方法)㊀㊀㊀解题技巧与方法153㊀㊀例3㊀(若尔当不等式)设0<xɤπ2,则2πɤsinxx<1.证明㊀设f(x)=sinxx,则fᶄ(x)=xcosx-sinxx2;再令g(x)=xcosx-sinx,则gᶄ(x)=-xsinx<0,从而g(x)递减.又因为g(0)=0,所以g(x)<0,则有fᶄ(x)<0,即f(x)递减.又因为limxң0f(x)=1,且fπ2()=π2,所以,由f(x)的单调性可得2πɤsinxx<1.(二)利用极值与最值解决不等式问题对于在定义域内不单调的函数,极值和最值是解决这类函数不等式的一个突破口,构造合适的函数利用极值的定义来证明.例4㊀(利用条件极值)任意ai>0(i=1,2, ,n),有n1a1+1a2+ +1anɤna1a2 anɤa1+a2+ +ann.证明㊀下面只证明na1a2 anɤa1+a2+ +ann(另一不等号的证明见上一页).设x1+x2+ +xn=a(∗),f(x1,x2, ,xn)=x1x2 xn,则只需证在条件(∗)下f(x)的最大值为annn.令L(x1,x2, ,xn,λ)=x1x2 xn+λ(x1+x2+ +xn-a),则Lxi=x1 xi-1xi+1 xn+λ=0,Lλ=x1+x2+ +xn-a=0,{解得λ=-na(x1x2 xn);xi=an.又因为f(x)有上界,所以所求点为最大值点,即最大值为annn,结论得证.三㊁利用微分中值定理和泰勒公式解决不等式问题(一)利用拉格朗日定理解决不等式问题拉格朗日定理可以将函数在区间端点的函数值与导函数在某一点的值联系起来,从而利用单调性或已知条件得到不等式.例5㊀求证:b-ab<lnba<b-aa,其中0<a<b.证明㊀原不等式等价于1b<lnb-lnab-a<1a,由拉格朗日定理,得lnb-lnab-a=1ξ,其中ξɪ(a,b).因为1b<1ξ<1a,所以1b<lnb-lnab-a<1a.(二)利用柯西定理解决不等式问题对于已知两个函数的端点函数值问题可利用柯西定理转换成导数比值形式,从而化简不等式.例6㊀设x>0,求证:2arctanx<3ln(1+x).证明㊀原不等式等价于arctanxln(1+x)<32;∀x>0,在[0,x]上由柯西中值定理,得∃ξɪ(0,x),使得arctanxln(1+x)=arctanx-arctan0ln(1+x)-ln(1+0)=1+ξ1+ξ2,设f(x)=1+x1+x2,则fᶄ(x)=1-2x-x2(1+x2)2,所以f(x)在x=2-1时取极大值(最大值),2+12<32,所以1+ξ1+ξ2<32,即arctanxln(1+x)<32,结论得证.(三)利用泰勒公式解决不等式问题对于一些不等式中涉及高阶导数及其范围的问题,可尝试利用泰勒公式的近似展开式,而利用泰勒公式的重点在于找到一个合适的点展开.四㊁函数凹凸性(一)函数凹凸性的简单推论推论1㊀f(x)为凸函数的充要条件为:对于定义域上,任意x1<x2<x3,则有f(x2)-f(x1)x2-x1ɤf(x3)-f(x1)x3-x1ɤf(x3)-f(x2)x3-x2.推论2㊀(此推论及其变形适用于许多涉及一阶导数的不等式证明)可导函数为凸(凹)函数当且仅当任意x1,x2有f(x2)ȡf(x1)+fᶄ(x1)(x2-x1)(f(x2)ɤf(x1)+fᶄ(x1)(x2-x1)).推论3㊀若f(x)为二阶可导函数,则f(x)是凸函数的充分必要条件为fᵡ(x)ȡ0.(此命题适用于涉及二阶导数的不等式证明)推论4㊀f(x)为[a,b]上的凸函数,则f(x)ȡ2fa+b2()-f(a)-f(b).(二)运用函数凹凸性证明不等式例7㊀证明Hadamard不等式.证明㊀设x=(1-t)a+tb=(b-a)t+a,则1b-aʏbaf(x)dx=ʏ10f[(1-t)a+tb]dt.同理可得1b-aʏbaf(x)dx=ʏ10f[ta+(1-t)b]dt.因为f(x)为凸函数,所以1b-aʏbaf(x)dx=ʏ10f[(1-t)a+tb]dtɤʏ10(1-t)f(a)+tf(b)dt=f(a)+f(b)2,且1b-aʏbaf(x)dx=12ʏ10f[(1-t)a+tb]dt+12ʏ10f[ta+(1-t)b]dt=ʏ1012f[(1-t)a+tb]+12f[ta+(1-t)b]dtȡʏ10f[12(1-t)a+t2b+t2a+12(1-t)b]dt=fa+b2(),所以fa+b2()ɤ1b-aʏbaf(x)dxɤf(a)+f(b)2.不等式的解法有许多,以上几种方法需要在数学分析的基础上研究不等式.在学习过程中抓住每种方法的要点并掌握相应的数学分析的基础知识才是关键.ʌ参考文献ɔ[1]华东师范大学数学系.数学分析(上册):第4版[M].北京:高等教育出版社,2010.[2]陈守信.考研数学分析总复习:精选名校真题:第5版[M].北京:机械工业出版社,2018.[3]徐利治,王兴华.数学分析的方法及例题选讲:第2版[M].北京:高等教育出版社,2015.[4]蒙诗德.数学分析中证明不等式的常用方法[N].赤峰学院学报(自然科学版),2009(09):20-22.[5]舒斯会.数学分析选讲[M].北京:北京大学出版社,2007.[6]林源渠,方企勤.数学分析解题指南[M].北京:北京大学出版社,2003.。
