简支梁设计计算
- 格式:doc
- 大小:962.00 KB
- 文档页数:24
第四章 简支梁(板)桥设计计算第一节 简支梁(板)桥主梁内力计算对于简支梁桥的一片主梁,知道了永久作用和通过荷载横向分布系数求得的可变作用,就可按工程力学的方法计算主梁截面的内力(弯矩M 和剪力Q ),有了截面内力,就可按结构设计原理进行该主梁的设计和验算。
对于跨径在10m 以内的一般小跨径混凝土简支梁(板)桥,通常只需计算跨中截面的最大弯矩和支点截面及跨中截面的剪力,跨中与支点之间各截面的剪力可以近似地按直线规律变化,弯矩可假设按二次抛物线规律变化,以简支梁的一个支点为坐标原点,其弯矩变化规律即为:)(42max x l x lM M x -= (4-1) 式中:x M —主梁距离支点x 处的截面弯矩值;m ax M —主梁跨中最大设计弯矩值;l —主梁的计算跨径。
对于较大跨径的简支梁,一般还应计算跨径四分之一截面处的弯矩和剪力。
如果主梁沿桥轴方向截面有变化,例如梁肋宽度或梁高有变化,则还应计算截面变化处的主梁内力。
一 永久作用效应计算钢筋混凝土或预应力混凝土公路桥梁的永久作用,往往占全部设计荷载很大的比重(通常占60~90%),桥梁的跨径愈大,永久作用所占的比重也愈大。
因此,设计人员要准确地计算出作用于桥梁上的永久作用。
如果在设计之初通过一些近似途径(经验曲线、相近的标准设计或已建桥梁的资料等)估算桥梁的永久作用,则应按试算后确定的结构尺寸重新计算桥梁的永久作用。
在计算永久作用效应时,为简化起见,习惯上往往将沿桥跨分点作用的横隔梁重力、沿桥横向不等分布的铺装层重力以及作用于两侧人行道和栏杆等重力均匀分摊给各主梁承受。
因此,对于等截面梁桥的主梁,其永久作用可简单地按均布荷载进行计算。
如果需要精确计算,可根据桥梁施工情况,将人行道、栏杆、灯柱和管道等重力像可变作用计算那样,按荷载横向分布的规律进行分配。
对于组合式梁桥,应按实际施工组合的情况,分阶段计算其永久作用效应。
对于预应力混凝土简支梁桥,在施加预应力阶段,往往要利用梁体自重,或称先期永久作用,来抵消强大钢丝束张拉力在梁体上翼缘产生的拉应力。
简支梁计算公式总汇简支梁计算方法是什么?计算基数级荷载值:Pka=Mka/α=21279.736/54.75=388.671(kN)计算各荷载下理论挠度值:f=2P[L+2(L/2-Χ1)(3L-4(L/2-Χ1))+2(L/2-Χ2)(3L-4(L/2-Χ2))]/48EI/1000=0.01156P基数级跨中弯距Mka:Mka=(Md+Mf)×VZ/VJ+ΔMs/VJ-MsMka=(Md+Mf)×1.017/1.0319+△Ms/1.0319-Ms=(17364.38+0)×1.017/1.0319+4468.475/1.0319-164.25=21279.736(kN·m)简支梁是什么?它是指梁的两端搁置在支座上,而支座仅约束梁的垂直位移,梁端是可以自由转动的。
为了使整个梁不产生水平移动,将在一端加设水平约束,该处的支座称为铰支座,另一端不加水平约束的支座则称为滚动支座。
简支梁有哪些特点?简支梁具有受力明确(静定结构)、构造简单、易于标准化设计,易于标准化工厂制造和工地预制,易于架设施工,易于养护、维修和更换等特点。
但简支梁桥不适用于较大跨度的桥梁工程。
简支梁和连续梁的区别是什么?1、支座数量不同简支梁有两个支座。
简支梁的两端搁置在支座上,一端加水平约束的支座称为铰支座,另一端不加水平约束的支座称为滚动支座。
连续梁有三个或三个以上支座。
连续梁有中间支座。
2、所受力不同简支梁仅在两端受铰支座约束,主要承受正弯矩。
体系温变、混凝土收缩徐变、张拉预应力、支座移动等都不会在梁中产生附加内力,受力简单,简支梁为力学简化模型。
连续梁属静不定结构,从力法求解其中的内力可知,连续梁承受三个以上的支座力矩。
