北师大版九年级数学上册 反比例函数重点题型归纳 教学案
- 格式:doc
- 大小:401.00 KB
- 文档页数:12
第六章 反比例函数【学习目标】1.会判断一个函数是否是反比例函数.(重点)2.会求反比例函数的表达式.(难点)3.掌握反比例函数图象的特征.(重点)4.会利用反比例函数图象解决相关问题.(难点)【知识点内容】知识点一:反比例函数的概念:一般地,如果两个变量y 与x 的关系可以表示成()0≠=k xky ,的形式,那么称 y 是 x 的反比例函数.形如xky =、1-=kx y 、)0≠=k k xy (的函数称为y 关于x 的反比例函数。
例题1:在下列关系式中,x 均为自变量,哪些式反比例函数?每个反比例函数相应的k 值是多少?x y 51=)(10.42-=x y )( 23xy =)( 24=xy )( 365+=x y )( 76-=xy )( 257x y =)( x y 518=)(1.已知22)1(-+=mx m y 是反比例函数,则m = .2.已知函数32)1(--+=k k x k y 是反比例函数,则k = .②确定反比例函数解析式:用待定系数法求反比例函数例题2:已知反比例函数y =(k ≠0)的图象经过点A (﹣3,﹣6). (1)求这个函数的表达式;(2)点B (4,),C (2,﹣5)是否在这个函数的图象上?3.某反比例函数的图象经过点(﹣2,3),则此函数图象也经过点( ) A .(2,﹣3)B .(﹣3,﹣3)C .(2,3)D .(﹣4,6)4.若反比例函数y =的图象经过点(﹣1,2),则这个函数的图象一定经过点( ) A .(﹣2,﹣1) B .(﹣,2)C .(2,﹣1)D .(,2)知识点二:反比例函数图像与性质反比例函数 ()0≠=k xky k 的符号k >0k <0图象性质①0,0≠≠y x②函数图象经过一、三象限,在每个现象内,y 随x 的值增大而减少①0,0≠≠y x②函数图象经过二、四象限,在每个现象内,y 随x 的值增大而增大反比例函数图象是轴对称图形,也是中心对称图形,关于原点对称5.关于反比例函数y =图象,下列说法正确的是( ) A .点(﹣2,1)在它的图象上 B .它的图象经过原点C .它的图象在第一、三象限D .当x >0时,y 随x 的增大而增大6.已知反比例函数y =﹣,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y 随x 的增大而增大;④当x >﹣1时,则y >8.其中错误的结论有( )个 A .3B .2C .1D .07.已知反比例函数,下列说法中正确的是( )A .该函数的图象分布在第一、三象限B .点(﹣4,﹣3)在函数图象上C .y 随x 的增大而增大D .若点(﹣2,y 1)和(﹣1,y 2)在该函数图象上,则y 1<y 2②利用反比例函数图像解决比大小问题例题3:已知点A (﹣2,y 1)、B (﹣1,y 2)、C (3,y 3)都在反比例函数y =的图象上,则( ) A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 38.反比例函数y=图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y19.函数(a为常数)的图象上有三点(﹣4,y1),(﹣1,y2),(2,y3),则函数值y1,y2,y3的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y3<y110.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x2<x3<x1③通过图像性质求未知数取值范围例题4.反比例函数y=的图象有一支位于第一象限,则常数a的取值范围是.11.在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A.k>1B.k>0C.k≥1D.k<112.已知A(﹣1,y1),B(2,y2)两点在双曲线y=上,且y1>y2,则m的取值范围是()A.m<0B.m>0C.m>﹣D.m<﹣13.已知反比例函数的图象上有两点A(x1,y1)、B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是.④通过图像解决一次函数与反比例函数大小问题(找交点分成四部分、谁大谁在上)例题5.如图,一次函数y1=k1x+b(k1≠0)的图象与反比例函数y2=(k2≠0)的图象交于A,B两点,观察图象,当y1>y2时,x的取值范围是.(例题5) (14题图)14.如图,已知一次函数y=mx+n与反比例函数的图象交于A(3,1)、B(﹣1,﹣3)两点.观察图象,可知不等式的解集是.15.如图,一次函数y1=x﹣1与反比例函数的图象交于点A(2,1)、B(﹣1,﹣2),则使y1>y2的x的取值范围是.(题15图)(题16图)16.如图,一次函数y1=ax+b(a≠0)与反比例函数的图象交于A(1,4)、B(4,1)两点,若使y1>y2,则x的取值范围是.变式17.如图,正比例函数y1=k1x与反比例函数y2=的图象交于A、B两点,根据图象可直接写出当y1>y2时,x的取值范围是.(题17图)(题18图)变式18.如图,一次函数的图象y=﹣x+b与反比例函数的图象y=交于A(2,﹣4),B(m,2)两点.当x 满足条件时,一次函数的值大于反比例函数值.⑤一次函数与反比例函数的大致图像(理解好一次函数b kx y +=中k 、b 的意义、反比例函数xky =中k 的意义) 一次函数b kx y +=反比例函数xk y =0>k0<k0>k 0<k0>b0<b例题6.在同一个直角坐标系中,函数y =kx 和的图象的大致位置是( )A .B .C .D .19.在同一坐标系中(水平方向是x 轴),函数y =和y =kx +3的图象大致是( )A .B .C .D .20.若ab <0,则正比例函数y =ax 与反比例函数y =在同一坐标系中的大致图象可能是( )A .B .C .D .21.已知k 1<0<k 2,则函数y =k 1x ﹣1和y =的图象大致是( )A .B .C .D .22.若ab >0,则一次函数y =ax +b 与反比例函数y =在同一坐标系中的大致图象是( )A .B .C .D .23.已知关于x 的函数y =k (x +1)和y =﹣(k ≠0),它们在同一坐标系中的大致图象是( )A .B .C .D .24.在同一直角坐标系中,函数y =kx ﹣k 与y =(k ≠0)的图象大致是( )A .B .C .D .知识点三:反比例函数解析式中k 的几何意义过双曲线x ky =(0k ≠) 上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k . 