2025届广东省普通高中毕业班调研考试(一)数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{Z |8150},{|5}A x x x B x x =Î-+£=<,则A B =I ( )A. {}3 B. {}3,4 C. {}4,5 D. {}3,4,5【答案】B 【解析】【分析】先解不等式求得集合A ,进而求得A B Ç.【详解】集合()(){}2{Z |8150}{Z |350}3,4,5A x x x x x x =Î-+£=Î--£=.而{|5}B x x =<,故{}3,4A B Ç=.故选:B2. 已知1z ,2z 是两个虚数,则“1z ,2z 均为纯虚数”是“12z z 为实数”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】设12i,i(,R z b z c b c ==Î且,0)b c ¹,可得12R z z Î,如121i 12+2i 2z z +==,可得结论.【详解】若12,z z 均为纯虚数,设12i,i(,R z b z c b c ==Î且,0)b c ¹,则12i R i z b bz c c ==Î,所以“12,z z 均为纯虚数”是12z z 是实数充分条件,当121i,22i z z =+=+,121i 12+2i 2z z +==,所以“12,z z 均为纯虚数”是12z z 是实数的不必要条件,的综上所述:“12,z z 均为纯虚数”是12z z 是实数的充分不必要条件.故选:A.3. 已知a r和b r 的夹角为150°()2a b b +×=r r r ( )A. 9-B. 3- C. 3 D. 9【答案】C 【解析】分析】根据向量数量积运算求得正确答案.【详解】()222a b b a b b +×=×+r r r r rr 2cos1502a b b=××°+r rr 2223æ=+×=ççè故选:C4. 已知 π2sin sin 33a a æö+-=ç÷èø,则 πcos 23a æö+=ç÷èø( )A. 59-B. 19-C.19D.59【答案】B 【解析】【分析】利用两角和差公式以及倍角公式化简求值可得答案.【详解】由题干得2π1sin sin sin sin 332a a a a a æö=+-=+-ç÷èø1πsin cos 26a a a æö=-=+ç÷èø所以 22ππ21cos 22cos 1213639a a æöæöæö+=+-=´-=-ç÷ç÷ç÷èøèøèø,故选:B.5. 已知等比数列 {}n a 为递增数列,n nnb a =. 记 ,n n S T 分别为数列 {}{},n n a b 的前n 项和,若 2133312a a a S T =+=,,则 n S =( )【A. 141n --B.()11414n --C.()14112n- D. 24n -【答案】C 【解析】【分析】利用等比数列的通项公式及前n 项和公式求解q 的值,再由数列的单调性进一步判断即可.【详解】2131133141122312a a a a q a S T q q q=Þ=Þ=+=Þ++=,,则 ()()2121294214042q q q q q q -+=--=Þ==,.由于 {a n }为递增数列,则 1144q a ==,,所以 {a n }的通项公式为 24n n a -=所以 ()()11414411412nn n S -==--,故选:C.6. 已知体积为的球O 与正四棱锥的底面和4个侧面均相切,已知正四棱锥的底面边长为则该正四棱锥体积值是( )A.B.C.D.【答案】A 【解析】【分析】设正四棱锥P ABCD -的内切球的半径为R ,H 为底面中心,取CD 的中点F ,设O 点在侧面PCD 上的投影为Q 点,则Q 点在PF 上,利用∽V V POQ PFH 求出球心到四棱锥顶点的距离h ,再由棱锥的体积公式计算可得答案.【详解】设正四棱锥P ABCD -的内切球的半径为R ,H 为底面中心,由体积为34π3R得R =连接PH ,PH ^平面ABCD ,球心O 在PH 上,OH R =,取CD 的中点F ,连接,HF PF ,设O 点在侧面PCD 上的投影为Q 点,则Q 点在PF 上,且OQ PF ^,∽V V POQ PFH ,h,所以=PQ PHOQ FHh=,所以1133==´=ABCDV S PH故选:A.7. 斐波那契数列因数学家斐波那契以兔子繁殖为例而引入,又称“兔子数列”. 这一数列如下定义:设{}n a为斐波那契数列,()*12121,1,3,Nn n na a a a an n--===+³Î,其通项公式为n nnaéùêú=-êúëû,设n是2log1(14(xx xéùë-û-<+的正整数解,则n的最大值为()A. 5B. 6C. 7D. 8【答案】A【解析】【分析】利用给定条件结合对数的性质构造42na<,两侧同时平方求最值即可.【详解】由题知n是2log1(14(xx xéùëû+-<+的正整数解,故2log(1(14n n néùëû+-<+,取指数得((4112nn n+<+-,同除2n得,42n n-<,42n nùú-<úû,即42na<,根据{}n a是递增数列可以得到{}2n a也是递增数列,于是原不等式转化为2812525n a <´<.而565,8a a ==可以得到满足要求的n 的最大值为5,故A 正确.故选:A8. 函数()ln f x x =与函数()212g x mx =+有两个不同的交点,则m 的取值范围是( )A. 21,e æö-¥ç÷èø B. 21,2e æö-¥ç÷èø C. 210,e æöç÷èøD. 210,2e æöç÷èø【答案】D 【解析】【分析】利用参变分离将函数图象有两个交点问题转化为y m =和()21ln 2x h x x -=的图象有两个交点,由导数求得ℎ(x )的单调性并求得最大值即可得出结论.