连续梁有负弯矩,受正弯矩比相应的简支梁要小。
3、用途不同简支梁受力简单,为力学简化模型,构造也较简单,容易做成标准化、装配化构件。
连续梁经常使用在建筑、桥梁、航空以及管道线路等工程中。
H型钢结构简支梁设计计算书转发评论2011-10-21 11:16-------------------------------| 简支梁设计|| || 构件:BEAM1 || 日期:2011/10/21 || 时间:11:03:20 |------------------------------------ 设计信息-----钢梁钢材:Q235梁跨度(m):15.000梁平面外计算长度(m):6.500钢梁截面:焊接组合H形截面:H*B1*B2*Tw*T1*T2=298*149*149*8*10*10容许挠度限值[υ]: l/400 = 37.500 (mm)强度计算净截面系数:1.000计算梁截面自重作用: 计算简支梁受荷方式: 竖向单向受荷荷载组合分项系数按荷载规范自动取值----- 设计依据-----《建筑结构荷载规范》(GB 50009-2001)《钢结构设计规范》(GB 50017-2003)----- 简支梁作用与验算-----1、截面特性计算A =5.2040e-003; X c =7.4500e-002; Yc =1.4900e-001;Ix =7.6141e-005; Iy =5.5251e-006;ix =1.2096e-001; iy =3.2584e-002;W1x=5.1102e-004; W2x=5.1102e-004;W1y=7.4163e-005; W2y=7.4163e-005;2、简支梁自重作用计算梁自重荷载作用计算:简支梁自重(KN): G =6.1277e+000;自重作用折算梁上均布线荷(KN/m) p=4.0851e-001;3、梁上恒载作用荷载编号荷载类型荷载值1 荷载参数1 荷载参数2 荷载值21 4 1.00 1.00 0.00 0.002 4 1.50 7.50 0.00 0.003 4 1.00 14.00 0.00 0.004、单工况荷载标准值作用支座反力(压为正,单位:KN)△恒载标准值支座反力左支座反力Rd1=4.814, 右支座反力Rd2=4.8145、梁上各断面内力计算结果△组合1:1.2恒+1.4活断面号: 1 2 3 4 5 6 7弯矩(kN.m):0.000 6.538 11.110 14.916 17.955 20.229 21.737 剪力(kN) : 5.777 3.964 3.351 2.738 2.126 1.513 -0.900断面号:8 9 10 11 12 13弯矩(kN.m):20.229 17.955 14.916 11.110 6.538 0.000剪力(kN) :-1.513 -2.126 -2.738 -3.351 -3.964 -5.777△组合2:1.35恒+0.7*1.4活断面号: 1 2 3 4 5 6 7弯矩(kN.m):0.000 7.355 12.498 16.780 20.200 22.758 24.455 剪力(kN) : 6.499 4.459 3.770 3.081 2.391 1.702 -1.013断面号:8 9 10 11 12 13弯矩(kN.m):22.758 20.200 16.780 12.498 7.355 0.000剪力(kN) :-1.702 -2.391 -3.081 -3.770 -4.459 -6.4996、局部稳定验算翼缘宽厚比B/T=7.05 < 容许宽厚比[B/T] =15.0腹板计算高厚比H0/Tw=34.75 < 容许高厚比[H0/Tw]=80.07、简支梁截面强度验算简支梁最大正弯矩(kN.m):24.455 (组合:2; 控制位置:7.500m)强度计算最大应力(N/mm2):45.576 < f=215.000简支梁抗弯强度验算满足。