过双曲线x ky =(0k ≠) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三 角形的面积为2k.要点诠释:只要函数式已经确定,不论图象上点的位置如何变化,这一点与两坐标轴的垂线和两坐标轴围成的面积始终是不变的.例题7.如图,点A是反比例函数y=图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k=.(例题7)(题25图)(题26图)25.如图,点A是反比例函数y=图象上的一点,AB垂直x轴于点B,若S△ABO=2.5,则k的值为()A.2.5B.5C.﹣5D.﹣2.526.如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点C、D在x轴上,且BC∥AD,四边形ABCD的面积为3,则这个反比例函数的解析式为.27.已知反比例函数在第一象限的图象如图所示,点A在其图象上,点B为x轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB=.(题27图)(题28图)28.如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△P AB 的面积是.29.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.(题29图)(题30图)30.如图,点A是反比例函数y=的图象上一点,过点A作AB⊥x轴,垂足为点B,线段AB交反比例函数y =的图象于点C,则△OAC的面积为.31.双曲线y1、y2在第一象限的图象如图,,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=1,则y2的解析式是.四:解答题①相加最小型1.如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,4),B(4,n)两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使P A+PB最小.2.如图,一次函数y1=k1x+b的图象与反比例函数y2=(x>0)的图象交于A、B两点,与y轴交于C点,已知A点坐标为(2,1),C点坐标为(0,3)(1)求一次函数和反比例函数的解析式;(2)在x轴上找一点P,使得△P AB的周长最小,请求出点P的坐标.②求围成面积3.如图,反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4)、点B(﹣4,n).(1)求一次函数和反比例函数的解析式;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.4.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)直接写出一次函数的值小于反比例函数值的x的取值范围.③已知面积反推点坐标5.如图,一次函数y=kx+b与反比例函数y=的图象交于点A(1,6),B(3,n)两点.与x轴交于点C.(1)求一次函数的表达式;(2)若点M在x轴上,且△AMC的面积为6,求点M的坐标.(3)结合图形,直接写出kx+b﹣>0时x的取值范围.(4)在y轴上找一点P,使P A+PB的值最小,直接写出满足条件的点P的坐标是.6.如图,矩形ABOD的顶点A是函数y=与函数y=﹣x﹣(k+1)在第二象限的交点,AB⊥x轴于B,AD⊥y 轴于D,且矩形ABOD的面积为3.(1)求两函数的解析式.(2)求两函数的交点A、C的坐标.(3)若点P是y轴上一动点,且S△APC=5,求点P的坐标.7.如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x 轴交于点C.(1)求a,k的值及点B的坐标;(2)若点P在x轴上,且S△ACP=S△BOC,直接写出点P的坐标.8.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)根据图象,直接写出满足k1x+b>的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.。
《反比例函数复习课》教学设计一、教学内容本节内容是北师大版九年级数学上册第六章章节复习课。
二、教学目标(一)知识与能力1.经历抽象反比例函数概念的过程,理解反比例函数的概念。
2.会作反比例函数的图象,并探索和掌握反比例函数的主要性质。
3.会从函数图象中获取信息,能运用反比例函数的概念、图象和主要性质解决实际问题。
(二)过程与方法1.熟练掌握本章的整体知识结构,培养学生的概括和归纳能力,形成知识体系。
2.在经历抽象反比例函数概念的过程中,领会反比例函数的意义,理解反比例函数的概念,进一步培养学生的抽象思维能力。
3.经历一次函数的图象及其性质的探索过程,在合作与交流中发展学生的合作意识和交流能力。
4.能根据所给信息确定反比例函数的表达式、会作反比例函数的图象,并能运用数形结合思想解决与反比例函数相关的数学问题和实际应用问题。
(三)情感与价值观通过本章内容的回顾与思考,发展学生的数学应用能力,经历函数图象信息的识别与应用过程,发展学生的形象思维能力,激发学生学习的热情,培养学生学习数学的兴趣。
四、教学重点和难点教学重点反比例函数的概念,会作反比例函数的图象,掌握其性质及应用.教学难点利用反比例函数的图象探索反比例函数的主要性质以及反比例函数的应用. 五、教学过程本节课设计了五个教学环节:第一环节:要点回顾铺平道路。
;第二环节:学以致用 巩固所学;第三环节:中考链接,助你成功。
第四环节:归纳总结 纳入系统。
第五环节:课后作业,自我提升。
一、要点回顾,铺平道路活动目的: 给学生设置疑问,激发学生的思考和回顾,明确本节课的学习任务。
活动过程:本章的内容已全部学完,通过老师与学生的互动,以及课件展示来辅助完成整个的复习过程。
1.反比例函数的概念 反比例函数的表达形式是xk y (k ≠0)也可写成y=kx -1(k ≠0),还可以变化成为xy=k (k ≠0)的形式。
练习1. 下列函数中哪些是反比例函数? (1)y = 3x-1 (2)y = 2x 2 (3)y=x 1 (4)y= 3x 2 (5)y= x 1- (6)y= x31(7)y=3x (8) y =x 232. 反比例函数的图象与位置?反比例函数的图象是双曲线。
