第五章:受弯构件的受剪性能复习课程
- 格式:doc
- 大小:83.50 KB
- 文档页数:9
第5章受弯构件的斜截面承载力计算5.1 概述钢筋混凝土受弯构件有可能在剪力和弯矩共同作用的支座附近区段内,发生斜截面受剪破坏或斜截面受弯破坏。
因此,在保证受弯构件正截面受弯承载力的同时,还要保证斜截面承载力,即斜截面受剪承载力和斜截面受弯承载力。
工程设计中,斜截面受剪承载力是由计算来满足的,斜截面受弯承载力是通过对纵向钢筋和箍筋的构造要求来满足的。
薄板的跨高比较大,有足够的斜截面承载力。
斜截面承载力主要是对梁及厚板而言的。
为了防止梁沿斜裂缝破坏,截面尺寸应满足最小要求,并配置必要的箍筋(图)。
箍筋、纵筋和架立钢筋形成钢筋骨架。
当梁承受的剪力较大时,可再设置斜钢筋。
斜钢筋可为梁内弯起钢筋,有时也可单独添置的斜钢筋。
箍筋、弯起钢筋统称为腹筋。
所以,在工程设计中,首选箍筋,然后再考虑采用弯起钢筋。
弯筋位置不宜在梁侧边缘,且直径不宜过粗。
5.2 斜裂缝、剪跨比及斜截面受剪破坏形态1.斜裂缝梁在剪力和弯矩共同作用的剪弯区段内,将产生斜裂缝。
斜裂缝主要有两类:腹剪斜裂缝和弯剪斜裂缝。
当荷载较小,梁处于弹性工作阶段,可将梁视为一匀质弹性体,任一点的主拉应力和主压应力(实线是主拉应力迹线,虚线是主压应力迹线)为主拉应力主压应力主应力的作用方向与梁轴线的夹角α,按下式确定;腹剪斜裂缝:在中和轴附近,正应力小,剪应力大,主拉应力方向大致为450。
当荷载增大,拉应变达到混凝土的极限拉应变值时,混凝土开裂,沿主压应力迹线产生腹部的斜裂缝。
裂缝中间宽两头细,呈枣核形,常见于薄腹梁中。
弯剪斜裂缝:在剪弯区段截面的下边缘,主拉应力是水平向的,在这些区段仍可能首先出现一些较短的垂直裂缝,然后延伸成斜裂缝,向集中荷载作用点发展。
裂缝上细下宽,是最常见的。
2.剪跨比计算剪跨比:集中力到临近支座的距离a称为剪跨,剪跨a与梁截面有效高度h0的比值,为计算剪跨比,用λ表示,λ=a/ h0,对矩形截面梁,截面上的正应力σ和剪应力τ,可表达为:故式中α1,α2—与梁支座形式、计算截面位置等有关的系数;λ—λ=M/ Vh0称为广义剪跨比。
西南交大《混凝土结构设计原理》第五章受弯构件斜截面强度计算课堂笔记主要内容斜截面受力特点及破坏形态影响斜截面受剪承载力的计算公式斜截面受剪承载力就是的方式和步骤梁内钢筋的构造要求学习要求1、了解无腹梁裂缝出现前后的应力状态2、理解梁沿斜截面剪切破坏的三种主要形态以及影响斜截面受承载力的主要因素3、熟练掌握斜截面受剪承载力的计算方法4、能正确画出抵抗弯截图5、理解纵向钢筋弯起和截断时的构造规定并在设计中运用重点难点1、梁沿斜截面剪切破坏的三种主要形态2、斜截面受承载力的计算方法(包括计算公式、适用范围和计算步骤等)3、抵抗弯矩图的画法以及纵向受力钢筋弯起和截断的构造要求其中3 既是重点也是难点一、斜截面受力特点及破坏形态受弯构件在荷载作用下,截面除产生弯矩M夕卜,常常还产生剪力V,在剪力和弯矩共同作用的剪弯区段,产生斜裂缝,如果斜截面承载力不足,可能沿斜裂缝发生斜截面受剪破坏或斜截面受弯破坏。
因此,还要保证受弯构件斜截面承载力,即斜截面受剪承载力和斜截面受弯承载力。
工程设计中,斜截面受剪承载力是由抗剪计算来满足的,斜截面受弯承载力则是通过构造要求来满足的。
(一)无腹筋梁斜裂缝出现前、后的应力状态1、斜裂缝开裂前的应力分析承受集中荷载P 作用的钢筋混凝土简支梁,当荷载较小时混凝土尚未开裂,钢筋混凝土梁基本上处于弹性工作阶段,故可按材料力学公式来分析其应力。
但钢筋混凝土构件是由钢筋和混凝土两种材料组成,因此应先将两种材料换算成同一种材料,通常将钢筋换算成“等效混凝土”,钢筋按重心重合、面积扩大E s/E c倍换算为等效混凝土面积,将两种材料的截面视为单一材料(混凝土)的截面,即可直接应用材料力学公式。
