2020年5月济南市高新区中考第一学考模拟考试数学试题及参考答案
- 格式:pdf
- 大小:858.44 KB
- 文档页数:10
2024年中考第一次模拟考试(山东济南卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.图1所示的正五棱柱,其俯视图是()A .B .C .D .【答案】A【分析】找到从上面看所得到的图形即可,注意看见的棱用实线表示.【详解】解:从上面看,是一个矩形,矩形的中间有一条纵向的实线,两条纵向的虚线.故选:A .【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.2.2023年10月18日,第三届“一带一路”国际合作高峰论坛在北京举行.国家主席习近平在主旨演讲中声明:“本届高峰论坛期间举行的企业家大会达成了972亿美元的项目合作协议.”将972亿美元用科学记数法表示成元,正确的是()A .29.7210 B .99.7210 C .109.7210 D .119.7210 【答案】C【分析】本题考查了科学记数法:把一个绝对值大于等于10的数表示成10n a 的形式(a 大于或等于1且小于10,n 是正整数);n 的值为小数点向左移动的位数.根据科学记数法的定义,即可求解.【详解】解:972亿10972000000009.7210 ,故选:C .3.如图,直线m n ∥,点A 在直线n 上,点B 在直线m 上,连接AB ,过点A 作AC AB ,交直线m 于点C .若150 ,则2 的度数为().B.C..【答案】B【分析】本题考查了轴对称图形和中心对称图形的识别.根据轴对称图形和中心对称图形的定义判断即可.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.把一个图形绕某一点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】解:A、是轴对称图形,不是中心对称图形,本选项不符合题意;、是轴对称图形,也是中心对称图形,本选项符合题意;、不是轴对称图形,是中心对称图形,本选项不符合题意;、不是轴对称图形,是中心对称图形,本选项不符合题意;.三张图片除画面不同外无其他差别,将它们从中间剪断得到三张上部图片和三张下部图片,把三张上部图片放入一个布袋,把三张下部图片放入另一个布袋,再分别从两个布袋中各随机摸取一张,则这两张小A .(13)(23)10B .(31)(32)1C .(13)(23)36D .(13)(23)10④BH 的最小值为5.A .1B 【答案】C 【分析】根据勾股定理求出90ACB ∵,AC BC ,ACB 是等腰直角三角形,2AB AC ,90,CBN ACDN BCN,90∵垂直AD,CE,90BCN HDC抛物线 23y ax b a x b 与x 轴的另一个交点为 1,0,关于x 的方程2ax bx ax b 有两个根14x ,21x ,故③正确;④当0a ,当41x 时,12y y ,故④错误;故选:B .【点睛】本题考查了二次函数的基本性质,二次函数与一次函数交点,二次函数与不等式等,理解性质,掌握解法是解题的关键.第Ⅱ卷二、填空题(本大题共6个小题,每小题4分,共24分)【答案】53 82【分析】连接OF,由勾股定理可计算得正方形角形COD的面积为12,扇形【详解】解:连接OF,则OF【点睛】本题考查扇形面积的计算,勾股定理,正方形的性质;构造直角三角形运用勾股定理是解题的关键.15.如图,在菱形ABCD中,边长为若将EBF△沿着EF折叠,使得点【答案】2或3/3或2【分析】过点M作MF 直线l 在坐标轴上的对称点,过点M平行可得45OPA,即可证明中点坐标公式可求出MF和ME,与直线 平行,∵直线l与直线y x设直线l解析式为y x b,轴于点D,则过点M作MD x,∵直线l的解析式为y x b,OPD45,45OFE OEF均为等腰直角三角形,MDE与OEF,12bb ,解得:3点P坐标为(0,3),t .3点M关于l的对称点,当2t 时,落在y轴上,当3t 时,落在x轴上.故答案为:2或3.【点睛】本题考查了一次函数的图象与几何变换.注意在x轴、y轴上均有点M的对称点,不要漏解;其次注意点E、F坐标以及线段中点坐标的求法.三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤),(1)求证:AE DF ;(2)若120A ,83BF 【答案】(1)见详解.