《反比例函数》教案一、本章知识网络图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧反比例函数与实际问题三角形矩形问题反比例函数与面积有关对称性增减性位置形状图象和性质定义及表示形式二、知识点及考点: (一)反比例函数的概念: 知识要点:1、一般地,形如 y = x k( k 是常数, k = 0 ) 的函数叫做反比例函数。
注意:(1)常数 k 称为比例系数,k 是非零常数; (2)解析式有三种常见的表达形式:(A )y = x k(k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx-1(k ≠0)例题讲解:有关反比例函数的解析式(1)下列函数,① 1)2(=+y x ②.11+=x y ③21x y = ④.x y 21-=⑤2x y =-⑥13y x =;其中是y 关于x 的反比例函数的有:_________________。
(2)函数22)2(--=a x a y 是反比例函数,则a 的值是( )A .-1B .-2C .2D .2或-2(3)若函数11-=m xy (m 是常数)是反比例函数,则m =________,解析式为________.(4)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 练习:(1)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( )(2)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( )(5)反比例函数(0ky k x =≠)的图象经过(—2,5, n ),求1)n 的值; 2)判断点B (24,)是否在这个函数图象上,并说明理由 (6)已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.(7)已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.(二)反比例函数的图象和性质: 知识要点:1、形状:图象是双曲线。
数学北师大版九年级上册《6.2 反比例函数的图象与性质》第2课时教案第六章反比例函数6.2 反比例函数的图象与性质第2课时一、教学目标1.复习巩固反比例函数图象与性质.2.理解和掌握反比例函数图象的增减性.二、教学重点及难点重点:反比例函数图象的增减性.难点:运用反比例函数图象的增减性.三、教学用具多媒体课件、直尺或三角板.四、相关资源动画,知识卡片.五、教学过程【复习导入】1.一般地,反比例函数的图象是双曲线,它具有以下性质:(1)当k>0时,双曲线的两支分别位于第一、第三象限;(2)当k<0时,双曲线的两支分别位于第二、第四象限.2.反比例函数的图象是轴对称图形,对称轴是直线y=x或y=-x;反比例函数的图象也是中心对称图形,对称中心是坐标原点.设计意图:通过对反比例函数图象与性质的复习,为接下来学习反比例函数图象的增减性做好铺垫.【探究新知】议一议1.观察反比例函数,,的图象(如下图所示),你能发现它们的共同特征吗?(1)函数图象分别位于哪几个象限内?(2)在每一个象限内。
随着x值的增大,y的值是怎样变化的?能说明这是为什么吗?师生活动:教师出示问题,学生思考、讨论,师生共同得出答案.答:(1)函数图象均位于第一、三象限内.(2)在每一象限内,随着x值的增大,y的值减小;理由:在每一象限的图象上任意取两点A(x1,y1),B(x2,y2),当k>0,x2>x1时,y2-y1=<0,即y2<y1.因此,在每一象限内,随着x值的增大,y的值减小.2.观察当k=-2,-4,-6时,反比例函数的图象(如下图所示),它们有哪些共同特征?师生活动:教师出示问题,学生思考、讨论,师生共同得出答案.答:它们的图象均位于第二、四象限;在每一象限内,随着x值的增大,y的值增大;它们的图象都不与x轴、y轴相交.教师总结:反比例函数的图象,当k>0时,在每一象限内,y的值随x值的增大而减小;当k<0时,在每一象限内,y的值随x值的增大而增大.想一想在一个反比例函数图象上任取两点P,Q.过点P分别作x 轴、y轴的平行线,与坐标轴围成的矩形面积为S1;过点Q分别作x 轴、y轴的平行线,与坐标轴围成的矩形面积为S2.S1与S2有什么关系?为什么?师生活动:教师出示问题,学生思考、讨论,教师引导,师生共同得出答案.答:S1=S2;由:在反比例函数(k≠0)的图象上任意取一点,过这个点分别作x轴、y轴的平行线,与坐标轴围成的矩形面积总等于常数.设计意图:引导学生根据一定的分类标准研究反比例函数的性质,同时鼓励学生用自己的语言进行表述,从而提高学生的语言表达能力与数学语言的组织能力.【典例精析】例1 已知反比例函数的图象经过点A(2,6).(1)这个函数的图象位于哪些象限?y随x的增大如何变化?(2)点B(3,4),,D(2,5)是否在这个函数的图象上?师生活动:师生共同分析,教师引导并提出下列问题:(1)点A(2,6)在图象上的含义是什么?(2)图象的位置由哪个量确定?我们如何求出这个量?(3)反比例函数y随x的变化情况与哪个量有关?y随x的变化情况有没有限制条件?(4)某点不在图象上的含义是什么?学生解答,在小组里讨论,互相检查,小组代表展示解答过程.解:(1)因为点A(2,6)在第一象限,所以这个函数的图象位于第一、第三象限,在每一个象限内,y随x的增大而减小.(2)设这个反比例函数的解析式为.因为点A(2,6)在这个函数的图象上,所以点A的坐标满足,即.解得k=12.所以这个反比例函数的解析式为.把点B,C,D的坐标代入,可知点B,点C的坐标满足函数关系式,点D的坐标不满足函数关系式,所以点B,点C在函数的图象上,点D不在这个函数的图象上.设计意图:从学生已有的数学知识出发,理解点在图象上的含义,运用待定系数法求函数解析式.通过解析式分析图象及性质,让学生感悟由“数”到“形”的过程,初步体会数形结合的数学思想.例2 如图,点P是反比例函数图象上一点,作PM⊥y轴于点M,若图中阴影部分的面积为3,则该反比例函数的解析式为.(xyPOM)师生活动:教师出示问题,学生思考,教师请学生代表回答,讲解出现的问题.解析:设点P的坐标为(x,y).⊥S⊥POM=3,S⊥POM=PM·OM,⊥PM·OM=6,即.设该反比例函数的解析式为,⊥xy=k.⊥k<0,⊥k=-6.⊥.设计意图:让学生理解k的几何意义.【课堂练习】1.对于反比例函数y=,下列说法不正确的是().A.点(-2,-1)在它的图象上B.它的图象在第一、第三象限C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小2.如图,函数y1=x-1和函数y2=的图象相交于点M(2,m),N(-1,n),若y1>y2,则x的取值范围是().A.x<-1或0<x<2 B.x<-1或x>2C.-1<x<0或0<x<2 D.-1<x<0或x>2 3.