25米简支T梁设计计算简支梁是一种常用的结构形式,具有承载能力高、结构简单、施工方便等优点,广泛应用于各种建筑和桥梁工程中。
本文将以一个25米简支T梁为例,介绍其设计计算过程。
首先,需要明确一些设计参数和假设条件。
在进行简支梁设计时,需考虑梁的净跨度、截面形状、材料特性等因素。
假设这个T梁的净跨度为25米,并且采用普通混凝土作为材料。
接下来的设计计算主要包括对梁的截面尺寸以及弯矩、剪力、挠度等参数的计算。
在进行这些计算之前,需要明确梁的荷载情况,包括自重、活载和附加荷载等。
首先计算梁的自重。
根据梁的截面形状和长度可以计算出其自重,进而得到梁的自重力。
然后计算活载。
活载是指在梁上施加的动态荷载,通常根据设计车辆的荷载标准来确定。
根据设计标准或者实际情况,确定在梁上施加的活载,如汽车、行人等。
同时还要考虑附加荷载。
附加荷载包括温度应力、恒定载荷、移动荷载等,这些荷载是根据设计要求或实际情况确定的。
接下来,进行弯矩和剪力的计算。
弯矩是梁工作时产生的弯曲力矩,根据梁的跨度和荷载情况可以计算出各个截面的弯矩。
剪力是梁上的纵向力,同样可以根据梁的几何形状和荷载情况计算出各个截面的剪力。
最后,计算梁的挠度。
挠度是指梁在工作时产生的变形程度,需要根据梁的弹性模量、截面惯性矩、长度和荷载情况等参数进行计算。
在设计计算中,还需要考虑梁的承载能力。
这通常包括截面受压和截面受拉的承载力计算。
根据梁的截面形状和强度特性可以计算出梁在受压和受拉情况下的最大承载力。
通过上述设计计算过程,可以得到该25米简支T梁的各种设计参数,包括截面尺寸、荷载情况、弯矩、剪力、挠度等。
这些参数可以作为设计图纸和施工方案的依据,并应满足相应的设计要求和规范。
简支T梁的设计计算是复杂的过程,需要充分考虑各种因素和条件。
本文只是对该过程进行了简要介绍,实际设计中还需根据具体情况进行详细计算和分析。
设计师需要掌握相关的理论知识和计算方法,结合实际情况进行合理设计,以确保梁的安全性、经济性和可靠性。
简支梁集中力弯矩计算公式简支梁是一种常用的结构形式,广泛应用于各个领域。
在设计和分析简支梁时,计算集中力和弯矩是关键的任务之一。
本文将介绍简支梁的集中力和弯矩计算公式,并为读者提供简单易懂的解释。
首先,我们来看一下简支梁的定义。
简支梁是指两个端点处仅以支点连接并且在整个梁的长度上没有其他支持的梁结构。
在此基础上,我们可以计算集中力和弯矩。
1. 集中力的计算公式集中力是指作用在梁上的单个力,也称为点力。
它可以是一个垂直向下的力、一个垂直向上的力,或者一个斜向上或向下的力。
集中力的计算公式如下:F = P其中,F表示集中力的大小,单位是牛顿(N);P表示应用在梁上的力,单位也是牛顿(N)。
2. 弯矩的计算公式弯矩是指梁在作用力下的弯曲程度。
它是梁截面上每一点的力和距离的乘积之和。
弯矩的计算公式如下:M = F * d其中,M表示弯矩的大小,单位是牛顿-米(N·m);F表示作用在梁上的力,单位是牛顿(N);d表示力作用点到支点的距离,单位是米(m)。
当集中力作用在梁的端点上时,d的值为梁的长度L的一半。
当集中力作用在梁的内部时,d的值为集中力作用点到支点的距离。
我们还可以通过这两个公式来计算其他相关的参数。
例如,我们可以根据集中力和弯矩计算梁的截面惯性矩和截面模量。
这些参数对于分析和设计梁的性能非常重要。
值得注意的是,上述公式适用于简支梁的静力分析,即假设梁在静止的情况下受到力的作用。
如果考虑到其他因素,如动力学效应或梁的非线性行为,我们可能需要使用更复杂的公式或数值模拟方法。
综上所述,简支梁的集中力和弯矩计算公式可以帮助工程师和设计师分析和设计梁的性能。
通过正确使用这些公式,我们可以更好地理解梁在外力作用下的行为,并确保梁在设计工作中的可靠性和安全性。