梁的剪弯区段截面的任一点正应力b和剪应力T可按下列公式计算:正应力 b =My o/I o剪应力t =Vs0/I 0b式中I o—换算截面的惯性矩;y o --- 所求应力点到换算截面形心轴的距离;s0--- 所求应力的一侧对换算截面形心的面积矩;b --- 梁的宽度;M--- 截面的弯矩值;V--- 截面的剪力值;在正应力和剪应力共同作用下,产生的主拉应力和主压应力,可按下式求得:主拉应力b tp =b /2+[( b /2) 2+t 2] 1/2主压应力 b tp= b /2-[( b/2) 2+t 2] 1/2主应力作用方向与梁纵轴的夹角 a =1/2arctan(-2 T / b )2、斜裂缝的形成由于混凝土抗拉强度很低,随着荷载的增加,当主应力超过混凝土复合受力下的抗拉强度时,就会出现与主拉应力轨迹线大致垂直的裂缝。
第五章受弯构件斜截面承载力的计算内容的分析和总结钢筋混凝土受弯构件有可能在弯矩W和剪力V共同作用的区段内,发生沿着与梁轴线成斜交的斜裂缝截面的受剪破坏或受弯破坏。
因此,受弯构件除了要保证正截面受弯承载力以外,还应保证斜截面的受剪和受弯承载力。
在工程设计中,斜截面受剪承载一般是由计算和构造来满足,斜截面受弯承载力则主要通过对纵向钢筋的弯起、锚固、截断以及箍筋的间距等构造要求来满足的。
学习的目的和要求1.了解斜裂缝的出现及其类别。
2.明确剪跨比的概念。
3.观解斜截面受剪破坏的三种主要形态。
4.了解钢筋混凝土简支梁受剪破坏的机理。
5.了解影响斜截面受剪承载力的主要因素。
6.熟练掌握斜截面受剪承载力的计算方法及适用条件的验算。
7.掌握正截面受弯承载力图的绘削方法,熟悉纵向钢筋的弯起、锚固、截断及箍筋间距的主要构造要求,并能在设计中加以应用。
§5-1 受弯构件斜截面承载力的一般概念一、受弯构件斜截面破坏及腹筋布置1.梁受力特点CD段:纯弯段正截面受弯破坏,配纵向钢筋受剪破坏:配腹筋(箍筋和弯筋)AC段:弯剪段斜截面受弯破坏:构造处理图5-1 无腹筋梁斜裂缝出现前的应力状态2.腹筋的布置·将梁中箍筋斜放与斜裂缝正交时受力状态最佳。
但施工难实现;难以适应由于异号弯矩、剪力导致斜裂缝的改变方向。
·在支座附近弯矩较小之处可采用弯起部分纵筋以抵抗部分剪力。
3.关于腹筋布置的规定⑴梁高h<150mm 的梁可以不设置箍筋。
⑵h=150~300mm 时,可仅在梁端各1/4跨度范围内配置箍筋。
当构件中部1/2跨度范围内有集中荷载时,应沿全长布置箍筋。
⑶h>300mm 时,全跨布置箍筋。
二、钢筋混凝土梁开裂前的应力状态1.应力计算方法:接近弹性工作状态,可根据材力公式计算梁中应力。
钢筋按应变相等、合力大小及作用点不变的原则换算成等效混凝土面积αE A s ,把钢筋混凝土的截面变成混凝土单一材料的换算截面,其几何特征值A 0、I 0、S 0、y 0。
这是同济大学《高等混凝土结构理论》期末考试的复习要点,希望对考博选考3007高等混凝土与钢结构这门课的同学有所帮助。
1.Stress-strain curves of concrete under monotonic, repeated and cyclic uniaxial loadings. 单轴受力时混凝土在单调、重复、反复加载时的应力应变曲线。
2.Creep of concrete (linear and nonlinear) 混凝土的徐变(线性、非线性徐变)3.Components of deformation of concrete 混凝土变形的多元组成4.Process of failure of concrete under uniaxial compression 混凝土在单向受压时破坏的过程。