下列函数中,其图象位于第一、三象限的有______________;在其图象所在象限内,y的值随x值的增大而增大的有_____________.(1);(2);(3);(4).4.已知反比例函数,当m_____________时,其图象的两个分支在第一、三象限内;当m_____________时,其图象在每个象限内y随x 的增大而增大.5.在函数的图象上有三点A(x1,y1),B(x2,y2),C(x3,y3),已知x1<x2<0<x3,则y1,y2,y3由小到大的顺序是___________.师生活动:教师找几名学生代表回答,讲解出现的问题.6.反比例函数y=(k>0)在第一象限的图象如下图所示,点M是图象上一点,MP垂直x轴于点P.如果⊥MOP的面积为1,那么k的值是_______.7.设函数,当m取何值时,它是反比例函数?它的图象位于哪个象限?参考答案1.C.2.D.3.(1)(2)(3);(4).4.,.5.y2<y1<y3.6.2.7.解:由题意,得解得m=3.所以当m=3时,函数是反比例函数.当m=3时,代入可得.因为k=1>0,所以它的图象位于第一、第三象限.设计意图:进一步巩固所学知识,加深对所学知识的理解.六、课堂小结1.一般地,反比例函数的图象是双曲线,它具有以下性质:(1)当k>0时,双曲线的两支分别位于第一、第三象限,在每一个象限内,y随x的增大而减小;(2)当k<0时,双曲线的两支分别位于第二、第四象限,在每一个象限内,y随x的增大而增大.2.反比例函数(k为常数,k≠0)中k的几何意义如图.(1)过反比例函数图象上的任意一点P作x轴、y轴的垂线,两条垂线与x轴、y轴围成的长方形的面积等于.(2)若点A是反比例函数图象上任意一点,过点A作x轴(或y轴)的垂线,则所作垂线、x轴(或y轴)与线段OA围成的三角形的面积等于.注意:因为反比例函数(k为常数,k≠0)中的k有正负之分,所以在利用解析式表示长方形或三角形的面积时,都应加上绝对值符号.师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:帮助学生养成系统整理知识的学习习惯,加深认识,深化提高,形成学生自己的知识体系.七、板书设计6.2 反比例函数的图形与性质(2)1.反比例函数图象的增减性2.反比例函数中k的几何意义。
反比例函数-北师大版九年级数学上册教案一、教学目标通过本课的学习,学生应该能够:1.掌握反比例函数的概念和性质;2.理解反比例函数的图像特征;3.能运用反比例函数解决实际问题。
二、教学重点1.反比例函数的概念和性质;2.反比例函数的图像特征。
三、教学难点反比例函数实际应用问题的解决。
四、教学过程1. 导入新知本课学习的主要内容是反比例函数,回顾一下之前学过的正比例函数。
请同学们简单回答一下什么是正比例函数,它的图像特征是什么。
2. 概念认识引入反比例函数的定义和性质,讲解反比例函数的概念和性质。
并通过学生自主练习来巩固概念。
3. 图像探究通过计算几个反比例函数的图像,来观察图像的特征。
并通过课堂小组讨论,学生们分别汇报各自的观察结果。
最终得到反比例函数图像的特征是:经过点(1, a)并且与x轴垂直。
4. 例题演练通过实例演示,来帮助学生更好的掌握反比例函数的解法。
要求学生先自主思考解题思路,然后再与同桌讨论交流。
最后由教师进行总结和点评。
5. 创新实践让学生通过实际问题来运用反比例函数进行解题,如水桶漏水、利润分配、比例缩小等问题。
鼓励学生思考不同的解法,并形成小组或个人汇报解答思路和结果。
五、教学方法本课采用讲授、讨论、实践等方法。
通过学生自主练习、案例演示和小组讨论等活动,帮助学生更好地掌握反比例函数的概念和解法。
六、教学评价本课教学重心是帮助学生理解反比例函数的概念和性质,并能够运用反比例函数解决实际问题。
针对不同难度的反比例函数题目,采取引导和提示的方式,帮助每个学生充分思考并解答问题。
通过不同方式的评价,如课堂监测、作业和小组汇报等,来检验课程效果。
七、拓展延伸让学生在家通过复习反比例函数的相关知识并完成一定数量的习题,巩固课堂所学知识。
同时,鼓励学生通过网络教育资源自学更多知识内容,加深对反比例函数的认识。
第六章反比例函数1反比例函数教学目标1.理解反比例函数的概念;2.能判断一个函数是否为反比例函数;3.能根据实际问题中的条件确定反比例函数的表达式.教学重难点重点:理解反比例函数的概念;难点:领悟反比例函数的概念.教学过程旧知回顾1.回忆函数的定义;2.回忆一次函数与正比例函数的定义.导入新课1.反比例函数的定义思考:下列问题中,变量间的对应关系可以用怎样的函数关系表示?这些函数有什么共同特点?1、一铁路全程为1 463 km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化.2、某住宅小区要种植一块面积为1000 m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化.3、已知某市的总面积约为1.68×104 km2,人均占有面积S(单位:km2/人)随全市总人口n(单位:人)的变化而变化.(教师组织学生讨论,提问学生,师生互动)学生讨论会发现:以上函数都具有y=kx的形式,其中k是非零常数.结论:反比例函数的定义教学反思一般地,如果两个变量x ,y 之间的对应关系可以表示成y =kx(k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数.表达式的三种形式: y =k x(k ≠0);xy =k (k ≠0);y =kx -1(k ≠0). 例题:下列函数中哪些是反比例函数?哪些是一次函数?(1)y = 8x -1; (2)y = x +42; (3)xy 54=;(4)x y 23=; (5)x y 1-=; (6)xy 4.0=;(7)x y 5=; (8)2xy =; (9)xy = -2; (10)-2xy = 7; (11)y = -6x +1. (教师引导,学生分析)学生通过听课已经对反比例函数有了一定的认识,让学生独立思考,通过回答规范他们对反比例函数及一次函数的认识.解:反比例函数:(3)(5)(6)(7)(9)(10); 一次函数:(1)(2)(4)(8)(11). 2.确定反比例函数的表达式例题:已知y 是x 的反比例函数,且当x =2时,y =6.(1)写出y 关于x 的函数表达式; (2)当x =4时,求y 的值. (教师引导,学生分析)因为y 是x 的反比例函数,所以可设y =kx ,再把x =2和y =6代入上式就可求出常数k 的值.——待定系数法解:(1)设y =k x ,因为x =2时,y =6,所以有6=2k , 教学反思解得k =12,因此y =12x. (2) 把x =4代入y =12x ,得y =124=3. 