由(1)知AB AF ,且BAF ∴60BAH ,12BH BF∵30ABH ,(1)如图2,求遮阳棚前端B 到墙面AD 的距离;(2)如图3,某一时刻,太阳光线与地面夹角60CFG ,求遮阳棚在地面上的遮挡宽度确到1cm ).(参考数据:sin 720.951,cos 720.309,tan 72 3.078,3 1.732 【答案】(1)遮阳棚前端B 到墙面AD 的距离约为190.2cm(2)遮阳棚在地面上的遮挡宽度DF 的长约为69cm∴四边形BEHC ,四边形由(1)得190.2cm BE ∴190.2cm DK HC BE 在Rt ABE △中,cos ∴cos72200AE【点睛】本题考查了解直角三角形的应用,矩形的判定和性质,作出合适的辅助线,构造出直角三角形,“滴滴”网约车司机收入频数分布表:月收入4千元5千元9千元人数(个)342根据以上信息,分析数据如表:平均月收入/千元中位数(1)求证:BF 是O 的切线;(2)若6EF ,cos ABC ①求BF 的长;②求O 的半径.)利用圆周角定理,等腰三角形的性质和圆的切线的判定定理解答即可;交于点思考问题:(1)设1,P a a ,1,R b b,求直线OM 的函数解析式(用含a ,b 的代数式表示),并说明Q 点在直线(2)证明:13MOB AOB .(3)如图2,若直线y x 与反比例函数 40y x x 交于点C ,D 为反比例函数 40y x x 第一象限上的一个动点,使得30COD .求用材料中的方法求出满足条件D 点坐标.由题意得四边形PQRM 是矩形,∴PR QM ,12SP PR,∴SP SM ,∴12 ,【点睛】此题在考查三等分角的作法时,综合考查了待定系数法求函数解析式的方法、矩形的性质以及三角形外角的性质等,综合性较强.y x25.如图1,在平面直角坐标系xOy中,二次函数2顶点为M.矩形ABCD的顶点D与原点O重合,顶点A,当点G 在点Q 的下方时, 22224QG t t t t 52(在03t 的范围内).或52.【点睛】本题考查了二次函数图象上点的坐标特点、矩形的性质以及三角形的面积等知识,熟练掌握二次函数的图象与性质、灵活应用数形结合思想是解题的关键.(1)如图1,调整菱形ABCD ,使90A ,当点M 在菱形ABCD 外时,在射线在Rt CEM △中,CME 12CE CM ,设MD x ,MF CD ∵,45CDM ,DFM 为等腰直角三角形,22DF MF x ,∵四边形ABCD 是菱形,, ,120BCD设MD y ,同①可得:DF 26626DF CF y y ,9236y ,9236MD ,综上所述,MD 的长度为9【点睛】本题主要考查了三角形全等的判定与性质、等腰直角三角形的判定与性质、菱形的性质、正方形。
2020年济南市中考数学模拟试卷(1)一、选择题(本大题共12小题,共48.0分)1.下列各式的计算中一定正确的是()A. (2x−3)0=1B. π0=0C. (a2−1)0=1D. (m2+1)0=12.下列图形是中心对称图形而不是轴对称图形的是()A. 等边三角形B. 平行四边形C. 圆D. 矩形3.下列运算正确的是()A. a2⋅a3=a6B. m6÷m2=m3C. (x2)3=x6D. 6a−4a=24.如图由四个相同的小立方体组成的立体图形,它的主视图是()A.B.C.D.5.抛物线y=−x2+3x−52的对称轴是直线()A. x=3B. x=32C. x=−32D. x=−526.下列四边形一定是正方形的是()A. 有一个角是直角的菱形B. 有一个角是直角的平行四边形C. 对角线相等的平行四边形D. 对角线互相垂直的平行四边形7.某超市四月份的营业额为30万元,第二季度的营业额为120万元,如果设平均每月的增长率为x,下列方程正确的是()A. 30(1+x)2=120B. 30+30×2x=120C. 30(1+x%)2=120D. 30+30(1+x)+30(1+x)2=1208.如图,已知:线段a,b,c.要用尺规作一条线段AD,使得AD=2a+b−c.以下作图步骤:①以B为圆心,c的长为半径画弧,与线段DB交于点A;②以D为端点画一条射线;③以C为圆心,b的长为半径画弧,与线段DC的延长线交于点B;④以D为圆心,a的长为半径画弧,在以前面的弧与射线的交点为圆心,a的长为半径画弧,与射线交与点C,得到线段DC;线段AD即为所求作的线段.排序正确的是()A. ②①③④B. ②④③①C. ①②④③D. ④②①③9.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象大致是()A. B.C. D.10.