数学物理方程公式总结
- 格式:pdf
- 大小:337.17 KB
- 文档页数:17
各类计算公式大全计算是我们生活和工作中经常用到的重要技能。
不同领域的计算需要使用各种各样的公式和方程。
本文将为您提供各类计算公式的大全,包括数学、物理、化学、经济等方面的计算公式。
一、数学公式1. 代数公式:- 二次方程求根公式:对于二次方程ax^2 + bx + c = 0,求根公式为x = (-b ± √(b^2 - 4ac)) / (2a)- 四则运算规则:加法、减法、乘法和除法的运算规则- 求平方根公式:√a = b,等价于a = b^22. 几何公式:- 长方形面积公式:面积A = 长L ×宽W- 圆的面积公式:面积A = πr^2,其中π≈3.14159,r为半径- 三角形面积公式:面积A = 1/2 ×底边长度 ×高3. 统计学公式:- 平均数计算:平均数 = 所有数据之和 / 数据个数- 标准差计算:标准差= √(每个数据值与平均数之差的平方和 / 数据个数)二、物理公式1. 运动学公式:- 匀速直线运动公式:位移s = 速度v ×时间t- 匀加速直线运动公式:位移s = 初速度v0 ×时间t + 1/2 ×加速度a ×时间t的平方2. 力学公式:- 牛顿第二定律:力F = 质量m ×加速度a- 功公式:功W = 力F ×位移s × cosθ,其中θ是力F和位移s之间的夹角三、化学公式1. 相对原子质量计算:相对原子质量 = 各同位素质量 ×各同位素的丰度之和2. 摩尔浓度计算:摩尔浓度 = 溶质的摩尔数 / 溶液的体积四、经济学公式1. 利息计算:利息 = 本金 ×年利率 ×时间2. 折现现金流量计算:现值 = 现金流量 / (1 + 折现率)^时间以上仅是各类计算公式的一小部分示例,实际应用中还有各种综合计算的公式。
在实际使用过程中,我们要根据具体情况选择合适的公式进行计算,并注意单位的转换和精度的保留。
数学物理方程归纳总结数学和物理方程是科学研究中的重要工具,广泛应用于各个领域。
本文将对一些常见的数学物理方程进行归纳总结,分析其数学意义和物理应用,并探讨其背后的原理和推导过程。
1. 一维运动方程一维运动是物理学中最简单的情形之一,其运动状态只涉及一个方向的变化。
常见的一维运动方程有:- 位移公式:$S = V_0t + \frac{1}{2}at^2$- 速度公式:$V = V_0 + at$- 速度与位移的关系:$V^2 = V_0^2 + 2aS$这些方程描述了质点在匀加速度下的运动规律,其中$S$ 表示位移,$V_0$ 表示初始速度,$a$ 表示加速度,$t$ 表示时间,$V$ 表示末速度。
这些方程在解决一维运动问题时具有重要的应用价值,可以帮助我们计算物体的位移、速度和加速度等物理量。
2. 牛顿力学方程牛顿力学是经典力学的基础理论,在描述宏观物体运动和相互作用时非常重要。
牛顿三定律是牛顿力学的核心,其表述为:- 第一定律(惯性定律):物体在不受外力作用时保持静止或匀速直线运动。
- 第二定律(运动定律):物体受到的合力等于质量乘以加速度,即 $F = ma$。
- 第三定律(作用与反作用定律):任何两个物体之间的相互作用力大小相等、方向相反。
根据牛顿第二定律,我们可以推导出一些重要的等式,用于解决各种力学问题。
例如,结合万有引力定律,我们可以得到开普勒第三定律 $T^2 = \frac{4\pi^2}{GM}r^3$,其中 $T$ 是行星公转周期,$G$ 是引力常数,$M$ 是太阳的质量,$r$ 是行星与太阳的平均距离。
3. 麦克斯韦方程组麦克斯韦方程组是电磁学的基础方程,描述了电磁场的产生和传播规律。
麦克斯韦方程组包括四个方程:- 高斯定律:$\nabla \cdot E = \frac{\rho}{\varepsilon_0}$- 安培定律:$\nabla \cdot B = 0$- 法拉第电磁感应定律:$\nabla \times E = -\frac{\partial B}{\partial t}$- 完整的麦克斯韦方程:$\nabla \times B =\mu_0J+\mu_0\varepsilon_0\frac{\partial E}{\partial t}$其中,$E$ 和 $B$ 分别表示电场和磁场,$\rho$ 表示电荷密度,$J$ 表示电流密度,$\varepsilon_0$ 是真空中的介电常数,$\mu_0$ 是真空中的磁导率。