简支梁计算例题摘要:1.引言:简支梁的概述2.计算方法:简支梁的内力计算3.例题:简支梁计算的具体步骤4.总结:简支梁计算的重要性正文:一、引言:简支梁的概述简支梁是指在两端支承,中间自由悬挂的梁。
它是工程中常见的一种结构形式,广泛应用于房屋建筑、桥梁、输电线路等领域。
简支梁的计算主要包括内力计算和挠度计算。
本文主要介绍简支梁的内力计算方法,并通过一个例题来说明具体的计算步骤。
二、计算方法:简支梁的内力计算简支梁的内力计算主要包括弯矩和剪力。
在计算时,一般采用静力平衡法或力矩平衡法。
其中,静力平衡法适用于简支梁在均布荷载作用下的内力计算;力矩平衡法则适用于简支梁在集中荷载作用下的内力计算。
三、例题:简支梁计算的具体步骤假设有一简支梁,梁的长度为L,截面尺寸为b×h,材料为钢筋混凝土,弹性模量为Ec,截面惯性矩为I。
在梁的中心施加一个均布荷载q,求梁在荷载作用下的弯矩和剪力。
1.根据均布荷载求梁的弯矩:首先,根据均布荷载的定义,求得荷载对梁端弯矩的影响。
设梁的一端受到的弯矩为M,则有:M = ql/82.根据弯矩求梁的剪力:根据静力平衡原理,梁在弯矩作用下,梁的剪力V 可表示为:V = M/Ec * h3.计算梁的挠度:根据力矩平衡原理,梁在荷载作用下的挠度f 可表示为:f = V * L / (Ec * I)四、总结:简支梁计算的重要性简支梁计算在工程中有着重要的意义。
通过计算,可以了解梁在荷载作用下的内力分布情况,从而为梁的材料选择、截面尺寸设计以及梁的强度分析提供依据。
装配式钢筋混凝土简支T梁桥计算一 .基本设计资料(一).跨度及桥面宽度二级公路装配式简支梁桥,双车道,计算跨径为13m,桥面宽度为净7.0+2×2+2×0.5=12m,主梁为钢筋混凝土简支T 梁,桥面由7片T梁组成,主梁之间的桥面板为铰接,沿梁长设置3道横隔梁。
(二).技术标准设计荷载:公路—Ⅱ级,人群荷载3.0KN/m2。
汽车荷载提高系数1.3(三).主要材料钢筋:主筋用HRB335级钢筋,其他用R235级钢筋。
混凝土:C50,容重26kN/m3;桥面铺装采用沥青混凝土;容重23kN/m3;(四).设计依据⑴《公路桥涵设计通用规范》(JTJ D60—2004)⑵《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ D62—2004);(五).参考资料⑴结构设计原理:叶见曙,人民交通出版社;⑵桥梁工程:姚玲森,人民交通出版社;⑶混凝土公路桥设计:⑷桥梁计算示例丛书《混凝土简支梁(板)桥》(第三版) 易建国主编.人民交通出版社(5)《钢筋混凝土及预应力混凝土简支梁桥结构设计》闫志刚主编.机械工业出版社(六).构造形式及截面尺寸1. 主梁截面尺寸:根据《公路桥涵设计通用规范》(JTGD60-2004),梁的高跨比的经济范围在1/11到1/16之间,此设计中计算跨径为13m,拟定采用的梁高为1.0m,翼板宽2.0m。
腹板宽0.18m。
2. 主梁间距和主梁片数:桥面净宽:7.0+2×2+2×0.5=12m,采用7片T型主梁标准设计,主梁间距为2.0m。
全断面7片主梁,设3道横隔梁,横隔板厚0.15m,高度取主梁高的3/4,即0.75m。
路拱横坡为双向2%,由C50沥青混凝土垫层控制,断面构造形式及截面尺寸如图所示。
