光度学单位基础知识
- 格式:ppt
- 大小:15.93 MB
- 文档页数:5
光度学的基本单位
光度学的基本单位有:
1. 光通量:用于描述光源发出光的总量,单位是流明(lm)。
2. 发光强度:描述光源在特定方向上单位立体角内发出的光通量,单位是坎德拉(cd)。
3. 亮度:描述物体在特定方向上单位面积内的光通量,单位是尼特(nit)。
4. 照度:描述被照物体在特定表面上单位面积接受到的光通量,单位是勒克斯(lx)。
此外,光度学中还有一些其他常用的量和单位,如光谱光通量、光谱发光强度、光谱亮度、光谱照度等。
这些量和单位的定义和使用方法与上述基本单位类似。
阐述光度学的基本概念1.1光度学的基本概念在电磁辐射中可见光只占有很窄的波段。
光度学是来讨论可见辐射的测量和传播。
光度学里所用单位是以人眼的响应为基础的。
本文將介绍光度学的一些相应的单位【1】【2】,和常用单位。
1.1.1光通量通常用光的功率来表示光源在单位时间内发射的光能量的大小,单位为(W/nm)。
辐射通量这个概念可用于所有光谱段的光与辐射。
但人眼对不同波长的光的视觉灵敏度V(入)是不同的,对波长小于380纳米和大于780纳米之间的这部分不可见光,V(入)=0。
因此将光源发射的辐射通量能够引起人眼视觉的这部分能量称为光通量。
通常用积分球法来测量LED的光通量,被测的LED器件发射出的光辐射经积分球壁的多次反射后,产生了和光通量成比例的均匀面出光度,被球壁上的探测器测量到;同时在球内的漫射屏挡住了光线,不让探测器去直接接收被测器件的光辐射。
1.1.2发光强度由于辐射的发光体在空间发出的光通量是不均匀的,大小也是不同的,所以为了表示辐射体在不同方向上光通量的分布特性,需要引入光通量角密度这个概念:光源在特定方向上很小的立体角元内所包含的光通量dΦ与立体角dΩ的比值,称为这个方向上的光强,单位为坎德拉。
LED光强的检测可以分为近场与远场两种情况,在远场的条件下,并且LED 光源的尺寸与光探测器的面积到离光探测器距离相比足够小,LED光源可看做点光源。
此时,光探测器表面光照度E遵循距离平方反比的定理。
在近场的条件下,测量LED时所需要的距离d相对就较短,光源相对尺寸太大,或是探测器表面和光源构成的角度太大了,此时,光探测器测量的光强取决于测量的条件。
照射在离LED有一定距离的光探测器的光通量Φ与探测器所构成的立体角Ω的比值,就是平均发光强度。
发光强度空间分布图仅规定了一个平面,半角强度常定义为发光强度等于最大发光强度一半位置构成的角度,让被测发光二极管绕顶点旋转,也可以让探测器以d为半径旋转,此测量法不仅适用于LED,同样也适用于对称的LED灯具的检测。
0、前言光度学与光相关的常用量有4个:发光强度、光通量、照度、亮度。
这4个量尽管是相关的,但为不同的,不能相混。
正像压力、重力、压强、质量是不同的物理量一样。
1、发光强度(I、Intensity),单位坎德拉,即cd。
(是点光源的固有属性,表征光线的汇聚能力)定义:光源在给定方向的单位立体角中发射的光通量定义为光源在该方向的(发)光强(度),解释:发光强度是针对点光源而言的,或者发光体的大小与照射距离相比比较小的场合。
这个量是表明发光体在空间发射的会聚能力的。
可以说,发光强度就是描述了光源到底有多“亮”,因为它是光功率与会聚能力的一个共同的描述。
发光强度越大,光源看起来就越亮,同时在相同条件下被该光源照射后的物体也就越亮,因此,早些时候描述手电都用这个参数。
现在LED也用这个单位来描述,比如某LED是15000的,单位是mcd,1000mcd=1cd,因此15000mcd就是15cd。