3.实际问题中的反比例函数例题:下列问题中,变量间的对应关系可用怎样的函数关系式表示? (1)一个游泳池的容积为2 000 m 3,注满游泳池所用的时间t 随注水速度v 的变化而变化;(2)某立方体的体积为1 000 cm 3,立方体的高h 随底面积S 的变化而变化; (3)一个物体重100 N ,物体对地面的压强p 随物体与地面的接触面积S 的变化而变化.(教师引导,学生分析)先找实际问题中的等量关系,根据等量关系写出关系式,再变形.解:(1)t =2000v ;(2)h =1000S ; (3)p =100S.课堂练习1.下列函数表达式中,y 是x 的反比例函数的是 ( )A.y =x2B.y =-32xC.y =1x+1D.y =1x 22.反比例函数y =kx (k ≠0),若x =√3时,y =4,则k 等于 ( ) A.√3 B.4C.4√3D.√33.已知y 与x 成反比例,当x =3时,y =4,那么y =3时,x 的值等于( ) A.4 B.-4 C.3 D.-34.当a = 时,函数y =(a +2)x a 2-5是反比例函数.5.若函数y =11m x (m 是常数)是反比例函数,则m = ,表达式为y= .6.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别. (1)商场推出分期付款购电脑活动,每台电脑12 000元,首付4 000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系式为______,是______函数.教学反思(2)某种灯泡的使用寿命为1 000小时,它的使用天数y与平均每天使用的小时数x之间的关系式为______,是______函数.(3)设三角形的底边、底边上的高、面积分别为a,h,S.当a=10时,S与h的关系式为______,是______函数;当S=18时,a与h的关系式为______,是______函数.(4)某工人承包运输粮食的总数是w吨,每天运输x吨,共运了y天,则y与x 的关系式为________,是______函数.参考答案1.B2.C3.A4.25.21 x6.解:(1)y=8000x反比例(2)y=1000x反比例(3)S=5h正比例a=36h反比例(4)y=wx反比例课堂小结1、反比例函数的定义一般地,如果两个变量x,y之间可以表示成y=kx(k为常数,k≠0)的形式,那么称y是x的反比例函数.2、表达式的三种形式:y=kx(k≠0);xy=k(k≠0);y=kx-1(k≠0).3、确定函数表达式待定系数法教学反思布置作业完成教材习题6.1板书设计第六章反比例函数1反比例函数。
一、单元学习主题本单元是“数与代数”领域“函数”主题中的“反比例函数”.二、单元学习内容分析1.课标分析《标准2022》指出数与代数是数学知识体系的基础之一,是学生认知数量关系、探索数学规律、建立数学模型的基石,可以帮助学生从数量的角度清晰准确地认识、理解和表达现实世界.“函数”主要研究变量之间的关系,探索事物变化的规律;借助函数可以认识方程和不等式.“数与代数”领域的学习,有助于学生形成抽象能力、推理能力和模型观念,发展几何直观和运算能力.在本章的学习中学生结合实例,进一步了解函数的概念和三种表示法,能举出函数的实例;能结合图象对简单实际问题中的函数关系进行分析,并确定简单实际问题中函数自变量的取值范围,并会求出函数值;能用适当的函数表示法刻画简单实际问题中变量之间的关系;结合对函数关系的分析,能对变量的变化情况进行初步讨论;结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式;能画(k≠0)探索并理解k>0和k<0时,图出反比例函数的图象,根据图象和表达式y=kx象的变化情况;能用反比例函数解决简单实际问题.反比例函数;6.2反比例函数的图象与性质;6.3反比例函数的应用.函数是在探索具体问题中数量关系和变化规律的基础上抽象出的重要数学概念,是研究现实世界变化规律的重要数学模型.函数的教学要通过对现实问题中变量的分析,建立两个变量之间变化的依赖关系,让学生理解用函数表达变化关系的实际意义.在本章的学习过程中,通过直观、操作、观察、概括和交流等活动方式,对函数的三种表示方法进行整合,逐步形成对函数概念的整体性认识;逐步提高从函数图象中获取信息的能力,提高几何直观水平;逐步形成用函数观点处理问题的意识,进一步感悟数形结合的思想.三、单元学情分析学生曾在七年级下册和八年级上册学习过“变量之间的关系”和“一次函数”等内容,对函数已经有了初步的认识,在此基础上讨论反比例函数及其性质,可以进一步领悟函数的概念并积累研究函数性质的方法及用函数观点处理实际问题的经验,这对后续学习(如二次函数等)会产生积极影响.本章通过对具体情境的分析,概括出反比例函数的表达形式,明确反比例函数的概念,通过例题和学生列举的实例可以丰富对反比例函数的认识,理解反比例函数的意义.四、单元学习目标1.经历从具体问题情境中抽象出反比例函数概念的过程,进一步感受函数的模型思想;探索反比例函数的性质,体会研究函数的一般性方法.2.结合具体情境体会反比例函数的意义,理解反比例函数的概念,能根据已知条件确定反比例函数的表达式.3.能画出反比例函数的图象,根据图象和表达式理解反比例函数的性质,体会数形结合的思想和分类的思想.4.能用反比例函数解决简单实际问题,发展应用意识.5.在反比例函数学习的过程中,进一步发展勇于探究与合作交流的精神.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难、由浅入深、循序渐进,突出基础知识、基本技能,渗透人人学习数学、人人有所获.重视过程与方法,发展数学的应用意识和创新意识.根据以上建议,本单元课后作业设置为两部分:基础性课后作业和拓展性课后作业.课时目标1.经历从现实情境中抽象出反比例函数概念的过程,初步理解反比例函数所反映的变量之间的关系,进一步体会函数是刻画变量之间关系的数学模型.2.结合具体情境体会反比例函数的意义,理解反比例函数的概念,能根据已知条件确定反比例函数的表达式.学习重点理解反比例函数的概念.学习难点能根据已知条件确定反比例函数的表达式.课时活动设计复习引入问题1:如果每天背10个单词,那么所掌握的单词总量y(个)与时间x(天)之间的函数关系式为y=10x .问题2:小明原来掌握了150个单词,以后每天背10个单词,那么他所掌握单词总量y(个)与时间x(天)之间的关系式为y=150+10x .问题3:九年级英语全册约有单词1 200个,小明同学计划用x天全部掌握,那么平均每天需要记忆的单词量y(个)与时间x(天)之间的关系式为.y=1200x问题4:一个面积为6 400 m2的长方形花坛,花坛的长a(m)与宽b(m)之间的.