【详解】由()21ln 02mx x x +=>得22ln 1m x x -=,则问题转化为y m =和()21ln 2x h x x -=的图象有两个交点,而()()()2232112ln 21ln 2x x x x x h x x xæö×--ç÷-¢èø==,令ℎ′(x )>0,解得0e x <<,令ℎ′(x )<0,解得e x >,故ℎ(x )在()0,e 上单调递增,在()e,¥+单调递减,则()()2max 1e 2e h x h ==,ℎ(x )大致图象如下所示:结合图象可知,m 的取值范围是210,2e æöç÷èø故选:D二、选择题:本题共3小题,每题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 现有十个点的坐标为 ()()()1210,0,,0,,,0x x x L ,它们分别与 ()()()1210,10,,10,,,10y y y L 关于点(3,5)对称.已知 1210,,,x x x L 的平均数为a ,中位数为 b ,方差为c ,极差为d ,则 1210,,,y y y L 这组数满足( )A. 平均数为 6a - B. 中位数为 6b -C. 方差为c D. 极差为d【答案】ABCD 【解析】【分析】根据对称知识可得()6Z 110i i y x i i =-Σ£,,结合平均数、中位数、方差、极差的性质,即可判断出答案.【详解】由于 ()()()1210,0,,0,,,0x x x L ,它们分别与 ()()()1210,10,,10,,,10y y y L 关于点(3,5)对称,则有()6Z 110i i x y i i +=Σ£,,即有 ()6Z 110i i y x i i =-Σ£,.则由平均数的性质可得1210,,,y y y L 这组数的平均数为 6a -,结合中位数性质可知中位数为 6b -,结合方差性质可得方差为c ,极差非负,所以极差为d .故选:ABCD10. 设 123,,z z z 是非零复数,则下列选项正确的是( )A. 2211z z =B. 1212z z z z +=+C. 若122i 2z --=,则116i z +-最小值为3D. 若22i i 4z z ++-=,则2z的最小值为【答案】CD 【解析】【分析】利用共轭复数的概念和加减运算性质判断A ,举反例判断B ,利用复数模的性质得到轨迹方程,结合圆的性质判断C ,利用复数模的性质得到轨迹方程,结合椭圆的性质判断D 即可.【详解】对于A.,设1i z a b =+,则1i z a b =-,所以22221(i)2i z a b a b ab =+=-+,22221(i)2i z a b a b ab =-=--,的当,a b 有1个为0或全为0时,2211z z =,当,a b 均不为0时,2211,z z 无法比较大小,故A 错误,对于B ,当1i z =,2i z =-时,120z z +=,此时120z z +=,122z z +=,故1212z z z z +=+不成立,故B 错误,对于C ,设1i z a b =+,因为122i 2z --=,所以i 22i 2a b +--=,故有2(2)i 2a b -+-=,可得22(2)(2)4a b -+-=,所以1z 的轨迹是以()2,2为圆心,2为半径的圆,而116i i 16i 1(6)i z a b a b +-=++-=++-=,故116i z +-表示点(),a b 到定点()1,6-的距离,由圆的性质可知,1min16i 23z +-=-=,故C 正确,对于D ,设2z a bi =+,所以2i i i (1)i z a b a b +=++=++=,2i i i (1)i z a b a b -=+-=+-=,而22i i 4z z ++-=4=,所以得到点(),a b 到两定点()0,1-,()0,1的距离之和为4,故2z 的轨迹是以()0,1-,()0,1为焦点的椭圆,故轨迹方程为22143y x +=,而2z 表示(),a b 到原点的距离,由椭圆的几何性质可得当点B 在椭圆的左右顶点时,2z 取得最小值,此时2z =,故2min z =D 正确.故选:CD .11. 已知定义在R 上的函数()f x 的图象连续不间断,当()()0e e e 0x f x f x ³+--=,,且当x >0时,()()e e 0f x f x ¢¢++->,则下列说法正确的是()A. ()e 0f =B. ()f x 在(),e -¥上单调递增,在()e,+¥上单调递减C. 若()()1212,x x f x f x <>,则212ex x +<D. 若12,x x 是()()()2e 2g xf x x =+--在()0,2e 内的两个零点,且12x x <,则()()211ef x f x <<【答案】ACD 【解析】【分析】A 选项,令x =0,可求()e f ;B 选项,对()()e e e 0f x f x +--=两边求导,结合()()e e 0f x f x ¢¢++->得()e 0f x ¢-<,()e 0f x ¢+>,可判断()f x 单调性;C 选项,12e x x ,,的大小关系进行分类讨论,利用函数单调性,证明不等式;D 选项,证明212e x x +<,利用函数单调性,证明()()12f x f x <且()()21e f x f x <,可得结论.【详解】A 选项,令x =0,则有()()()()e e e 1e e 0f f f -=-=,所以()e 0f =,故A 正确.B 选项,对()()e e e 0f x f x +--=两边求导,得()()e e e 0f x f x ¢++-=¢,所以()()e e e f x f x +=-¢-¢,代入()()e e 0f x f x ¢¢++->,得当x >0时,()()1e e 0f x ¢-->,所以()e 0f x ¢-<.又因为()()e e 0f x f x ¢¢++->,所以,()e 0f x ¢+>.因此,当e x <时,()0f x ¢<,()f x 在(),e -¥上单调递减;当e x >时,()0f x ¢>,()f x 在()e,+¥上单调递增.