之所以LED用毫cd(mcd)而不直接用cd来表示,是因为以前最早LED比较暗,比如1984年标准5mm的LED其发光强度才0.005cd,因此才用mcd表示,现在LED都很厉害了,但还是沿用原来的说法。
用发光强度来表示“亮度”的缺点是,如果管芯完全一样的两个LED,会聚程度好的发光强度就高。
因此,购买LED的时候不要一味追求高I值,还要看照射角度。
很多高I值的LED 并非提高自身的发射效率来达到,而是把镜头加长照射角度变窄来实现的,这尽管对LED 手电有用,但可观察角度也受限。
另外,同样的管芯LED,直径5mm的I值就比3mm的大一倍多,但只有直径10mm的1/4,因为透镜越大会聚特性就越好。
之所以用发光强度来表示手电或LED,是因为在相同距离下对被照射地的照度是与这个成正比的。
特别的说,距离1m的lx就是cd值。
但是,很多场合下我们需要照射面积大一些,所以只用发光强度这一特性还不能全面反应手电的能力。
比如,同样的筒身,换个大头(大反光杯)则I值马上增大许多。
第五章 光度学光能是系统设计中另一个非常重要的问题,由于任何一个接收器件,所能接收的光能都有一个最低阈值。
以人眼为例,它所能感受到的最低照度为(勒克斯),相当于一支蜡在之外产生的光照度。
可见人眼对光是相当灵敏的,我们希望所设计的系统所成的像具有足够好的照度/足够多的能量。
lx 910−km 30§5-1 光度学中的基本量及单位一、辐射量―――指描述电磁波的物理量描述电磁波的物理量比较多,例如:辐通量、辐照度、辐出射度等。
1、辐射能(表示)――指以电磁辐射形式发射、传输或接收的能量。
单位:(J 焦尔)e Q 它是由辐射体发出的,常见的辐射体分为二大类:一次辐射源――本身发射辐射能的物体,例如:太阳、各种灯;二次辐射源――受别的辐射体照射后,反射/透射能量的物体,例如:月亮,被照明的物体。
2、辐通量(e φ)――单位时间内发射、传输、接收的辐射能叫辐通量。
单位:W (瓦)对某一辐射体而言,它发出的辐射能具有一定的光谱分布(即由各种不同的波长组成),而每种不同的波长其辐通量也不同。
总的辐通量=各个组成波长的辐通量总和。
若设在极窄的波段范围λd 内,所辐射出的辐通量为e d φ,则有:λλφφd d e )(=式中)(λφ――是辐通量随波长变化的函数;上式表示的是小量值,那么在整个波段内所辐射的总的能量为: λλφφd e ∫=)(此外,还有:辐出射度()、辐照度()、辐亮度()等等。
e M e E e L 二、 光学量对于光辐射中的物理量是比较多的,其意义与辐射量的意义也基本相同,故为了区别起见,我们用符号进行区别,它们的主符号是相同的,但是下角标有区别:辐射量――下角标e ;光学量――下角标v 。
1、接收器的光谱响应物体经过系统进行成像,最终的像都是由接收器类进行接收的,接收器的不同,对光谱响应的范围也各不相同。
对于目视光学系统而言,人眼对不同的波长响应程度也相差非常大,在这里引入了光谱光视效率的概念加以理解。
1.3光度量光度量和辐射度量的定义、定义方程是一一对应的。
若遇易混淆时,则在辐射度量符号上加下标“e ”,而在光度量符号上加下标“V ”,例如辐射度量Q e , Φe ,I e ,M e ,E e 等,它们对应的光度量为Q v ,Φv ,I v ,L v ,M v ,E v 等。
此外,辐射度量和光度量都是波长的函数,因此当描述光谱量时,在它们的名称前加“光谱”二字,并在它们相应的符号上加波长的符号“λ”作为下标,例如光谱辐通量记为λe Φ等等。
光通量Φv 和辐通量Φe 的关系可写成如下方程:⎰∞Φ=Φ0)()(λλλd V K e m v同理⎰∞=0)()(λλλd I V K I e m v ,等等。
式中,V (λ)是CIE 推荐的平均人眼的光谱光视效率(也叫视见函数)。