如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G,设正方形ABCD的周长为m,△CHG 的值为()的周长为n,则nmA. 12B. √22C. √5−12D. 随H点位置的变化而变化11.如图,AB是圆O的直径,点C在BA的延长线上,直线CD与圆O相切于点D,弦DF⊥AB于点E,连接BD,CD=BD=4√3,则OE的长度为()A. √3B. 2C. 2√3D. 412.一元一次不等式组{2x+1>0,x−5≤0的解集中,整数解的个数是()A. 4个B. 5个C. 6个D. 7个二、填空题(本大题共6小题,共24.0分)13.分解因式:9x2−6x+1=______ .14.方程3x−5x−2=4的解是x=______.15.在△ABC中,∠C=90°,∠BAC=60°.AD平分∠BAC,交BC于点D,DE⊥AB,垂足为点E;DF平分∠BDE,交AB于点F,FG⊥BC,垂足为点G,若AC=9,则FG=______.16.如图,一次函数y=12x+2的图象与反比例函数y=6x的图象交于A,B两点.点P是y轴上的一个动点,当∠APB为直角时,P点坐标为________.17.△OA1B1,△B1A2B2,△B2A3B3…均为等腰直角三角形,依次如图方式放置,点A1、A2、A3和B1、B2、B3分别在直线y=x+2和x轴上,则A n的坐标为______ .18.设11, 12, 21,13, 22, 31, (1)k, 2k−1, 3k−2,……k1,……,在这列数中,第50个数是______.三、解答题(本大题共9小题,共72.0分)19.计算:|−3|−√9+(−2)−1×2.20.解不等式组:{x+1≤2(x+1)1−2x4<1−x,并求出它的整数解.21.图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A处,手柄长AB=25cm,AB与墙壁DD′的夹角∠D′AB=37°,喷出的水流BC与AB形成的夹角∠ABC=72°,现在住户要求:当人站在E处淋浴时,水流正好喷洒在人体的C处,且使DE=50cm,CE=130cm.问:安装师傅应将支架固定在离地面多高的位置?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).22.《九章算术》中有一道这样的问题,译文如下:“今有上等谷7束,下等谷2束,则得谷11斗.下等谷8束,上等谷2束,则得谷9斗.问上等谷、下等谷1束各得谷多少斗?”如果设上等谷1束得谷x斗,下等谷1束得谷y斗,请你解答上面的问题.23.某校初二年级数学考试,(满分为100分,该班学生成绩均不低于50分)作了统计分析,绘制成如图频数分布直方图和频数、频率分布表,请你根据图表提供的信息,解答下列问题:分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2a2016450频率0.040.160.400.32b1(1)频数、频率分布表中a=___,b=____;(2)补全频数分布直方图;(3)若该校八年级共有600名学生,且各个班级学生成绩分布基本相同,请估计该校八年级上学期期末考试成绩低于70分的学生人数.24.如图,四边形ABCD是正方形,以边AB为直径作⊙O,点E在BC边上,连结AE交⊙O于点F,连结BF并延长交CD于点G.(1)求证:△ABE≌△BCG;(2)若∠AEB=55°,OA=3,求BF⏜的长.(结果保留π)25.如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例(k≠0)的图象相交于点B(3,2)、C(−1,n).函数y2=kx(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出y1>y2时x的取值范围;(3)在y轴上是否存在点P,使△PAB为直角三角形,如果存在,请求点P的坐标,若不存在,请说明理由.26.如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN//MP交DC于点N.(1)求证:AD2=DP⋅PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC,分别交PM,PB于点E,F.若DPAD =12,求EFAE的值.27.如图,已知二次函数y=ax2+bx+2的图像与x轴相交于A(4,0)、B(2,0)两点,与y轴相交于点C,点Q为抛物线上的一动点.(1)求a,b的值;(2)当点Q坐标为(8,6)时,在直线CQ下方抛物线上取一点M,连接MC、MQ,求△MCQ面积的最大值;(3)在直线CQ上是否存在一点P,使得AP=4,且∠APC=30°.