二 .主梁的计算(一).主梁的荷载横向分布系数计算1.跨中荷载弯矩横向分布系数(按G —M 法)(1)主梁的抗弯及抗扭惯矩x I 和Tx I 求主梁界面的的重心位置x a (图2): 平均板厚:()11913112h cm =+= 主梁截面的重心位置:cma x 568.261810011)18200(50181005.511)18200(=⨯+⨯-⨯⨯+⨯⨯-=主梁抗弯惯矩:)(10487.3)(229.3486992)568.262100(1001810018121)211568.26(11200112001214242323m cm I x -⨯==-⨯⨯+⨯⨯+-⨯⨯+⨯⨯=主梁抗扭惯矩: 31ii mi i T t b c I ∑==对于翼板:1.0055.02001111≤==b t 查表得 1/3c =对于肋板:18.01001822==b t 由线性内插 295.0=c)(10608.2)(3.26077718100295.0112003143433m cm I T -⨯==⨯⨯+⨯⨯=单位宽度抗弯及抗扭惯矩:)(10304.120010608.2)(10744.120010487.3453442cm m b I J cm m b I J TxTx xx ----⨯=⨯==⨯=⨯==(2)横梁的抗弯及抗扭惯矩 翼板有效宽度λ的计算,计算图3所示横梁长度取两边主梁的轴线间距,即:cmb cm h cmc cmb l 15753052)15625(8004='='=-===381.0800305==l c 查表得当 381.0=l c 时 531.0=cλ 则 cm 162531.0305=⨯=λ横隔梁界面重心位置ya : cm a y 178.1315751116222751575211111622=⨯+⨯⨯⨯⨯+⨯⨯⨯=横隔梁抗弯惯矩:)(10007.8)178.13275(75157515121)5.5178.13()111622(11)1262(12143323--⨯=-⨯⨯+⨯⨯+-⨯⨯⨯+⨯⨯⨯=m I y 横隔梁的抗扭惯矩:33111222Ty I c b h c b h =+由1.00176.06251111≤==b h , 故 11/3c =,由于连续桥面板的单宽抗扭惯矩只有独立宽扁板的一半,可取11/6c =。
简支梁计算例题设计任务:设计一个简支梁,已知梁的跨度L=6米,梁的截面尺寸为b×h=200×400毫米,承受均布荷载设计值q=70kN/m(包括自重),混凝土强度等级为C25,纵向受拉钢筋采用HRB400级钢筋,箍筋采用HPB300级钢筋。
1. 计算梁所受总弯矩M:M = qL²/ 8 = 70 ×6²/ 8 = 255 kN·m2. 计算梁的截面面积A:A = b ×h = 200 ×400 = 80000 mm²3. 计算梁的截面模量W:W = α×A ×fcm = 1.1 ×80000 ×30 = 2640000 N·mm4. 计算梁的抗弯承载力Mu:Mu = fcmw = 30 ×2640000 = 79200000 N·mm > M = 25500000 N·mm5. 计算梁的纵筋数量:由M/mho²+fyAs/s ≤fcd得出As ≥M/(mho²+ fy/s),其中fy为HRB400级钢筋的抗拉强度设计值,取值为360N/mm²。
通过计算得出As≥8176mm²,选用2Φ28的钢筋,As=12568mm²。
6. 计算箍筋数量:根据构造要求,选用Φ8@200的箍筋,每米长度内布置箍筋数量为n=1×100/200+1=2个。
7. 验算裂缝宽度:根据规范要求,裂缝宽度不应超过Wmax=0.3mm。
根据M/γfW≤Wmax,其中γf为受拉或受压区纵向普通钢筋的配筋率,取值为As/(bho),通过计算得出W≤Wmax。
8. 绘制施工图,标明梁的跨度、截面尺寸、纵向钢筋和箍筋的位置和规格。
结论:根据以上计算和验算,该简支梁的设计满足要求,可以用于实际工程中。
第四章 简支梁(板)桥设计计算第一节 简支梁(板)桥主梁内力计算对于简支梁桥的一片主梁,知道了永久作用和通过荷载横向分布系数求得的可变作用,就可按工程力学的方法计算主梁截面的内力(弯矩M 和剪力Q ),有了截面内力,就可按结构设计原理进行该主梁的设计和验算。