故B 错误.C 选项,对12e x x ,,的大小关系进行分类讨论:①当12e x x <£时,()f x 在(),e -¥上单调递减,所以()()12f x f x >,显然有212e x x +<;②当12e x x £<时,()f x 在()e,+¥上单调递增,不符合题意;③当12e x x <<时,当0x ³时,()()e e e f x f x +=-.令()()()()()()122e e,e 2e e 2e t x f t f t f x f x f x ¥=+Î+=->=-,,,又因为()()e 0f x f ³=,所以()22e 0f x ->,因此()()()()1222e 2e 2e f x f x f x f x >=->-.因为12e 2e e x x <-<,,由()f x 的单调性得,212e x x +<.故C 正确.D 选项,因为()()()()()()2200e 202e 2e e 20e e 220g f g f g f =+->=+->=-=-<,,,所以120e 2e x x <<<<.先证212e x x +<,即证122e x x ->,即()12e 0g x ->,只需证()2112e (2e e)20f x x -+--->,即证()211e (e )20f x x +-->.事实上,()()()()()2211111e e 2e 20f x x f x x g x +-->+--==,因此212e x x +<得证.此时有1210e 2e 2e x x x <<<<-<.因为()()()()()22211122e 22e e 2e 2f x x x x f x =--+=---+<--+=,又()10f x ¹,所以()()211f x f x <,因为()()()2112e e f x f x f x <-=,又()10f x ¹,所以()()21e f x f x <.综上,()()211e f x f x <<,故D 正确故选:ACD.【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.证明不等式,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.三、填空题:本题共3题,每小题5分,共15分.12. 已知等差数列{}n a 的首项12a =,公差3d =,求第10项10a 的值为__.【答案】29【解析】【分析】根据等差数列的通项公式求得正确答案.【详解】依题意101922729a a d =+=+=..故答案为:2913. 若 ()554325432102x a x a x a x a x a x a +=+++++,则531420a a a a a a ++=++____________.【答案】121122【解析】【分析】利用赋值法令1x =,1x =-,联立方程组求解即可.【详解】令1x =,得 ()554321012243a a a a a a +==+++++,令1x =-,得 ()5543210121a a a a a a -+==-+-+-+,则 ()()543210543210531243112122a a a a a a a a a a a a a a a +++++--+-+-+-++===,且 ()()543210543210420243112222a a a a a a a a a a a a a a a ++++++-+-+-++++===,故531420121122a a a a a a ++=++.故答案为:121122.14. 如图,在矩形ABCD 中,8,6,,,,,AB BC E F G H ==分别是矩形四条边的中点,点Q 在直线HF 上,点N 在直线BC 上,,,R OQ kOH CN kCF k ==Îuuu r uuur uuu r uuu r,直线EQ 与直线GN 相交于点R ,则点R 的轨迹方程为_______________.【答案】()221,3916y x y -=¹-【解析】【分析】以HF 所在直线为x 轴,GE 所在直线为y 轴建立平面直角坐标系,求出直线EQ 的方程与直线GN 的方程,联立求解即可.【详解】以HF 所在直线为x 轴,GE 所在直线为y 轴建立平面直角坐标系.因为8,6AB BC ==,所以 ()()()()()()0,0,4,0,4,0,0,3,0,3,4,3O H F E G C --,所以 ()4,0OH =-uuur ()()0,3,4,3CF OC =-=uuu r uuu r ,又因为 ,OQ kOH CN kCF ==uuu r uuur uuu r uuu r ,所以 ()()4,0,0,3OQ k CN k =-=-uuu r uuu r,所以()()4,0,4,33Q k N k --.因为 ()()0,3,4,0E Q k --,所以直线EQ 的方程为 334y x k =--①,因为 ()()0,3,4,33G N k -,所以直线GN 的方程为 334ky x =-+②.由①可得 ()()3043x k x y =-¹+,代入②化简可得 ()2210916y x x -=¹,,结合图象易知点R 可到达 ()0,3G ,但不可到达 ()0,3E -,所以点R 的轨迹方程为 ()221,3916y x y -=¹-,故答案为:()221,3916y x y -=¹-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在△ABC 中,角A B C ,,的对边分别为a b c ,,,已知 2cos2cos22sin 2sin sin B A C B C -=-(1)求 A ;(2)若 23b c P Q ==,,,分别为边 a b ,上的中点,G 为 ABC V 的重心,求 PGQ Ð的余弦值.