若存在,请求出点Q的坐标;若不存在,请说明理由.【答案与解析】1.答案:D解析:本题考查的是零指数幂,熟知任何不等于0的数的0次幂都等于1是解答此题的关键.根据零指数幂的运算法则进行计算即可.,故A选项错误;解:A.当(2x−3)0=1时,x≠32B.π0=1,故B选项错误;C. 当(a2−1)0=1时,a≠±1,故C选项错误;D.(m2+1)0=1,故D选项正确;故选D.2.答案:B解析:解:A、不是中心对称图形,是轴对称图形;故A错误;B、是中心对称图形,不是轴对称图形;故B正确;C、是中心对称图形,也是轴对称图形;故C错误;D、是中心对称图形,也是轴对称图形;故D错误;故选:B.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.答案:C解析:解:A、原式=a5,错误;B、原式=m4,错误;C、原式=x6,正确;D、原式=2a,错误.故选C.原式各项计算得到结果,即可作出判断.此题考查了同底数幂的除法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.4.答案:D解析:解:从正面看,共2列,左边是1个正方形,右边是2个正方形,且下齐.故选:D.找到从正面看所得到的图形即可,注意所有的看到的正方形的排列.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.答案:B解析:【试题解析】本题主要考查了求抛物线的顶点坐标与对称轴的方法.已知抛物线解析式为一般式,可化为顶点式写出顶点坐标及对称轴.解:∵抛物线y=−x2+3x−52=−(x−32)2−14的顶点坐标为(32,−14),∴对称轴是直线x=32,故选B.6.答案:A解析:本题考查了正方形的判定,菱形的判定,矩形的判定等知识点,熟练掌握其判定定理是解题关键.A.有一个角是直角的菱形为正方形,符合题意;B.有一个角是直角的平行四边形为矩形,不合题意;C.对角线相等的平行四边形为矩形,不合题意;D.对角线互相垂直的平行四边形为菱形,不合题意.故选A.7.答案:D解析:本题主要考查了求平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b;根据增长率问题,一般增长后的量=增长前的量×(1+增长率),关系式为:四月份月营业额+五月份月营业额+六月份月营业额=120,把相关数值代入即可求解.解:设平均每月的增长率为x,根据题意:五月份的月营业额为30×(1+x),六月份的月销售额在五月份月销售额的基础上增加x,为30×(1+x)×(1+x),则列出的方程是:30+30(1+x)+30(1+x)2=120.故选D.8.答案:B解析:[分析]根据尺规作线段的方法可得.本题考查了复杂作图.掌握尺规作线段的方法是关键.[详解]解:作图步骤:以D为端点画一条射线,以D为圆心,a的长为半径画弧,在以前面的弧与射线的交点为圆心,a 的长为半径画弧,与射线交于点C,得到线段DC;以C为圆心,b的长为半径画弧,与线段DC的延长线交于点B;以B为圆心,c的长为半径画弧,与线段DB交于点A;则线段AD就是所求作的线段2a+b−c.则排序正确的是②④③①.故选B.9.答案:C解析:解:A、由一次函数y=ax+b的图象可得:a>0,此时二次函数y=ax2+bx+c的图象应该开口向上,错误;B、由一次函数y=ax+b的图象可得:a>0,b>0,此时二次函数y=ax2+bx+c的图象应该<0,错误;开口向上,对称轴x=−b2aC、由一次函数y=ax+b的图象可得:a<0,b<0,此时二次函数y=ax2+bx+c的图象应该<0,正确.开口向下,对称轴x=−b2aD、由一次函数y=ax+b的图象可得:a<0,b<0,此时二次函数y=ax2+bx+c的图象应该开口向下,错误;故选:C.可先根据一次函数的图象判断a、b的符号,再判断二次函数图象与实际是否相符,判断正误.应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.10.答案:A解析:本题考查翻折变换及正方形的性质,关键是熟练掌握折叠的性质和正方形的性质.先利用正方形的性质和对称性质得出边角关系,从而可得△AHD≌△AHM,然后得到Rt△AGM≌Rt△AGB,可得GM=GB,最后根据三角形的周长计算可得结果.解:连接AH、AG,作AM⊥HG于M.