对于跨径在10m 以内的一般小跨径混凝土简支梁(板)桥,通常只需计算跨中截面的最大弯矩和支点截面及跨中截面的剪力,跨中与支点之间各截面的剪力可以近似地按直线规律变化,弯矩可假设按二次抛物线规律变化,以简支梁的一个支点为坐标原点,其弯矩变化规律即为:)(42maxx l x lM M x -=(4-1) 式中:x M —主梁距离支点x 处的截面弯矩值;m ax M —主梁跨中最大设计弯矩值;l —主梁的计算跨径。
对于较大跨径的简支梁,一般还应计算跨径四分之一截面处的弯矩和剪力。
如果主梁沿桥轴方向截面有变化,例如梁肋宽度或梁高有变化,则还应计算截面变化处的主梁内力。
一 永久作用效应计算钢筋混凝土或预应力混凝土公路桥梁的永久作用,往往占全部设计荷载很大的比重(通常占60~90%),桥梁的跨径愈大,永久作用所占的比重也愈大。
因此,设计人员要准确地计算出作用于桥梁上的永久作用。
如果在设计之初通过一些近似途径(经验曲线、相近的标准设计或已建桥梁的资料等)估算桥梁的永久作用,则应按试算后确定的结构尺寸重新计算桥梁的永久作用。
在计算永久作用效应时,为简化起见,习惯上往往将沿桥跨分点作用的横隔梁重力、沿桥横向不等分布的铺装层重力以及作用于两侧人行道和栏杆等重力均匀分摊给各主梁承受。
因此,对于等截面梁桥的主梁,其永久作用可简单地按均布荷载进行计算。
如果需要精确计算,可根据桥梁施工情况,将人行道、栏杆、灯柱和管道等重力像可变作用计算那样,按荷载横向分布的规律进行分配。
对于组合式梁桥,应按实际施工组合的情况,分阶段计算其永久作用效应。
对于预应力混凝土简支梁桥,在施加预应力阶段,往往要利用梁体自重,或称先期永久作用,来抵消强大钢丝束张拉力在梁体上翼缘产生的拉应力。
在此情况下,也要将永久作用分成两个阶段(即先期永久作用和后期永久作用)来进行计算。
在特殊情况下,永久作用可能还要分成更多的阶段来计算。
得到永久作用集度值g 之后,就可按材料力学公式计算出梁内各截面的弯矩M 和剪力Q 。
当永久作用分阶段计算时,应按各阶段的永久作用集度值g i 来计算主梁内力,以便进行内力或应力组合。
下面通过一个计算实例来说明永久作用效应的计算方法。
例4-1:计算图4-1 所示标准跨径为20m 、由5片主梁组成的装配式钢筋混凝土简支梁桥主梁的永久作用效应,已知每侧的栏杆及人行道构件的永久作用为m kN /5。
160纵剖面横剖面160160160图4-1 装配式钢筋混凝土简支梁桥一般构造图(单位:cm )解:(1) 永久作用集度 主梁:m kN g /76.90.25)]18.060.1)(214.008.0(30.118.0[=⨯-++⨯= 横隔梁:边主梁:mkN g /63.050.19/}0.255216.015.0)218.060.1()]214.008.0(00.1{[2=⨯⨯+⨯-⨯+-= 中主梁:m kN g /26.1061.0212=⨯=桥面铺装层:mkN g /67.35/]0.2400.7)12.006.0(210.2300.702.0[3=⨯⨯++⨯⨯= 栏杆和人行道:m kN g /00.25/20.54=⨯= 作用于边主梁的全部永久作用集度为:∑=+++==m kN g g i /06.1600.267.363.076.9作用于中主梁的全部永久作用集度为:m kN g /69.1600.267.326.176.9=+++='(2)永久作用效应边主梁弯矩和剪力的力学计算模型如图4-2(a) 和( b) 所示,则:)(222x l gx x gx x gl M x -=⋅-⋅=)2(22x l ggx gl Q x -=-=各计算截面的剪力和弯矩值列于表4-1。
边主梁永久作用效应 表4-1(a)g=2x(b)图4-2 永久作用效应力学计算模型二 可变作用效应计算公路桥梁的可变作用包括汽车荷载、人群荷载等几部分,求得可变作用的荷载横向分布系数(本章后叙)后,就可以具体确定作用在一根主梁上的可变作用,然后用工程力学方法计算主梁的可变作用效应。