高数中物理应用常见公式高等数学中物理应用的常见公式非常多,下面列举了一些常见的公式及其应用:1. 牛顿第二定律:F = ma这是质点运动学的基本定律,描述了一个质点受到的力与它的加速度和质量的关系。
2.圆周运动的速度和加速度:速度公式:v=ωr加速度公式:a=ω²r这些公式用于描述物体在圆周运动中的速度和加速度与角速度、半径的关系。
3.牛顿万有引力定律:F=Gm₁m₂/r²这个公式描述了两个物体之间的引力与它们的质量和距离的关系,是解释行星运动、万有重力等现象的基础。
4.动能定理:ΔK=W这个公式描述了物体动能变化与外力所做的功之间的关系。
5. 阻力公式:F = kv这个公式描述了一个物体受到的空气阻力与它的速度的关系,其中k 为阻力系数。
6.万有引力势能:U=-Gm₁m₂/r这个公式描述了两个物体之间的引力势能与它们的质量和距离的关系。
7.能量守恒定律:E=K+U这个公式描述了一个系统的总能量,其中E为系统的总能量,K为动能,U为势能。
8.简谐振动的周期和频率:周期公式:T=2π√(m/k)频率公式:f=1/T这些公式用于描述质点在简谐振动中的周期和频率与质量和弹性系数的关系。
9.热传导定律:q=kAΔt/Δx这个公式描述了传热过程中热量的传导与温度差、传导系数、传导路径的关系。
10.雷诺数:Re=ρvL/η这个公式描述了流体流动中惯性力与黏性力的关系,其中ρ为流体密度,v为流速,L为特征长度,η为动力黏度。
这只是部分高等数学中物理应用的常见公式,还有很多其他的公式和应用。
在物理学中,公式只是数学描述实际规律的工具,更重要的是理解其背后的物理原理和概念。
试证:圆锥形枢轴的纵振动方程为2222)1(])1[(t u h x x u h x x E ∂∂-=∂∂-∂∂ρ其中h 为圆锥的高。
并求通解及它的初值问题:0:(),()ut u x x tϕψ∂===∂的解。
(1)证明:在圆锥形枢轴内取出],[x x x ∆+一小段来研究。
端面丛向位移为),(t x u [,][(,),(,)]x x x u x t u x x t +∆→+∆ 在时刻t,端面的相对延伸为),(t x u 与),(t x x u ∆+根据胡克定律为),(t x ESux-及),(t x x ESu x ∆+由牛顿第二定律有合力为:),(t x x ESu x ∆+),(t x ESu x -x Su tt ∆=ρ又因为 2222[()t a n ]()()S r h x h x t a nππαπα==-=- 2[()tan ](,)x E h x x u x x t πα--∆+∆),(]tan )[(2t x u x h E x απ--x u x h tt∆-=2]tan )[(αρπttx u x h xu x h E 22)()(-=∂-∂ρππ tt x u x h x u x h E 22)()(-=∂-∂ρ 即:2222222222[(1)](1)1[(1)](1)E ()x u x uE x h x h t x u x u x h x a h t a ρρ∂∂∂-=-∂∂∂∂∂∂-=-∂∂∂=令。
(5分)(2)设(,)()(,)v x t h x u x t =-(5分) 2()()x x v h x v u h x -+=-2222222[(1)]()1[(1)](1)()x x ux h x v h x v x x ux h h x a h t ∂∂-∂∂-+∂∂=-=-∂-∂ 2222221()()v u h x h x x a t ∂∂-=-∂∂ ∴ 2222221[()][()]h x u h x u x a t∂∂-=-∂∂ (5分) 即:222221v v x a t∂∂=∂∂, 或22222v v a t x ∂∂=∂∂则其通解为:()()()h x u v F x at G x at -==-++ (5分)2.利用传播波法,求解波动方程的特征问题(又称古尔沙问题)⎪⎪⎩⎪⎪⎨⎧==∂∂=∂∂=+=-).()(0022222x u x u x u a t u at x at x ψϕ ())0()0(ψϕ= 解:u(x,t)=F(x-at)+G(x+at) 令 x-at=0 得 )(x ϕ=F (0)+G (2x ) 令 x+at=0 得 )(x ψ=F (2x )+G(0) 所以 F(x)=)2(x ψ-G(0). G (x )=)2(x ϕ-F(0). 且 F (0)+G(0)=).0()0(ψϕ= 所以 u(x,t)=(ϕ)2at x ++)2(atx -ψ-).0(ϕ 即为古尔沙问题的解。