【答案】(1)π3(2)【解析】【分析】(1)根据二倍角公式将已知条件变形转化,再根据正弦定理边角互化,带入到余弦定理即可求得;(2)根据已知设 AB c AC b ==uuu r uuu r rr ,,表达出AP BQ uuu r uuu r ,,再根据余弦定理可求得结果.【小问1详解】因为2cos2cos22sin 2sin sin B A C B C -=-,所以()()22212sin 12sin 2sin 2sin sin B A C B C ---=-,即222sin sin sin sin sin A B C B C =+-由正弦定理得 222a c b bc =+-,由余弦定理得 1cos 2A =,因为()π0π3A A Î=,,【小问2详解】设 AB c AC b ==uuu r uuu r r r ,,1cos 2332b c b c A ×=×=´´=r r r r 依题意可得()1122AP b c BC b c BQ b c =+=-=-uuu r uuu r uuu r r r r r r r,,所以AP ===uuu rBQ ===uuu r ()221111143917224424424AP BQ b c b c b b c c æö×=+-=-×-=--=-ç÷èøuuu r uuu r r rr r r r r r 所以cos AP BQ PGQ AP BQ×Ð==×uuu r uuu r uuu r uuu r .16. 设A B ,两点的坐标分别为()),. 直线AH BH ,相交于点H ,且它们的斜率之积是13-.设点H 的轨迹方程为C .(1)求C ;(2)不经过点A 的直线l 与曲线C 相交于E 、F 两点,且直线AE 与直线AF 的斜率之积是13-,求证:直线l 恒过定点.【答案】(1)(2213x y x +=¹(2)证明见解析【解析】【分析】(1)设点H 的坐标为(),x y ,然后表示出直线,AH BH 的斜率,再由它们的斜率之积是13-,列方程化简可得点H 的轨迹方程;(2)设()()1122,,,E x y F x y ,当直线l 斜率不存在时,求得直线l 为 x =0,当直线l 斜率存在时,设直线:l y kx b =+,由13AE AFk k ×=-13=-,将直线方程代入椭圆方程化简利用根与系数的关系,代入上式化简可得20b =,从而可求得直线恒过的定点.【小问1详解】设点H 的坐标为(),x y ,因为点A 的坐标是(),所以直线 AH的斜率AH k x =¹,同理,直线 BH的斜率BH k x=¹,(13x =-¹,化简,得点H 的轨迹方程为(2213x y x +=¹,即点H 的轨迹是除去()),两点的椭圆.【小问2详解】证明:设()()1122,,,E x y F x y ①当直线l 斜率不存在时,可知 1221,x x y y ==-,且有22111313AE AF x y k k ì+=ïïíï×==-ïî,解得1101x y ==±,,此时直线l 为 x =0,②当直线l 斜率存在时,设直线 :ly kx b =+,则此时有:13AE AFk k ×====-联立直线方程与椭圆方程 2213y kx b x y =+ìïí+=ïî,消去 y 可得: ()222316330k x kbx b +++-=,根据韦达定理可得: 122631kb x x k -+=+,21223331b x x k -=+,13=-,13=-,1=-所以20b =,则0b =或b =,当b=时,则直线 (:l y k x =恒过A 点与题意不符,舍去,故0b =,直线l 恒过原点()0,0,结合①,②可知,直线l 恒过原点 ()0,0,原命题得证.【点睛】关键点点睛:此题考查椭圆的轨迹方程,考查直线与椭圆的位置关系,考查椭圆中直线过定点问题,解题的关键是设出直线方程代入椭圆方程化简,利用根与系数的关系结合已知条件求解,考查计算能力,属于较难题.17. 如图所示,四边形ABCD 是圆柱底面的内接四边形,AC 是圆柱的底面直径,PC 是圆柱的母线,E 是AC 与BD 的交点,608AB AD BAD ACÐ===o ,,.(1)记圆柱的体积为1V ,四棱锥P ABCD -的体积为 2V ,求12V V ;(2)设点F 在线段AP 上,且存在一个正整数k ,使得PA kPF PC kCE ==,,若已知平面FCD 与平面PCDk 的值.【答案】(1(2)4k =【解析】【分析】(1)利用圆柱以及棱锥的体积公式,即可求得答案.(2)建立空间直角坐标系,求出相关点坐标,利用空间角的向量求法,结合平面FCD 与平面PCD 的夹角的正弦值,即可求得答案.【小问1详解】在底面ABCD 中,因为 AC 是底面直径,所以 90ABC ADC Ð=Ð=,又 AB AD =,故 ACB △≌ACD V ,所以13042BAC DAC BAD BC CD AB AD ÐÐÐ=======o ,,.因为PC 是圆柱的母线,所以PC ^面ABCD ,所以 211π()16π2V AC PC PC ==´,211112243232V AB BC PC PC PC =´´´××=´´´´=,因此12V V =;【小问2详解】以C 为坐标原点,以,CA CP uuu r uuu r为,x z 轴正方向,在底面ABCD 内过点C 作平面PAC 的垂直线为y 轴,建立如图所示的空间直角坐标系.