截面可变作用效应计算的一般计算公式为:)()1(21Ω+⋅⋅+=k k k q m y P m S ξμ汽 (4-2) Ω=人人q m S 2 (4-3)式中:S —所求截面的弯矩或剪力;)1(μ+—汽车荷载的冲击系数,按《公桥通规》规定取值;ξ—多车道桥涵的汽车荷载横向折减系数,按《公桥通规》规定取用;1m —沿桥跨纵向与车道集中荷载k P 位置对应的荷载横向分布系数;2m —沿桥跨纵向与车道均布荷载k q 所布置的影响线面积中心位置对应的荷载横向分布系数,一般可取跨中荷载横向分布系数c m ;kP —车道集中荷载标准值;kq —车道均布荷载标准值;r q —纵向每延米人群荷载标准值;k y —沿桥跨纵向与k P 位置对应的内力影响线最大坐标值;Ω—弯矩、剪力影响线面积。
利用式(4-2)和式(4-3)计算支点截面处的剪力或靠近支点截面的剪力时,尚须计入由于荷载横向分布系数在梁端区段内发生变化所产生的影响,以支点截面为例,其计算公式为:A A A Q Q Q ∆+='(4-4)式中:'A Q —由式(4-2)或式(4-3)按不变的c m 计算的内力值,即由均布荷载k c q m 计算的内力值;A Q ∆—计及靠近支点处荷载横向分布系数变化而引起的内力增(或减)值。
A Q ∆的计算(见图4-3):对于车道均布荷载情况,在荷载横向分布系数变化区段内所产生的三角形荷载对内力的影响,可用式(4-5)计算:y q m m aQ k c A ⋅⋅-⋅⋅+=∆)(2)1(0ξμ (4-5)对于人群均布荷载情况,在荷载横向分布系数变化区段内所产生的三角形荷载对内力的影响,可用式(4-6)计算:y q m m aQ r c A ⋅⋅-=∆)(20 (4-6) 式中:a —荷载横向分布系数m 过渡段长度;q r —侧人行道顺桥向每延米的人群荷载标准值;y —m 变化区段附加三角形荷载重心位置对应的内力影响线坐标值;其余符号意义同前。
图4-3 支点剪力力学计算模型下面通过一个计算实例来说明可变作用效应的计算方法。
例4-2:以例4-1所示的标准跨径为20m 的5梁式装配式钢筋混凝土简支梁桥为实例,计算边主梁在公路-II 级和人群荷载2/0.3m kN q r =作用下的跨中截面最大弯矩、最大剪力以及支点截面的最大剪力。
荷载横向分布系数可按表4-2中的备注栏参阅有关例题。
解:(1)荷载横向分布系数汇总(2)计算跨中截面车辆荷载引起的最大弯矩 按式(4-2)计算,其中简支梁桥基频计算公式为ccm EI l f 22π=,对于单根主梁: 混凝土弹性模量E 取210/103m N ⨯,主梁跨中截面的截面惯性矩4066146.0m I c =,主梁跨中处的单位长度质量m kg m c /10995.03⨯=,831.510995.0066146.01035.19214.3231022=⨯⨯⨯⨯⨯==c c m EI l f π(Hz ), 根据表1-17,冲击系数296.00157.0ln 1767.0=-=f μ,296.1)1(=+μ,双车道不折减,1=ξ, 计算弯矩时,kN P k 5.178)]55.19(550180360180[75.0=---+⨯=,m kN q k /875.7=,按跨中弯矩影响线,计算得出弯矩影响线面积为: 22253.475.198181m l =⨯==Ω, 沿桥跨纵向与k P 位置对应的内力影响线最大坐标值875.44==ly k , 故得:mkN q m y P m M k c k k q l⋅=⨯⨯+⨯⨯⨯⨯=Ω⋅⋅+⋅⋅+=72.867)53.47875.7538.0875.45.178538.0(1296.1)()1(12ξμ,(3)计算跨中截面人群荷载引起的最大弯矩 m kN q m M r cr r l⋅=⨯⨯⨯=Ω⋅⋅=15.7353.47)75.00.3(684.02,(4)计算跨中截面车辆荷载引起的最大剪力鉴于跨中剪力影响线的较大坐标位于跨中部分(见图4-4),可采用全跨统一的荷载横向分布系数c m 进行计算。