===================== 无限长弦的一般强迫振动定解问题200(,)(,0)()()tt xx t t t u a u f x t x R t u x u x ϕψ==⎧=+∈>⎪=⎨⎪=⎩ 解()()().().0()111(,)(,)222x at t x a t x at x a t u x t x at x at d f d d a a ττϕϕψξξατατ++----⎡⎤=++-++⎡⎤⎣⎦⎢⎥⎣⎦⎰⎰⎰ 三维空间的自由振动的波动方程定解问题()2222222220001,,,,0(,,)(,,)t t u uu a x y z t t x y z u x y z u x y z t ϕϕ==⎧⎛⎫∂∂∂∂=++-∞<<+∞>⎪ ⎪∂∂∂∂⎝⎭⎪⎪=⎨⎪∂⎪=∂⎪⎩在球坐标变换sin cos sin sin (0,02,0)cos x r y r r z r θϕθϕϕπθπθ=⎧⎪=≤<+∞≤≤≤≤⎨⎪=⎩21()1()(,)44M Mat r S S M M u M t dS dS a t r a rϕψππ⎡⎤''∂=+⎢⎥∂⎢⎥⎣⎦⎰⎰⎰⎰(r=at)221()1()(,)44M Mat atS S M M u M t dS dS a t t a tϕψππ⎡⎤''∂=+⎢⎥∂⎢⎥⎣⎦⎰⎰⎰⎰无界三维空间自由振动的泊松公式()sin cos ()sin sin (02,0)()cos x x at y y at z z at θϕθϕϕπθπθ'=+⎧⎪'=+≤≤≤≤⎨⎪'=+⎩2()sin dS at d d θθϕ=二维空间的自由振动的波动方程定解问题()222222200,,,0(,)(,)t t u uu a x y t t x y u u x y x y t ϕψ==⎧⎛⎫∂∂∂=+-∞<<+∞>⎪ ⎪⎪∂∂∂⎝⎭⎨∂⎪==⎪∂⎩22at at ππ⎡⎤⎡⎤======================= 傅立叶变换1()()2i x f x f e d λλλπ+∞-∞=⎰基本性质[]1212[][]F f f F f F f αβαβ+=+ 1212[][][]F f f F f F f *=12121[][][]2F f f F f F f π=* [][]F f i F f λ'= ()[]()[]k k F f i F f λ= [][]d F f F ixf d λ=- 1[()]d i x f F f d λλ--= 00[()][()]i x F f x x e F f x λ--=00[()]()i x F e f x f λλλ=- ..1[()][()]x F f d F f x i ξξλ-∞=⎰.0.[)]1i xi xx F x x edx eλλδδ∞--=-∞===⎰(() ()()..[]i x i F x x e dx e λλξδξδξ∞---∞-=-=⎰1[()]()F f ax f a aλ=若[()]()F f x g λ=则 [()]2()F g x f πλ=-[]12()F πδλ= 22242ax aF e e λπ--⎛⎫⎡⎤= ⎪⎣⎦⎝⎭1cos ()21sin ()2ia iaia ia a e e a e e i --=+=- cos sin cos sin ia ia e a i a e a i a -=+=-2x edx +∞--∞=⎰()()i x f f x e dx λλ+∞--∞=⎰========================= 拉普拉斯变换()()sx f s f x e dx +∞-=⎰[]Re Re ax cL ce p a p a=>-21[]L x s=21[]()x L e x s ββ-⋅=+[]22sin kL kt s k=+ []22cos sL kt s k==+ []22[]2ax ax e e aL shax L s a --==- Re Re s a > []22[]2ax ax e e sL chax L s a -+==+ Re Re s a >基本性质[]1212[][]L f f L f L f αβαβ+=+ 1111212[][]L f f L f L f αβαβ---⎡⎤+=+⎣⎦[()][()],0s L f x e L f x τττ--=≥[()](),Re()ax L e f x f s a s a σ=--> 1[()](),(0)sL f cx f c c c=> ()12(1)[][](0)(0)(0)n n n n n L f s L f s f s f f ---'=----..01[()][()]x L f d L f x sττ=⎰ [][()]nn n d L f L x f ds=- ..