关系式为a=6400b问题5:京沪高速铁路全长约为1 318 km,列车沿京沪高速铁路从上海驶往北京,列车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间的函数关系式.为t=1318v设计意图:通过复习回顾,为讲解新知识作铺垫,便于学生建立起新、旧知识之间的联系.探究新知师:问题3、4、5中的三个函数关系式有什么共同点?你能否根据这一类函数的共同特点,类比正比例函数写出这种函数的一般形式?生:都是y =kx 的形式,其中k 是非零常数.师:这种函数叫反比例函数,那么什么是反比例函数? 教师和学生一起探索总结出反比例函数的概念:一般地,如果两个变量x ,y 之间的对应关系可以表示成y =kx (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数.反比例函数的自变量x 不能为零.反比例函数的三种表达式形式:y =kx ,y =kx -1,xy =k.(k 为常数,k ≠0) 注意事项:①常数k ≠0;②自变量x 不能为零(因为分母为0时,该式没有意义);③当y =kx 写为y =kx -1时,注意x 的指数为-1;④由定义不难看出,k 可以从两个变量相对应的任意一对对应值的积来求得,只要k 确定了,这个函数就确定了.设计意图:通过具体问题中的数量关系和变化规律抽象出关系式,让两个变量在形式上得以体现,并在此基础上抽象出反比例函数的数学概念,同时借助具体情境让学生领会到反比例函数作为一种数学模型在实际问题中的应用.典例精讲例1 在下列函数表达式中,x 均表示自变量,那么哪些是反比例函数?每一个反比例函数相应的k 值是多少?(1)y =-3x ; (2)y =-23x ; (3)xy =0.4; (4)y =5x +1; (5)y =nx .解:(2)(3)是反比例函数,(2)中的k =-23,(3)中的k =0.4. 例2 y 是x 的反比例函数,下表给出了x 与y 的一些值.(1)求出这个反比例函数的表达式;(2)根据函数表达式完成上表. 解:(1)y =-2x . (2)(从左到右)23 1 2设计意图:巩固新知识,通过例题讲解既巩固了反比例函数的概念,又让学生认识到反比例函数的表达式有不同的形式,第2题又巩固了确定一个反比例函数关系的关键是求得非零常数的值.同时,让学生初步体会函数表达式与函数表格之间的相互转化.巩固训练1.电流I、电阻R、电压U之间满足关系式U=IR.在照明电路中,正常电压U=220 V.(1)求I与R之间的函数关系式.(2)变量I是R的反比例函数吗?(3)利用写出的关系式完成下表..解:(1)I=220R(2)是.,100.(3)从左向右依次为11,1132.在某一电路中,保持电压U(V)不变,电流I(A)是电阻R(Ω)的反比例函数,当电阻R=5 Ω时,电流I=2 A.(1)求I与R之间的函数关系式.(2)当电流I=0.5 A时,求电阻R的值..解:(1)I=10R(2)R=20Ω.设计意图:通过题目练习,既巩固反比例函数的概念,又促进学生书写解答步骤的规范化,学生知道确定一个反比例函数表达式的关键是求得k的值.加强了对概念的理解,并进一步体会函数表达式与函数表格之间的相互转化.当堂检测1.关系式xy+4=0中y是x的反比例函数吗?若是,相应的k值等于多少?若不是,请说明理由.解:y是x的反比例函数,k的值为-4.是反比例函数,则m应满足的条件是m≠1.2.若y=m-1x3.函数关系式y=100可以表示许多生活中变量之间的关系,你能举出一些这x样的实际例子吗?解:一个长方形广场的面积为100,则该广场的长y和宽x之间的关系可以表.达为y=100x4.若y=(m+1)x m2-2是关于x的反比例函数,试确定m的值,并求其函数关系式.解:∵y是关于x的反比例函数,∴m2-2=-1,解得m=±1.又∵m+1≠0,解得m≠-1.∴m=1..∴函数关系式为y=2x设计意图:及时获知学生对所学知识的掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要课后加强辅导,达到全面提升的目的.课堂小结1.通过本节课的学习,你有哪些收获?2.你还存在什么疑问?设计意图:通过开放式小结,学生自主回顾、总结梳理所学知识,培养学生归纳、概括能力和表达能力.相关练习.1.教材第150~151页习题6.1第1,2,3,4题.2.相关练习.6.1 反比例函数1.反比例函数的概念:一般地,如果两个变量x,y之间的对应关系可以表示成(ky=kx为常数,k≠0)的形式,那么称y是x的反比例函数.反比例函数的自变量x不能为零.2.反比例函数三种表达式形式:y=k,y=kx-1,xy=k.(k为常数,k≠0) x3.例题、练习题.教学反思。
九年级数学上册6.2.1反比例函数的图象和性质教案(新版)北师大版课题:6.2反比例函数的图像与性质教学目标:1.经历探索反比例函数的性质的过程,体会函数的三种表示方法的相互转换,对函数进行认识上的整合.2.会作反比例函数的图象,进一步掌握画函数图象的主要步骤.3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质.教学重点与难点:重点:画反比例函数图象并认识图象的特点.难点:体会函数的三种表示方法的相互转换.课前准备:多媒体课件.教学过程:一、复习回顾,导入新课活动内容:(多媒体出示)创设问题情景.问题:1.什么叫做反比例函数?2.反比例函数的定义中需要注意什么?(此时老师板书反比例函数的表达式.)3.函数有几种表达形式?4.大家还记得一次函数图象是什么?那反比例函数的图象又会是什么样?处理方式:1.问题1,2由学生口答完成后,教师板书反比例函数的表达式.2.学生口答完函数的表达形式有列表法、图像法、关系式法之后,教师追问:如何用表格法和图像法表示反比例函数?接着教师引导学生根据反比例函数关系式可以列表格,再根据表格描点可以得到反比例函数的图像,体会函数三种表示方法可以相互转化.3. 最后老师继续追问:一次函数图象是什么?那反比例函数的图象又会是什么样?从而引出本节课课题,导入新课.设计意图:通过问题串引导学生回归复习反比例的定义,通过追问让学生回忆根据关系式可以列表格,根据表格描点可以得到反比例函数的图像,既复习了函数图像的定义,又让学生体会三种表示方法可以相互转化.二、探究学习,感悟新知活动内容1:例1.画出xy 4 的图象.处理方式:1.让学生独立思考、尝试,然后小组之间交流.学生充分交流后教师利用投影或者课件展示以下错例.2.教师逐步引导学生思考(1)他们做的对吗?为什么?同学会发现图一选取的自变量的值太少,导致图象不具代表性;图二,取自变量的值时,取值以偏带全导致只画出一支曲线.(2)教师追问怎样取值才全面?