5.Strength indices of concrete and the relations among them 混凝土的强度指标及其之间关系6.Features of stress-strain envelope curve of concrete under repeated compressive loading. 混凝土单向受压重复加载时的应力应变关系的包络线的特征。
7.The crack contact effect of concrete and its representation in stress-strain diagram. 混凝土的裂面效应及其在应力应变关系图上的表示。
8.The multi-level two-phase system of concrete. 混凝土的多层次二相体系。
9.The rheological model of concrete. 混凝土的流变学模型。
10.Influence of stress gradient on strength of concrete. 应力梯度对混凝土强度的影响。
第五章:受弯构件的受剪性能钢筋混凝土受弯构件,除了正截面破坏以外,还有可能在剪力和弯矩共同作用的区段内,会沿着斜向裂缝发生斜截面的破坏。
这种破坏通常来得较为突然,具有脆性性质。
因而,在钢筋混凝土受弯构件的设计中,如何保证构件的斜截面承载能力是非常重要的。
5.1 概述受弯构件在荷载作用下,同时产生弯矩和剪力。
在弯矩区段,产生正截面受弯破坏,而在剪力较大的区段,则会产生斜截面受剪破坏。
5.2 斜裂缝、剪跨比及斜截面破坏形态箍筋布置与梁内主拉应力方向一致,可有效地限制斜裂缝的开展;但从施工考虑,倾斜的箍筋不便绑扎,与纵向筋难以形成牢固的钢筋骨架,故一般都采用竖直箍筋。
弯起钢筋则可利用正截面受弯的纵向钢筋直接弯起而成。
弯起钢筋的方向可与主拉应力方向一致,能较好地起到提高斜截面承载力的作用,但因其传力较为集中,有可能引起弯起处混凝土的劈裂裂缝。
首先选用竖直箍筋,然后再考虑采用弯起钢筋。
选用的弯筋位置不宜在梁侧边缘,且直径不宜过粗。
斜裂缝的出现和最终斜截面受剪破坏与正应力与剪应力的比值有关。
剪跨比:我们把在中集中力到支座之间的距离a 称之为剪跨,剪跨a 与梁的有效高度h 0的比值则称为剪跨比。
5.2.3斜截面受剪破坏的三种主要形态1、无腹筋梁的剪切破坏形态斜裂缝出现后梁中受力状态的变化斜裂缝出现前,剪力由整个截面承担,支座附近截面a-a 的钢筋应力s σ与该截面的弯矩Ma 成正比。
斜裂缝出现后,受剪面积减小,受压区混凝土剪力增大(剪压区),斜裂缝出现后,截面a-a 的钢筋应力s σ取决于临界斜裂缝顶点截面b-b 处的Mb ,即与Mb 成正比。
因此,斜裂缝出现使支座附近的s σ与跨中截面的s σ相近,这对纵筋的锚固提出更高的要求。
梁由原来的梁传力机制变成拉杆拱传力机制。
同时,销栓作用Vd 使纵筋周围的混凝土产生撕裂裂缝,削弱混凝土对纵筋的锚固作用。
2、荷载传递机构剪跨比λ较大,主压应力角度较小,拱作用较小。
剪力主要依靠拉应力(梁作用)传递到支座,一旦出现斜裂缝,就很快形成临界斜裂缝,荷载传递路线被切断,承载力急剧下降,脆性性质显著。
破坏是由于混凝土(斜向)拉坏引起的,称为斜拉破坏。
斜拉传力机构,取决于混凝土的抗拉强度。
剪跨比较小,有一定拱作用,斜裂缝出现后,部分荷载通过拱作用传递到支座,承载力没有很快丧失,荷载可继续增加,并最后,拱顶处混凝土在剪应力和压应力的共同作用下,达到混凝土的复合受力下的强度而破坏。
部分拱作用,部分斜拉传递,取决于混凝土的复合应力下(剪压)的强度。
剪跨比很小,拱作用很大。
荷载主要通过拱作用传递到支座。
主压应力的方向沿支座与荷载作用点的连线。
最后拱上混凝土在斜向压应力的作用下受压破坏。
斜压传力机构,取决于混凝土的抗压强度。
斜拉破坏为受拉脆性破坏,脆性性质最显著;斜压破坏为受压脆性破坏;剪压破坏界于受拉和受压脆性破坏之间。