()[]pf x fs ds L x∞=⎰() 1212[][][]L f f L f F f *= 0[()]()1sx L x x e dx δδ+∞-==⎰====================== 三个格林公式 高斯公式:设空间区域V 是由分片光滑的闭曲面S 所围成,函数P ,Q,R 在V 上具有一阶连续偏导数,则:V SP Q R dV Pdydz Qdzdx Rdxdy x y z ⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 或()()()cos ,cos ,cos ,V SP Q R dV P n x Q n y R n z dS x y z ⎛⎫∂∂∂++=++⎡⎤ ⎪⎣⎦∂∂∂⎝⎭⎰⎰⎰⎰⎰ 第一格林公式设u(x,y,z),V(x,y,z)在SŲS V 上有一阶连续偏导数,它们在V 中有二阶偏导,则:SVVu v dS u vdV u vdV ∇⋅=∇⋅∇+∆⎰⎰⎰⎰⎰⎰⎰⎰第二格林公式设u(x,y,z),V(x,y,z)在SŲS V 上有一阶连续偏导数,它们在V 中有二阶偏导,则:()()SVu v v u dS u v v u dV ∇-∇⋅=∆-∆⎰⎰⎰⎰⎰第三格林公式设M 0,M 是V 中的点,v(M)=1/r MM0, u(x,y,z)满足第一格林公式条件,则有:000011111()44MM MM MM S V u u M u dS u dV r n n r r ππ⎡⎤⎛⎫⎛⎫∂∂=--∆⎢⎥ ⎪ ⎪ ⎪ ⎪∂∂⎢⎥⎝⎭⎝⎭⎣⎦⎰⎰⎰⎰⎰ 定理1:泊松方程洛平问题(,,),(,,)(,,),((,,),(xx yy zz SS S u u u u f x y z x y z V uu x y z x y z n ϕψ∆=++=∈⎧⎪⎨∂==⎪∂⎩连续)连续) 的解为: 011111()()()()44S V u M M M dS f M dV r n r r ψϕππ⎡∂⎤⎛⎫⎛⎫=-- ⎪ ⎪⎢⎥∂⎝⎭⎝⎭⎣⎦⎰⎰⎰⎰⎰ 推论1:拉氏方程洛平问题0,(,,)(,,),((,,),(xx yy zz SS S u u u u x y z V uu x y z x y z n ϕψ∆=++=∈⎧⎪⎨∂==⎪∂⎩连续)连续)的解为: 0111()()()4S u M M M dS r n r ψϕπ⎡∂⎤⎛⎫=- ⎪⎢⎥∂⎝⎭⎣⎦⎰⎰ ============================调和函数1、定义:如果函数u(x,y,z)满足:(1) 在V S 具有二阶连续偏导数;(2) 0u ∆= 称u 为V 上的调和函数。
初中数学物理化学公式大全1. 一元一次方程:ax + b = 0,x = -b/a2. 一元二次方程:ax^2 + bx + c = 0,x = (-b ± √(b^2 - 4ac)) / (2a)3.平方差公式:a^2-b^2=(a+b)(a-b)4.二次平方根公式:√(a±√b)=√[(a+√b)/2]±√[(a-√b)/2]5.合并同类项:a+b+c=a+(b+c)6. 分配律:a(b + c) = ab + ac7. 乘法公式:(a + b)(c + d) = ac + ad + bc + bd8.一次函数的斜率公式:k=(y2-y1)/(x2-x1)9. 平方根公式:√a * √b = √(ab)10. 单位换算公式:1cm = 0.01m,1km = 1000m11.弧长公式:l=2πr(θ/360°)12.面积公式:矩形面积=长×宽,三角形面积=1/2×底×高,圆面积=πr^21.动力学公式:力F=m×a,动量p=m×v,功W=F×s,机械能E=m×g×h2.运动学公式:平均速度v=总位移/总时间,加速度a=(v-u)/t,力F=m×a3.电路公式:电流I=Q/t,电压V=W/Q,电阻R=V/I,电功率P=V×I4. 光学公式:折射率 n = sin(i) / sin(r),焦距 f = 1 / (1/f1+ 1/f2),光速c = λ × f5.温度转换公式:摄氏温度C°=5/9×(华氏温度-32°),开尔文温度K=摄氏温度+273.151.反应物与生成物的物质的量关系:n(A)/n(B)=a/b=n(C)/n(D)2.电离平衡常数公式:K=[C]^c×[D]^d/[A]^a×[B]^b3. 摩尔浓度公式:C = n / V,单位:mol/L4.摩尔体积公式:V=V0×(n/n0)5. 摩尔质量公式:M = m / n,单位:g/mol6. 摩尔焓变公式:ΔH = q / n,单位:J/mol7.摩尔溶解焓公式:ΔH=ΔH溶剂+ΔH溶质8. 摩尔熵变公式:ΔS = q / T,单位:J/(mol·K)9.化学反应速率公式:速率=Δ[C]/Δt=k[A]^m×[B]^n,m和n是反应物的摩尔系数这些公式可以帮助学生更好地理解和应用数学、物理和化学的知识。