因为30BAC DAC AB AD ÐÐ===o ,,所以 ABE V ≌ADE V ,故 90AEB AED ÐÐ==o ,所以1622BE DE AB AE CE AC AE =====-=,,2PC kCE k ==,因此()()()()()()0,0,0,8,0,0,2,,0,0,2,2,,0,0,2C A D P k CD CP k ==uuu r uuu r,()8,0,2PA k =-uuu r,因为 PA kPF =,所以 18,0,2PF PA k k æö==-ç÷èøuuu r uuu r ,则88,0,22,,0,22F k CF k k k æöæö-=-ç÷ç÷èøèøuuu r 设平面FCD 和平面PCD 的法向量分别为()()111222,,,,,n x y z m x y z ==r r,则有:)111182020n CF x z k n CD x ì×=+-=ïíï×=+=îuuu r r uuu rr ,222220m CP kz m CD x ì×==ïí×=+=ïîuuu r r uuu r r ,取())()221,,1,4n k k k k m æö=---=-ç÷ç÷èør r ,设平面FCD 与平面PCD 的夹角为 q,则sin q =所以有:cos cos q ===,整理得2120k k --=,2120k k -+=(无解,舍),由于k 为正整数,解得4k =.18. 已知函数()()1ln f x x x =-,(1)已知函数()()1ln f x x x =-的图象与函数()g x 的图象关于直线 x =―1对称,试求()g x ;(2)证明()0f x ³;(3)设0x 是()1f x x =+的根,则证明:曲线ln y x =在点()00,ln A x x 处的切线也是曲线e x y =的切线.【答案】(1)()()()3ln 2,(2)g x x x x =----<-. (2)证明见解析 (3)证明见解析【解析】【分析】(1)由()()11f x g x --=-+,得()()()12ln 1g x x x -+=----,再利用换元法求()g x ;(2)分区间讨论各因式的符号或利用导数证明;(3)取曲线 e x y =上的一点 ()11e,x B x ,设()ln g x x =在A 处的切线即是 ()exh x =在B 处的切线,证明直线AB 的斜率等于()ln g x x =在A 处的切线斜率和()e xh x =在B 处的切线斜率即可.【小问1详解】因为()f x 的图象与()g x 的图象关于直线 x =―1对称,所以 ()()11f x g x --=-+.又因 ()()()()()111ln 12ln 1f x x x x x éù--=-----=----ëû,所以()()()12ln 1g x x x -+=----,令1t x =-+,则 1x t =+,所以()()][()()()21ln 113ln 2g t t t t t éù=--+--+=----ëû,因此()()()3ln 2,(2)g x x x x =----<-.【小问2详解】证明:解法1:当 1x ³时,10x -³且 ln 0x ³,此时 ()()1ln 0f x x x =-³;当01x <<时,10x -<且ln 0x <,此时 ()()1ln 0f x x x =->,故综上()0f x ³.解法2:()1ln 1f x x x +¢=-,令()1ln 1x x xj =+-,()2110x x x j ¢=+>在()0,¥+上恒成立,为故()x j 在()0,¥+上单调递增,即()f x ¢在()0,¥+上单调递增,因此当01x <<时,()()10f x f ¢¢<=; 当()()110x f x f ¢¢³³=,;因此()f x 在()0,1上单调递减,在 [)1,+¥上单调递增,故()()10f x f ³=.【小问3详解】证明:不妨取曲线 e x y =上的一点 ()11e ,x B x ,设()ln g x x =在A 处的切线即是 ()exh x =在B 处的切线,则 ()()10101e x g x h x x ¢¢===,得 101ln x x =,则 B 的坐标 0011ln x x æöç÷èø,,由于()0001ln 1x x x -=+,所以0001ln 1x x x +=-,则有()()2000000000002000000000011111ln ln 111111ln ln 11ABx x x x x x x x x x k g x x x x x x x x x x x ++-----======++--¢++-,综上可知,直线AB 的斜率等于()ln g x x =在A 处的切线斜率和()e xh x =在B 处的切线斜率,所以直线AB 既是曲线ln y x =在点()00n ,l A x x 处的切线也是曲线e x y =的切线.19. 如果函数 F (x )的导数为()()F x f x ¢=,可记为()()d f x x F x ò= ,若 ()0f x ³,则()()()baf x dx F b F a =-ò表示曲线 y =f (x ),直线 x a x b ==,以及x 轴围成的“曲边梯形”的面积. 如:22d x x x C ò=+,其中 C 为常数; ()()222204xdx C C =+-+=ò,则表 0,2,2x x y x ===及x 轴围成图形面积为4.(1)若 ()()()e 1d 02xf x x f =ò+=,,求 ()f x 的表达式;(2)求曲线 2y x =与直线 6y x =-+所围成图形的面积;(3)若 ()[)e 120,xf x mx x ¥=--Î+,,其中 R m Î,对 [)0,a b ¥"Î+,,若a b >,都满足()()0d d a bf x x f x x >òò,求 m 的取值范围.