对于明视觉,它是对应波长为555nm 的辐通量Φe (555)与某波长能对平均人眼产生相同光视刺激的辐通量Φe(λ)的比值。
1971年CIE 公布的明视觉V (λ)标准值已经经国际计量委员会批准,其V(λ)曲线见图1.3-1。
K m 是一比例常数。
对于波长555nm 的单色光(V (555)=1),K m 等于683m/W 。
原先它是根据在一个标准大气压下(101325N /m 2)黑体辐射器在铂凝固温度(2042K )明视觉亮度定义为60cd/cm 2而得出的,即⎰∞=0)()(λλλd L V K L e m v则683)()(106004=⨯=⎰∞λλλd L V K e m (lmW -1)式中L e (λ)(在2042K)可由黑体辐射表查得。
光度量和辐射度量的关系可用图解来求得(图1.3-1)。
图中V (λ)Φe (λ)曲线是V (λ)和Φe (λ)曲线在同一波长处两值的乘积。
纵坐标比例尺为e m v m K m ΦΦ=式中v m Φ是光通量的比例尺,e m Φ是辐通量的比例尺。
由此⎰∞Φ=Φ0)()(λλλd V K e m v⎰∞Φ=0)()(λλϕλd V K m e m e⎰∞ΦΦ==0)()(v v e v m d V m ϕλλϕλ式中 v v v e e e m m ϕλϕλΦΦ=Φ=Φ),()(图1.3-1中,Φe (λ)曲线和Φe (λ)V (λ)曲线与横坐标轴所包容的面积比为⎰⎰∞∞ΦΦ=)()()(λλλλλd d V V e e则⎰⎰∞∞ΦΦ=ΦΦ=)()()(λλλλλd d V K K e e m ev图1.3-1 光度量和辐射度量的关系K 的意义是光源发出的辐通量可产生多少能对目视引起刺激的光通量。
光度学基础光度学是研究光的流动和光能的传播的科学,也是物理学的一个分支。
它研究光的性质、光的产生、传播、相互作用以及光与物质之间的相互作用等方面的内容。
在光度学中,我们关注的是光的强度、光的波长、光的频率以及光的速度等基本特性。
光的强度是指光的能量在单位时间内通过单位面积的流量,也就是单位时间内光通过的功率。
在国际单位制中,光的强度的单位是瓦特/平方米(W/m²)。
光的强度是光度学中最基本的量度,它可以用来描述光源的亮度。
当光的强度增大时,我们感觉到的亮度也会增加。
光的波长是指光波在传播过程中一个完整波动所需的距离。
在光度学中,我们常用纳米米(nm)来表示光的波长。
不同波长的光会引起不同的视觉效果,例如红光的波长较长,而紫光的波长较短。
光的波长还与光的颜色有关,我们常见的七彩光谱就是由不同波长的光组成的。
光的频率是指单位时间内光波的震动次数。
光的频率与光的波长有关系,它们之间的关系可以用光速来计算。
光速是光在真空中传播的速度,它是一个常数,约为每秒30万公里。
光的频率和波长满足一个简单的关系,即频率乘以波长等于光速。
因此,当光的波长变长时,光的频率会相应变小。
光的速度是光度学中非常重要的一个特性。
光的速度是自然界中最快的速度,它在真空中的数值约为每秒30万公里。
光的速度在不同介质中会发生变化,通常情况下,光在介质中的传播速度会比在真空中的传播速度慢。
这是因为光在介质中会与介质中的原子或分子相互作用,导致传播速度减小。
除了以上几个基本特性外,光度学还研究光与物质之间的相互作用。
光与物质之间的相互作用可以分为吸收、反射、折射和散射等几种形式。
当光通过物质时,物质会吸收光的能量,这就是光的吸收现象。
当光遇到物体表面时,一部分光会被物体表面反射回来,这就是光的反射现象。
当光从一种介质传播到另一种介质时,光的传播方向会发生改变,这就是光的折射现象。
当光通过物质时,光与物质中的微粒相互作用,导致光的传播方向发生随机改变,这就是光的散射现象。