计算剪力时,kN P k 2.2145.1782.1=⨯= 影响线的面积m 438.25.05.192121=⨯⨯⨯=Ω 故得:影响线公路-II 级图4-5 支点剪力力学计算模型对应于支点剪力影响线的最不利车道荷载布置如图4-5a 所示,荷载的横向分布系数图如图4-5b 所示。
m 变化区段内附加三角形荷载重心处的剪力影响线坐标为:916.05.19/)9.4315.19(1=⨯-⨯=y ,影响线面积为m 75.915.1921=⨯=Ω。
因此,按式(4-2) 计算,则得:kNq m y P m Q k c k k q 13.175)75.9875.7538.00.12.214438.0(1296.1)()1(10=⨯⨯+⨯⨯⨯⨯=Ω+⋅⋅+='ξμ附加剪力由式(4-5)计算:kNy q m m aQ k c q 29.2916.0875.7)538.0438.0(1296.1)(2)1(00-=⨯⨯-⨯⨯=⋅⋅-⋅⋅+='∆ξμ 由式(4-4),公路-II 级作用下,边主梁支点的最大剪力为:kN Q Q Q q q q 84.17229.213.1750'00=-=∆+=(7)计算支点截面人群荷载引起的最大剪力由式(4-3)和式(4-6)可得人群荷载引起的支点剪力为:916.0)75.00.3()684.0422.1(9.42175.9)75.00.3(684.0)(200⨯⨯⨯-⨯⨯+⨯⨯⨯=⋅-+Ω⋅⋅=y q m m aq m Q r c r c rkN 73.18=三 主梁内力组合和包络图为了按各种极限状态来设计钢筋混凝土或预应力混凝土梁(板)桥,需要确定主梁沿桥跨方向关键截面的作用效应组合设计值(或称为计算内力值),可将各类荷载引起的最不利作用效应分别乘以相应的荷载分项系数,按《公桥通规》规定的作用效应组合而得到计算内力值。
例4-3:已知例4-1所示的标准跨径为20m 的5梁式装配式钢筋混凝土简支梁桥中1号边主梁的内力值最大,利用例4-1和例4-2的计算结果确定控制设计的计算内力值。
解:(1)内力计算结果汇总(2)作用效应组合 结构重要性系数10=γ 1)作用效应基本组合时:跨中弯矩:)4.18.04.12.1(0r cq cg c M M M M ⨯⨯++=γm kN ⋅=⨯⨯+⨯+⨯⨯=78.2212)15.734.18.072.8674.14.7632.1(0.1梁端剪力:)4.18.04.12.1(00000r q g Q Q Q Q ⨯⨯++=γkN 82.450)73.184.18.084.1724.16.1562.1(0.1=⨯⨯+⨯+⨯⨯=2)作用短期效应组合时,车辆荷载不计冲击力: 跨中弯矩:r cq cg c M M M M 0.17.0++=m kN ⋅=⨯+⨯+=23.130515.730.154.6697.04.763梁端剪力:r cq cg c Q Q Q Q 0.17.0++=kN 68.26873.180.136.1337.06.156=⨯+⨯+=3)作用长期效应组合时,车辆荷载不计冲击力: 跨中弯矩:r cq cg c M M M M 4.04.0++=m kN ⋅=⨯+⨯+=48.106015.734.054.6694.04.763梁端剪力:r cq cg c Q Q Q Q 4.04.0++=kN 44.21773.184.036.1334.06.156=⨯+⨯+=如果在梁轴线上的各个截面处,将所采用控制设计的各效应组合设计值按适当的比例尺绘成纵坐标,连接这些坐标点而绘成的曲线,称为效应组合设计值(或称为内力组合设计值)的包络图,如图4-6所示。