十大物理公式十大物理公式之top10:那就是我们的牛顿第二定律:其中:F代表力的大小;m代表物体质量;v代表物体速度话说牛顿的第二定律可以被当成整个物理学的开端。
仍然记得当年初中学到牛顿第二定律之后心里面有一种豁然开朗的感觉,有一种全宇宙的秘密都尽在于此的感觉在这里我们为什么没有选用牛顿第二定律的通常形式F=ma呢?因为我们这里选用的形式才是牛顿当年提出这个定律时的原始形式,而且这个形式在爱因斯坦的狭义相对论中也是正确的。
但是话又说回来了,牛顿的第二定律终究还仅仅是力学中的基本定律,不能走出力学这个狭隘框架半步。
所以这个牛顿的式子排名第十。
十大物理公式之top9:薛定谔的波动方程:其中:h是折合普朗克常数,m是粒子质量,V 是势能函数,希腊字母phi是粒子的波函数,倒三角的平方是拉普拉斯算符薛定谔的波动方程背后确实没有什么引人入胜的传奇可讲,只是因为有一次,薛定谔先生在演讲宣传“德布罗意波”(就是我们常说的波函数所描述的波)时被一个听众问到“德布罗意波的波动方程是什么”,从而激发起了薛定谔寻找答案的冲动。
但是由这个波动方程的提出所引发的量子力学体系之建立确实是一段百听不厌的传奇。
在物理学史上,量子力学又被称为男孩物理学,因为创立量子力学主体的是一帮平均年龄不到30岁的大男孩。
他们在哥本哈根的“量子教父”:玻尔的带领下共同埋葬了经典物理的宏伟大厦,开辟了另一片崭新的物理天地。
在现代的量子力学体系中,薛定谔方程就像经典力学中的牛顿第二定律一样被作为一项公设来接受。
十大物理公式之top8牛顿的万有引力定律:其中:F是万有引力大小,G是万有引力常量,m1和m2分别是两个质点的质量,r是两质点直接的距离实际上要作一名成功的物理学家,想象力往往也是不可缺少的:他居然会把苹果掉落所受的力与月球围着地球的运动所受到的力认定是同一种力,并且在数学上严格的论证了这个想法!这在我们现代人看起来可能没什么,那是因为我们站在了像牛顿这样巨人的肩膀上,第一个产生这种想法的牛顿先生绝对有做上帝的气质。
数学物理方程公式总结数学和物理是自然科学的两个重要分支,它们在研究自然界的规律时不可分割。
在数学和物理的学习过程中,我们经常会遇到大量的方程和公式。
这些方程和公式帮助我们理解和解决问题,归纳总结这些方程和公式有助于我们更好地掌握它们。
下面是一些数学物理方程公式的总结。
1.牛顿力学相关方程:- 运动方程: F = ma,其中 F 表示作用力,m 表示物体的质量,a 表示物体的加速度。
-牛顿第一定律:F=0,一个物体若无外力作用,则物体保持静止或匀速直线运动。
- 牛顿第二定律: F = ma,物体的加速度与作用力成正比,与物体的质量成反比。
-牛顿第三定律:F12=-F21,两个物体之间的作用力大小相等,方向相反。
2.热力学相关方程:-热力学第一定律:ΔU=Q-W,系统内部能量的变化等于吸热减去对外界做功。
-热力学第二定律:ΔS≥0,隔离系统内部的熵不会减少,或者说熵的增加不可逆。
-热力学第三定律:绝对零度时,熵为零。
3.电磁学相关方程:-库仑定律:F=k*(Q1*Q2)/r^2,两个点电荷之间的力与电荷大小成正比,与距离的平方成反比。
-高斯定律:Φ=E*A=Q/ε0,电场通过任意闭合曲面的通量与该曲面内的电荷成正比。
-法拉第电磁感应定律:ε=-ΔΦ/Δt,电磁感应产生的电动势与磁通量的变化率成正比。
4.波动与光学相关方程:-波速公式:v=λ*f,波速等于波长乘以频率。
- 光的折射定律: n1 * sin(θ1) = n2 * sin(θ2),光线从一种介质进入另一种介质时,入射角和折射角与两种介质的折射率成正比。
5.直流电路相关方程:-欧姆定律:V=I*R,电压与电流和电阻的关系。
- 串联电阻的总电阻: R_total = R1 + R2 + ...,串联电阻的总电阻等于各个电阻之和。
- 并联电阻的总电阻: 1/R_total = 1/R1 + 1/R2 + ...,并联电阻的倒数总电阻等于各个电阻的倒数之和。