不同破坏形态的原因主要是由于传力路径的变化引起应力状态的不同而产生的。
5.4.1影响受剪承载力的因素⑴剪跨比λ影响荷载传递机构,从而直接影响到梁中的应力状态:➢剪跨比λ大,荷载主要依靠拉应力传递到支座➢剪跨比λ小,荷载主要依靠压应力传递到支座⑵混凝土强度剪切破坏是由于混凝土达到复合应力(剪压)状态下强度而发生的。
所以混凝土强度对受剪承载力有很大的影响。
试验表明,随着混凝土强度的提高,V u与f t近似成正比。
事实上,斜拉破坏取决于f t,剪压破坏也基本取决于f t,只有在剪跨比很小时的斜压破坏取决于f c。
而斜压破坏可认为是受剪承载力的上限。
⑶纵筋配筋率——纵筋配筋率越大,受压区面积越大,受剪面积也越大,并使纵筋的销栓作用也增加。
同时,增大纵筋面积还可限制斜裂缝的开展,增加斜裂缝间的骨料咬合力作用。
⑷截面形状——T形截面有受压翼缘,增加了剪压区的面积,对斜拉破坏和剪压破坏的受剪承载力有提高(20%),但对斜压破坏的受剪承载力并没有提高。
⑸尺寸效应——梁高度很大时,撕裂裂缝较明显,销栓作用大大降低,斜裂缝宽度也较大,骨料咬合作用削弱。
试验表明,在保持参数f c、r、l 相同的情况下,截面尺寸增加4倍,受剪承载力降低25%~30%。
对于高度较大的梁,配置梁腹纵筋,可控制斜裂缝的开展。
配置腹筋后,尺寸效应的影响减小。
5、无腹筋梁受剪承载力的计算影响受剪承载力的因素很多,很难综合考虑,而且受剪破坏都是脆性的。
《规范》根据大量的试验结果,取具有一定可靠度(95%)的偏下限经验公式来计算受剪承载力 ◆ 矩形、T 形和工形截面的一般受弯构件现规范: Vc=0.7f t bh 0上式相当于受均布荷载作用的不同l 0/h 的简支梁、连续梁试验结果的偏下限,接近斜裂缝开裂荷载,因此当剪力设计值小于该值时,不会产生受剪破坏,同时在使用荷载下一般不会出现斜裂缝。
◆ 集中荷载作用下的独立梁0175.1bh f Vc t λ+= 对于不与楼板整浇的独立梁,在集中荷载下,或同时作用多种荷载,其中集中荷载在支座截面产生的剪力占总剪力的75%以上时,当剪跨比l <1.5,取l =1.5;当l >3.0,取l =3.0,且支座到计算截面之间均应配置箍筋。
无腹筋梁的受剪破坏都是脆性的,其应用范围有严格的限制。
《规范》仅对h<150的小梁(如过梁、檩条)可采用无腹筋。
需要说明的是:以上无腹筋梁受剪承载力计算公式仅有理论上的意义。
实际无腹筋梁不允许采用5.2.4 有腹筋梁的受剪性能梁中配置箍筋,出现斜裂缝后,梁的剪力传递机构由原来无腹筋梁的拉杆拱传递机构转变为桁架与拱的复合传递机构。
斜裂缝间齿状体混凝土有如斜压腹杆。
箍筋的作用有如竖向拉杆。
临界斜裂缝上部及受压区混凝土相当于受压弦杆。
纵筋相当于下弦拉杆。
箍筋将齿状体混凝土传来的荷载悬吊到受压弦杆,增加了混凝土传递受压的作用。
斜裂缝间的骨料咬合作用,还将一部分荷载传递到支座。
1、箍筋的作用a. 斜裂缝出现后,拉应力由箍筋承担,增强了梁的剪力传递能力;b. 箍筋控制了斜裂缝的开展,增加了剪压区的面积,使Vc 增加,骨料咬合力Va 也增加;c. 吊住纵筋,延缓了撕裂裂缝的开展,增强了纵筋销栓作用Vd ;d. 箍筋参与斜截面的受弯,使斜裂缝出现后纵筋应力σs 的增量减小;e. 配置箍筋对斜裂缝开裂荷载没有影响,也不能提高斜压破坏的承载力,即对小剪跨比情况,箍筋的上述作用很小;对大剪跨比情况,箍筋配置如果超过某一限值,则产生斜压杆压坏,继续增加箍筋没有作用。
2、破坏形态ρ影响有腹筋梁破坏形态的主要因素有剪跨比λ和配箍率sv5.4 受剪承载力的计算公式5.4.1、影响受剪承载力的因素ρ⑴剪跨比λ⑵混凝土强度⑶纵筋配筋率⑷截面形状⑸尺寸效应(6) 配箍率sv5.4.2 受剪承载力的计算公式说明:国内外许多学者曾在各种破坏机理分析的基础上,用混凝土的强度理论,对钢筋混凝土梁的斜截面受剪承载力建立过各种计算公式,但终因钢筋混凝土在复合受力状态下所牵涉的因素过多,用混凝土强度理论还较难反映梁的弯、剪性能。