∵EA=EH,∴∠1=∠2,∵∠EAB=∠EHG=90°,∴∠HAB=∠AHG,∵DH//AB,∴∠DHA=∠HAB=∠AHM,∵AH=AH,∠D=∠AMH=90°,∴△AHD≌△AHM,∴DH=HM,AD=AM,∵AM=AB,AG=AG,∴Rt△AGM≌Rt△AGB,∴GM=GB,∴△GCH的周长=n=CH+HM+MG+CG=CH+DH+CG+GB=2BC,∵四边形ABCD的周长=m=4BC,∴nm=12故选:A.11.答案:B解析:解:连结OD,如图,∵直线CD与⊙O相切于点D,∴OD⊥CD,∴∠ODC=90°,∵CD=BD=4√3,∴∠C=∠B,∵OD=OB,∴∠B=∠ODB,∴∠DOE=∠B+∠ODB=2∠B,∴∠DOE=2∠C,在Rt△OCD中,∠DOE=2∠C,则∠DOE=60°,∠C=30°,∴OD=cot∠EOD⋅CD=√33×4√3=4,∵DF⊥AB,∴∠DEO=90°,在Rt△ODE中,OE=cos∠EOD⋅OD=12×4=2,故选:B.连结OD ,根据切线的性质得∠ODC =90°,根据等腰三角形的性质得出∠B =∠C =∠ODB ,于是可根据三角形外角性质得∠DOE =2∠B =2∠C ,进而求得∠DOE =60°,解直角三角形即可求得OE . 本题考查了切线的性质,等腰三角形的性质,三角形外角的性质,解直角三角形等,作出辅助线构建等腰三角形和直角三角形是解题的关键.12.答案:C解析:本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据不等式的解集求出不等式组的解集.先求出每个不等式的解集,再求出不等式组的解集,求出不等式组的整数解,即可得出答案.解:{2x +1>0,x −5≤0①②∵解不等式①得:x >−0.5,解不等式②得:x ≤5,∴不等式组的解集为−0.5<x ≤5,∴不等式组的整数解为0,1,2,3,4,5,共6个,故选:C .13.答案:(3x −1)2解析:解:原式=(3x −1)2,故答案为:(3x −1)2原式利用完全平方公式分解即可.此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.14.答案:3解析:解:去分母得:3x −5=4x −8,解得:x =3,经检验x =3是分式方程的解,故答案为:3分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.15.答案:3解析:本题主要考查了角平分线的性质,以及含30°角的直角三角形的性质,解题时注意,在直角三角形中,30°角所对的直角边等于斜边的一半.先根据∠C =90°,∠BAC =60°,AD 平分∠BAC ,DE ⊥AB ,求得∠DAE =30°=∠B ,∠ADC =∠ADE =60°,再根据DF 平分∠BDE ,FG ⊥BC ,求得FG =FE ,∠EDF =30°,设FG =x ,根据AB =18,列出方程求解即可.解:∵∠C =90°,∠BAC =60°,AD 平分∠BAC ,DE ⊥AB ,∴∠DAE =30°=∠B ,∠ADC =∠ADE =60°,又∵DF 平分∠BDE ,FG ⊥BC ,∴FG =FE ,∠EDF =30°,设FG =x ,则BF =2x ,DE =√3x ,AE =√3DE =3x ,∵Rt △ABC 中AC =9,∴AB =18,即2x +x +3x =18,解得x =3,即FG =3.故答案为3.16.答案: (0,5)或(0,−3)解析:本题考查了一次函数和反比例函数的交点问题,熟练掌握勾股定理是解题的关键.联立求得B 的坐标,在由勾股定理求解即可.解:{y =12x +2y =6x 得{x =2y =3或{x =−6y =−1 ∴B(−6,−1),设点P(0,a).根据勾股定理可得(0+6)2+(a +1)2+(0−2)2+(a −3)2=(−6−2)2+(−1−3)2, 解得a 1=−3,a 2=5,∴点P 的坐标为(0,5)或(0,−3),故答案为(0,5)或(0,−3).17.答案:(2n −2,2n )解析:本题考查一次函数图象上的点的特征、规律型题目,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题.先求出A 1、A 2、A 3、…,找出坐标规律后求出A n 的坐标即可. 解:由题意A 1(0,2),A 2(2,4),A 3(6,8),A 4(14,16),A 5(30,32),…∴A n (2n −2,2n ),故答案为(2n −2,2n ).18.答案:56解析:解:当k =1时,有一个数,这个数是11,当k =2时,有两个数,这两个数是12,21,当k =3时,有三个数,这三个数是13,22,31,∵50=(1+2+3+4+5+6+7+8+9)+5,∴第50个数是:510−4=56,故答案为:56.