【答案】(1)()e 1xf x x =++(2)1256(3)12m £【解析】【分析】(1)根据新定义及()02f =计算得解;(2)根据新定义,构造函数()26g x x x =-+-即可得出面积;(3)根据所给条件可得()()d F x f x x =ò在 [)0,¥+上单调递增,转化为()0f x ³在 [)0,¥+恒成立,就导数的符号分类讨论后可求参数的取值范围.【小问1详解】()()e 1d e x xf x x x C =ò+=++,其中 C 为常数.而 ()02f =,即 102C ++=,所以 1=C ,所以()e 1xf x x =++.【小问2详解】联立 26y x y x ì=í=-+î,解得 123,2x x =-=,当32x -<<时,26x x -+>,令 ()26,g x x x =-+-()()2311d 623F x g x x x x x C =ò=-+-+,则围成的面积()()()2389125d 23212189326S g x x F F -æöæö==--=-+----+=ç÷ç÷èøèøò【小问3详解】令 ()()d F x f x x =ò,由题意可知,[)0,a b a b ¥"Î+>,,,满足()()()()00F a F F b F ->-,即()()F a F b >,即()()d F x f x x =ò在 [)0,¥+上单调递增,进而()0f x ³在 [)0,¥+恒成立,e 120x mx --³在 ()0,¥+恒成立.()e 2,0x f x m x =->¢,若12m £,则()0f x ¢>在()0,¥+上恒成立,故()f x 在[)0,¥+上为增函数,故()()00f x f ³=;若12m >,则0ln 2x m <<时,()0f x ¢<,故()f x 在[]0,ln 2m 上为减函数,故[]0,ln 2x m "Î时,()()00f x f £=,与题设矛盾;故12m £.【点睛】关键点点睛:本题第三步关键在于利用a b >,都满足()()0d d abf x x f x x >òò,得出函数()()d F x f x x =ò在 [)0,¥+上单调递增,再结合导数的符号分类讨论后可得参数的取值范围.。
浅谈函数单调性在高中数学中的学习与运用1. 引言1.1 引言在高中数学学习中,函数单调性是一个重要的概念。
它不仅在数学理论中有着重要的地位,而且在解决实际问题中也具有很大的应用价值。
本文将从函数单调性的概念入手,探讨在高中数学中函数单调性的学习与运用。
函数单调性是指函数在定义域上的增减性质。
在高中数学课程中,我们学习了很多种函数,如线性函数、二次函数、指数函数、对数函数等。
了解这些函数的单调性,可以帮助我们更好地理解函数的性质,进而解决各种数学问题。
在学习函数单调性时,我们需要掌握如何判断一个函数的单调性。
一般来说,可以通过求导数或者利用函数的增减性质来确定一个函数的单调性。
我们还需要注意函数在定义域上的特殊点,如奇点和间断点,这些点可能影响函数的单调性。
函数单调性在高中数学中有着广泛的应用。
比如在求函数的最值、解不等式、证明不等式等问题中,函数的单调性往往能起到关键作用。
在物理、化学等自然科学中,函数的单调性也常常被用来描述物理规律和现象。
2. 正文2.1 函数单调性的概念函数单调性是函数在定义域内具有特定的增减规律的性质。
简单来说,就是函数随着自变量的增大而增大,或随着自变量的减小而减小。
在数学中,函数单调性是对函数变化规律的一种重要描述,它能够帮助我们更好地理解和分析函数的性质。
具体来说,函数的单调性分为严格单调和非严格单调两种。
严格单调是指函数在整个定义域内严格递增或严格递减,即任意两个不同的自变量对应的函数值之间的大小关系是确定的。
非严格单调则是指函数在整个定义域内递增或递减,但可以存在相等的情况。
函数单调性的概念为我们提供了研究函数的新视角,通过研究函数的单调性,我们可以得到函数图像的大致形状和变化规律。
这对于解题和分析问题都有重要意义。
在高中数学中,函数单调性是一个重要的概念,通过对函数单调性的学习和理解,我们可以更深入地掌握函数的性质和特点。
函数单调性是数学中一个基础而重要的概念,它在高中数学中具有重要的教学意义和应用价值。
利用函数单调性证明积分不等式
黄道增 浙江省台州学院 (浙江 317000)
摘要:积分不等式的证明方法多种多样,本文主要利用被积函数的单调性和通过构造辅助函数的单调性证明积分不等式。
关键词:函数单调性 积分不等式 辅助函数 中图分类号 O172.2
积分不等式是微积分学中一类重要的不等式,其证明方法多种多样。
如果题目条件中含“单调性”或隐含“单调性”的条件,利用函数单调性证明比较简单。
本文主要讨论利用被积函数的单调性和通过构造辅助函数的单调性证明积分不等式。
1 利用被积函数的单调性
证明方法根据----定积分性质之一:设)(x f 与)(x g 为定义],[b a 在上的两个可积函数,若],[),()(b a x x g x f ∈≤,则dx x g dx x f b
a b a ⎰⎰≤)()(. 例1 设)(x f 为]1,0[上非负单调递减函数,
证明:对于10<<<βα,有⎰⎰
>βααβαdx x f dx x f )()(0 证明:由)(x f 的单调递减性得:
若10<≤<αx ,有)()(αf x f ≥
所以)()()(00αααα
αf dx f dx x f =≥⎰⎰ (1) 同理有 )()()()(ααβαβαβ
αf dx f dx x f -=≤⎰⎰ (2) 由(1)(2)得:
dx x f f dx x f ⎰⎰-≥≥β
αα
αβαα)(1)()(10 (3) 将(3)式两边同乘以β
αβα)(-,有 dx x f dx x f ⎰⎰≥-βαα
βαβα
β)()(0 因为1<-β
αβ,所以⎰⎰>βααβαdx x f dx x f )()(0 例2 试证:dx x x dx x x
⎰⎰-≥-1021021sin 1cos .