我国与世界多数国家目前所采用的方法还是依靠试验研究,分析梁受剪的一些主要影响因素,从中建立起半理论半经验的实用计算公式。
对于梁的三种斜截面破坏形态,在工程设计时都应设法避免.。
我国混凝土结构设计规范中所规定的基本公式是根据剪压破坏特征而建立的。
1、计算公式V c为无腹筋梁的承载力V s为箍筋所承担的剪力;V sb为弯起箍筋所承担的剪力。
2、截面限制条件当配箍率超过一定值后,则在箍筋屈服前,斜压杆混凝土已压坏,故可取斜压破坏作为受剪承载力的上限。
斜压破坏取决于混凝土的抗压强度和截面尺寸。
《规范》是通过控制受剪截面剪力设计值不大于斜压破坏时的受剪承载力来防止由于配箍率而过高产生斜压破坏,受剪截面应符合下列截面限制条件(见P98)3、最小配箍率及配箍构造当配箍率小于一定值时,斜裂缝出现后,箍筋因不能承担斜裂缝截面混凝土退出工作释放出来的拉应力,而很快达到屈服,其受剪承载力与无腹筋梁基本相同。
当剪跨比较大时,可能产生斜拉破坏。
为防止这种少筋破坏,《规范》规定当V>0.7f t bh0时,配箍率应满足4、受剪计算斜截面⑴支座边缘截面;⑵ 腹板宽度改变处截面;⑶ 箍筋直径或间距改变处截面;⑷ 受拉区弯起钢筋弯起点处的截面。
5、仅配箍筋梁的设计计算钢筋混凝土梁一般先进行正截面承载力设计,初步确定截面尺寸和纵向钢筋后,再进行斜截面受剪承载力设计计算。
具体计算步骤如下:⑴验算截面限制条件,如不满足应?⑵如V<V c ,?⑶如0.25f c bh 0 >V> V c ,?⑷根据A sv /s 计算值确定箍筋肢数、直径和间距,并应满足最小配箍率、箍筋最大间距和箍筋最小直径的要求。
6、弯起钢筋当剪力较大时,可利用纵筋弯起与斜裂缝相交来提高受剪承载力。
αsin 8.0sb y cs u A f V V +=a 为弯起钢筋与构件轴线的夹角,一般取45~60°。
0.8系数,是对弯起筋受剪承载力的折减。
这是因为考虑到弯起钢筋与斜裂缝相交时有可能已接近受压区,钢筋强度在梁破坏时不可能全部发挥作用的缘故。
为防止弯筋间距太大,出现不与弯筋相交的斜裂缝,使弯筋不能发挥作用,《规范》规定当按计算要求配置弯筋时,前一排弯起点至后一排弯终点的距离不应大于表中V>0.7f t bh 0栏的最大箍筋间距s max 的规定。
7、连续梁的抗剪性能及受剪承载力的计算(1)破坏特点连续梁与简支梁的区别在于,连续梁在支座截面附近有负弯矩;在梁的剪跨段中有反弯点;斜截面的破坏形态受弯矩比的影响很大。
集中荷载下连续梁---粘接破坏由于在该段内存在有正负两向弯矩,因而在弯矩和剪力的作用下,剪跨段内会出现二条临界斜裂缝,一条位于正弯矩范围内,从梁下部伸向集中荷载作用点,另一条则位于负弯矩范围内,从梁上部伸向支座。
在斜裂缝处的纵向钢筋拉应力,因内力重分布而突然增大,但在反弯点处附近的纵筋拉应力却很小,造成这一不长的区段内钢筋拉应力差值的过大,从而导致钢筋和混凝土之间的粘结破坏。
沿纵筋水平位置混凝土上出现一些断断续续的粘结开裂裂缝。
临近破坏时,上下粘结开裂裂缝分别穿过反弯点向压区延伸,使原先受压纵筋变成受拉,造成在两条临界斜裂缝之间的上下纵筋都处于受拉状态。
梁截面只剩中间部分承受压力和剪力,这就相应增加了截面的压应力和剪应力,降低了连续梁的受剪承载力均布荷载作用下的连续梁,一般不会出现前述的沿纵筋的粘结开裂裂缝,这是由于梁顶的均布荷载对混凝土保护层起着侧向约束作用,从而提高了钢筋和混凝土之间的粘结强度,故负弯矩区段内不会有严重的粘结开裂裂缝,即使在正弯矩区段内虽存在粘结破坏,但也不严重。
2、连续梁受剪承载力的计算根据以上的试验研究结果,连续梁的受剪承载力与相同条件下的简支梁相比,仅在受集中荷载时偏低于简支梁;而在均布荷载时承载力是相当的。