图三画成有明确端点,图像应是延伸的,连线时习惯用线段,导致出现“硬转弯”的折线图.(3)教师继续发问,为什么图像应是延伸的?适时点拨:我们根据函数图象的定义x 可取无数个值,相应函数值y 可得无数个值,所以图象不要画成如图三.(4)你认为作反比例函数图象时应注意哪些问题?设计意图:先让学生按自己的理解尝试画反比例函数xy 4=的图象,在作图过程中学生会出现各种各样的问题,通过学生的讨论、交流,和教师的点拨让学生理解错误的原因,通过问题串的形式,逐步引导学生思考探究画图象的步骤,并且对于其中出现的错误及时纠正,然后通过对比师生共同总结作反比例函数图象注意的问题.同时在这一过程中让学生积累数学活动经验.活动内容2:看老师如何画出xy 4=图象的(几何画板演示步骤)处理方式:1.教师利用几何画板本演示画图的步骤及过程.2.教师强调作图时应注意以下问题(1)列表时,选取的自变量的值,既要易于计算,又要便于描点,尽量多取一些数值(取互为相反数的一对一对的数),多描一些点,这样既可以方便连线,又可以使图象精确.(2)连线时必须用光滑的曲线连接各点,不能用折线连接.(3)图像是延伸的,注意不要画成有明确端点.(4)曲线的发展趋势只能靠近坐标轴,但不能和坐标轴相交.(5)描点时一定要养成按自变量从小到大的顺序依次画线, 从中体会函数的增减性. 设计意图:教师利用几何画板本演示画图的步骤,体现步骤的严密性,规范性.三、由此及彼,应用新知活动内容1:现在我们已经知道当K 取正数时,我们画出了反比例函数的图像,当K 取负数时它的图像又是什么形状呢?请同学们继续下面的练习. 练习:大家用同样的方法作反比例函数xy 4-= 的图象. 处理方式:然后让学生试着自己作图.教师根据学生的作图情况,期间需要做出必要引导,多媒体出示正确的作图过程,让学生参考,让学生修改自己的解题过程.设计意图:让学生进一步熟悉画函数图像的主要步骤,并在巩固训练中积累素材,通过观察发现K 决定了图象所在的象限等性质做准备.活动内容2:议一议:(1)观察 x y 4=和x y 4-= 的图象,它们有什么相同点和不同点?(2)反比例函数图像是中心对称图形吗?如果是,请找出对称中心,反比例函数是轴对称图形吗?如果是请指出它的对称轴.处理方式:(1)让学生先独立思考后再与同桌交流答案,最后师生共同小结反比例函数的性质.(教师板书)反比例函数y = x k 有下列性质:反比例函数的图象y = xk 是由两支曲线组成的。
第六章 反比例函数【学习目标】1.会判断一个函数是否是反比例函数.(重点)2.会求反比例函数的表达式.(难点)3.掌握反比例函数图象的特征.(重点)4.会利用反比例函数图象解决相关问题.(难点)【知识点内容】知识点一:反比例函数的概念:一般地,如果两个变量y 与x 的关系可以表示成()0≠=k xky ,的形式,那么称 y 是 x 的反比例函数.形如xky =、1-=kx y 、)0≠=k k xy (的函数称为y 关于x 的反比例函数。
例题1:在下列关系式中,x 均为自变量,哪些式反比例函数?每个反比例函数相应的k 值是多少?x y 51=)(10.42-=x y )( 23xy =)( 24=xy )( 365+=x y )( 76-=xy )( 257x y =)( x y 518=)(1.已知22)1(-+=mx m y 是反比例函数,则m = .2.已知函数32)1(--+=k k x k y 是反比例函数,则k = .②确定反比例函数解析式:用待定系数法求反比例函数例题2:已知反比例函数y =(k ≠0)的图象经过点A (﹣3,﹣6). (1)求这个函数的表达式;(2)点B (4,),C (2,﹣5)是否在这个函数的图象上?3.某反比例函数的图象经过点(﹣2,3),则此函数图象也经过点( ) A .(2,﹣3)B .(﹣3,﹣3)C .(2,3)D .(﹣4,6)4.若反比例函数y =的图象经过点(﹣1,2),则这个函数的图象一定经过点( ) A .(﹣2,﹣1) B .(﹣,2)C .(2,﹣1)D .(,2)知识点二:反比例函数图像与性质反比例函数 ()0≠=k xky k 的符号k >0k <0图象性质①0,0≠≠y x②函数图象经过一、三象限,在每个现象内,y 随x 的值增大而减少①0,0≠≠y x②函数图象经过二、四象限,在每个现象内,y 随x 的值增大而增大反比例函数图象是轴对称图形,也是中心对称图形,关于原点对称5.关于反比例函数y =图象,下列说法正确的是( ) A .点(﹣2,1)在它的图象上 B .它的图象经过原点C .它的图象在第一、三象限D .当x >0时,y 随x 的增大而增大6.已知反比例函数y =﹣,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y 随x 的增大而增大;④当x >﹣1时,则y >8.其中错误的结论有( )个 A .3B .2C .1D .07.已知反比例函数,下列说法中正确的是( )A .该函数的图象分布在第一、三象限B .点(﹣4,﹣3)在函数图象上C .y 随x 的增大而增大D .若点(﹣2,y 1)和(﹣1,y 2)在该函数图象上,则y 1<y 2②利用反比例函数图像解决比大小问题例题3:已知点A (﹣2,y 1)、B (﹣1,y 2)、C (3,y 3)都在反比例函数y =的图象上,则( ) A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 38.反比例函数y =图象上有三个点(x 1,y 1),(x 2,y 2),(x 3,y 3),其中x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y19.函数(a为常数)的图象上有三点(﹣4,y1),(﹣1,y2),(2,y3),则函数值y1,y2,y3的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y3<y110.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x2<x3<x1③通过图像性质求未知数取值范围例题4.反比例函数y=的图象有一支位于第一象限,则常数a的取值范围是.11.在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A.k>1B.k>0C.k≥1D.k<112.已知A(﹣1,y1),B(2,y2)两点在双曲线y=上,且y1>y2,则m的取值范围是()A.m<0B.m>0C.m>﹣D.m<﹣13.已知反比例函数的图象上有两点A(x1,y1)、B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是.