分析:不等式两边的积分是瑕积分。
在两边的积分中分别作变换x t arccos =与
x t arcsin =,原不等式可化为dt t dt t ⎰⎰≥202
0)sin(cos )cos(sin ππ
,欲证不等式,只需证明
)sin(cos )cos(sin t t ≥,)2,0(π∈t ,而)sin(cos )sin 2sin()cos(sin t t t ≥-=π。
因为)2,0(π∈t 时,2cos 0π<<t ,2sin 20ππ<-<t ,而函数x y sin =在)2
,0(π上严格单调递增,于是只要证明 当)2,0(π∈t 时,有t t sin 2cos -≤π或2sin cos π≤+t t 。
当)2
,0(π∈t 时,2
2)4sin(2sin cos ππ<≤+=+t t t ,于是问题得证。
(证略) 2 利用辅助函数的单调性
证明方法根据----变微积分学基本定理和可导函数的一阶导数符号与单调性关系定理:
微积分学基本定理:若函数)(x f 在],[b a 上连续,则由变动上限积分],[,)()(b a x dt t f x x a
∈=Φ⎰,定义的函数Φ在],[b a 上可导,而且)()(x f x =Φ'.也就是说,函数Φ是被积函数)(x f 在],[b a 上的一个原函数.
可导函数的一阶导数符号与函数单调性关系定理:设函数)(x f 在],[b a 连续,在),(b a 内可导,如果在),(b a 内0)(≥'x f (或0)(≤'x f ),那么)(x f 在],[b a 上单调增加(或单调减少)。
证明的一般过程:
(1)构造辅助函数)(x f ,取定闭区间],[b a ;
(2)求函数)(x f 的导数)('x f ,再判别它的符号,利用可导函数的一阶导数符号与函数单调关系,判断函数的单调性;
(3)求函数在区间端点的函数值;
(4)根据第2步和第3步即可得证。
例3 设)(x f 在],[b a 上连续,且单调递增,试证明dx x f b a dx x xf b a
b
a ⎰⎰+≥
)(2)(. 分析:可将此定积分不等式中常数b 变为变数x ,利用差式构造辅助函数:dt t f x a dt t tf x F x a x a ⎰⎰+-=)(2)()(,则要证0)()(=≥a F b F . 证明:设dt t f t a dt t tf x F x a x
a ⎰⎰+-=)(2
)()(,则)(x F 在],[b a 上连续,在),(b a 内可导, dt t f x f dt t f x f a x x F x a x a ⎰⎰-=--=)]()([21])()()[(21)(' ∵)(x f 在],[b a 上连续,且单调增加,
∴0)('≥x g
即)(x g 在],[b a 上单调增加,
∵0)(=a F ∴0)(>b F ∴0)(2
)(≥+-⎰⎰dx x f b a dx x xf b a b
a ∴dx x f
b a dx x xf b a b a ⎰⎰+≥)(2)( 例4 设)(x f ,)(x g 在]1,0[上的导函数连续,且0)0(=f ,0)('≥x f ,0)('≥x g ,证明:对任何]1,0[∈a ,有)1()()(')()(')(1
00g a f dx x g x f dx x f x g a ≥-⎰⎰ 分析:可将此定积分不等式的常数a 变为变数x ,利用差式构造辅助函数:)1()()(')()(')()(1
00g x f dt t g t f dt t f t g x F x --=⎰⎰,则要证0)(≥a F . 证明:令)1()()(')()(')()(1
00g x f dt t g t f dt t f t g x F x --=⎰⎰,]1,0[∈x ,则)(x F 在]1,0[上连续,在)1,0(内可导,且)]1()()[(')1()(')(')()('g x g x f g x f x f x g x F -=-=
∵0)('≥x g 且0)('≥x f
∴)1()(g x g ≤,则0)('≤x F ,
∴)1()1()(')()(')()1()(1
010g f dt t g t f dt t f t g F x F --=≥⎰⎰ )1()1()]()([1
0g f x f x g d -=⎰ 0)1()1()]0()0()1()1([=--=g f g f g f
即0)(≥x F ,]1,0[∈x 。
∴对任何]1,0[∈a ,有)1()()(')()(')(1
00g a f dx x g x f dx x f x g a ≥-⎰⎰. 例5 设)(x f 在]1,0[上可微,且当)1,0(∈x 时,1)('0<<x f ,0)0(=f ,
试证:dx x f dx x f ⎰⎰>1
03210)(])([ 分析:可将此定积分不等式看成是数值不等式,并将常数1变为变数x ,利用差式构造辅助函数.
证明:对任意]1,0[∈t ,构造函数dx x f dx x f t F t
t ⎰⎰-=0320)(])([)(,显然有0)0(=F )]()(2)[(2)('20t f dx t f t f t F t
-=⎰, 不妨令)()(2)(20t f dx t f t H t
-=⎰,显然有0)0(=H )]('1)[(2)(')(2)(2)('t f t f t f t f t f t H -=-=
1)('0<<t f
∴)(t f 在]1,0[上严格单调递增。
∴0)0()(=>f t f
∴0)('≥t H
∴对任意]1,0[∈t 有0)0()(=≥H t H ,0)('>t F ,]1,0[∈t
∴)(t F 在]1,0[上严格单调递增,0)0()1(=>F F
即dx x f dx x f ⎰⎰>1
03210)(])([ 评析:对于含有定积分的不等式,往往把某一常数变为变数,利用差式构造变上限辅助函数,再利用变上限积分dt t f x
a ⎰)(及函数的单调性解决。
参考文献
[1] 华东师范大学数学系.数学分析(上)[M].北京:高等教育出版社,2001.
[2] 张荣.辅助函数在不等式证明中的应用[J].数学的实践与认识,2007(10).
[3] 叶国菊,赵大方编.数学分析学习与考研指导[M].北京:清华大学出版,2009.
[4] 贾高.数学分析专题选讲[M].上海:上海交通大学出版社,2009.。