④通过图像解决一次函数与反比例函数大小问题(找交点分成四部分、谁大谁在上)例题5.如图,一次函数y1=k1x+b(k1≠0)的图象与反比例函数y2=(k2≠0)的图象交于A,B两点,观察图象,当y1>y2时,x的取值范围是.(例题5) (14题图)14.如图,已知一次函数y=mx+n与反比例函数的图象交于A(3,1)、B(﹣1,﹣3)两点.观察图象,可知不等式的解集是.15.如图,一次函数y1=x﹣1与反比例函数的图象交于点A(2,1)、B(﹣1,﹣2),则使y1>y2的x的取值范围是.(题15图)(题16图)16.如图,一次函数y1=ax+b(a≠0)与反比例函数的图象交于A(1,4)、B(4,1)两点,若使y1>y2,则x的取值范围是.变式17.如图,正比例函数y1=k1x与反比例函数y2=的图象交于A、B两点,根据图象可直接写出当y1>y2时,x的取值范围是.(题17图)(题18图)变式18.如图,一次函数的图象y=﹣x+b与反比例函数的图象y=交于A(2,﹣4),B(m,2)两点.当x 满足条件时,一次函数的值大于反比例函数值.⑤一次函数与反比例函数的大致图像(理解好一次函数b kx y +=中k 、b 的意义、反比例函数xky =中k 的意义) 一次函数b kx y +=反比例函数xk y =0>k0<k0>k 0<k0>b0<b例题6.在同一个直角坐标系中,函数y =kx 和的图象的大致位置是( )A .B .C .D .19.在同一坐标系中(水平方向是x 轴),函数y =和y =kx +3的图象大致是( )A .B .C .D .20.若ab <0,则正比例函数y =ax 与反比例函数y =在同一坐标系中的大致图象可能是( )A .B .C .D .21.已知k 1<0<k 2,则函数y =k 1x ﹣1和y =的图象大致是( )A .B .C .D .22.若ab >0,则一次函数y =ax +b 与反比例函数y =在同一坐标系中的大致图象是( )A .B .C .D .23.已知关于x 的函数y =k (x +1)和y =﹣(k ≠0),它们在同一坐标系中的大致图象是( )A .B .C .D .24.在同一直角坐标系中,函数y =kx ﹣k 与y =(k ≠0)的图象大致是( )A .B .C .D .知识点三:反比例函数解析式中k 的几何意义过双曲线x ky =(0k ≠) 上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k . 过双曲线x ky =(0k ≠) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三 角形的面积为2k.要点诠释:只要函数式已经确定,不论图象上点的位置如何变化,这一点与两坐标轴的垂线和两坐标轴围成的面积始终是不变的.例题7.如图,点A 是反比例函数y =图象上的一个动点,过点A 作AB ⊥x 轴,AC ⊥y 轴,垂足点分别为B 、C ,矩形ABOC的面积为4,则k=.(例题7)(题25图)(题26图)25.如图,点A是反比例函数y=图象上的一点,AB垂直x轴于点B,若S△ABO=2.5,则k的值为()A.2.5B.5C.﹣5D.﹣2.526.如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点C、D在x轴上,且BC∥AD,四边形ABCD的面积为3,则这个反比例函数的解析式为.27.已知反比例函数在第一象限的图象如图所示,点A在其图象上,点B为x轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB=.(题27图)(题28图)28.如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△P AB 的面积是.29.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.(题29图)(题30图)30.如图,点A是反比例函数y=的图象上一点,过点A作AB⊥x轴,垂足为点B,线段AB交反比例函数y =的图象于点C,则△OAC的面积为.31.双曲线y1、y2在第一象限的图象如图,,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=1,则y2的解析式是.四:解答题①相加最小型1.如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,4),B(4,n)两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使P A+PB最小.2.如图,一次函数y1=k1x+b的图象与反比例函数y2=(x>0)的图象交于A、B两点,与y轴交于C点,已知A点坐标为(2,1),C点坐标为(0,3)(1)求一次函数和反比例函数的解析式;(2)在x轴上找一点P,使得△P AB的周长最小,请求出点P的坐标.②求围成面积3.如图,反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4)、点B(﹣4,n).(1)求一次函数和反比例函数的解析式;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.4.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)直接写出一次函数的值小于反比例函数值的x的取值范围.③已知面积反推点坐标5.如图,一次函数y=kx+b与反比例函数y=的图象交于点A(1,6),B(3,n)两点.与x轴交于点C.(1)求一次函数的表达式;(2)若点M在x轴上,且△AMC的面积为6,求点M的坐标.(3)结合图形,直接写出kx+b﹣>0时x的取值范围.(4)在y轴上找一点P,使P A+PB的值最小,直接写出满足条件的点P的坐标是.6.如图,矩形ABOD的顶点A是函数y=与函数y=﹣x﹣(k+1)在第二象限的交点,AB⊥x轴于B,AD⊥y 轴于D,且矩形ABOD的面积为3.(1)求两函数的解析式.(2)求两函数的交点A、C的坐标.(3)若点P是y轴上一动点,且S△APC=5,求点P的坐标.7.如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x 轴交于点C.(1)求a,k的值及点B的坐标;(2)若点P在x轴上,且S△ACP=S△BOC,直接写出点P的坐标.8.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)根据图象,直接写出满足k1x+b>的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.。