根据题意,可以发现题目中数字的变化规律,从而可以求得第50个数,本题得以解决. 本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律. 19.答案:解:原式=3−3+(−12)×2=−1.解析:直接利用算术平方根的性质以及负指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键. 20.答案:解:由(1)式得,x ≥−1,由(2)式得,x <1.5.∴不等式组解为−1≤x <1.5.∴它的正整数解为:−1,0,1.解析:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,再求出整数解.21.答案:解:过点B作BG⊥D′D于点G,延长EC、GB交于点F,∵AB=25,DE=50,∴sin37°=GBAB ,cos37°=GAAB,∴GB≈25×0.60=15,GA≈25×0.80=20,∴BF=50−15=35,∵∠ABC=72°,∠D′AB=37°,∴∠GBA=53°,∠CBF=55°,∴∠BCF=35°,∵tan35°=BFCF,∴CF≈350.70=50,∴FE=50+130=180,∴GD=FE=180,∴AD=180−20=160,∴安装师傅应将支架固定在离地面160cm的位置.解析:本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.过B 作BG ⊥D′D 于点G ,延长EC 、GB 交于点F ,根据锐角三角函数的定义即可求出答案. 22.答案:解:根据题意得{7x +2y =11,8y +2x =9,解得{x =3526,y =4152.答:上等谷1束得谷3526斗,下等谷1束得谷4152斗.解析:本题考查了二元一次方程组的应用,根据题意列出二元一次方程组,解方程组即可. 23.答案:解:(1)8;0.08;(2)如图所示,;(3)根据题意得:600×(0.04+0.16)=600×0.2=120(人),则该校八年级上学期期末考试成绩低于70分的学生人数约为120人.解析:此题考查了频数(率)分布直方图,用样本估计总体,以及条形统计图,弄清题中的数据是解本题的关键.(1)根据表格确定出a 与b 的值即可;(2)由a 的值,补全条形统计图,如图所示;(3)根据49.5~59.5与59.5~69.5的频率之和乘以600即可得到结果.解:(1)根据题意得:a =2÷0.04×0.16=8,b =4÷(2÷0.04)=0.08;故答案为8;0.08;(2)见答案;(3)见答案.24.答案:(1)证明:∵四边形ABCD是正方形,AB为⊙O的直径,∴∠ABE=∠BCG=∠AFB=90°,∴∠BAF+∠ABF=90°,∠ABF+∠EBF=90°,∴∠EBF=∠BAF,在△ABE与△BCG中,{∠EBF=∠BAF AB=BC∠ABE=∠BCG,∴△ABE≌△BCG(ASA);(2)解:连接OF,∵∠ABE=∠AFB=90°,∠AEB=55°,∴∠BAE=90°−55°=35°,∴∠BOF=2∠BAE=70°,∵OA=3,∴BF⏜的长=70⋅π×3180=7π6.解析:【试题解析】(1)根据四边形ABCD是正方形,AB为⊙O的直径,得到∠ABE=∠BCG=∠AFB=90°,根据余角的性质得到∠EBF=∠BAF,根据全等三角形的判定定理即可得到结论;(2)连接OF,根据三角形的内角和得到∠BAE=90°−55°=35°,根据圆周角定理得到∠BOF=2∠BAE=70°,根据弧长公式即可得到结论.本题考查了弧长的计算,全等三角形的判定和性质,正方形的性质,圆周角定理,熟练掌握弧长的计算公式是解题的关键.25.答案:解:(1)把B(3,2)代入y2=kx得:k=6,∴反比例函数解析式为:y2=6x,把C(−1,n)代入y 2=6x ,得:n =−6,∴C(−1,−6),把B(3,2)、C(−1,−6)分别代入y 1=ax +b ,得:{3a +b =2−a +b =−6, 解得{a =2b =−4, ∴一次函数解析式为y 1=2x −4;(2)由图可知,当写出y 1>y 2时,x 的取值范围是−1<x <0或者x >3;(3)y 轴上存在点P ,使△PAB 为直角三角形,如图,过B 作BP 1⊥y 轴于P 1,∠BP 1A =90°,△P 1AB 为直角三角形,此时P 1(0,2),过B 作BP 2⊥AB 交y 轴于P 2,∠P 2BA =90°,△P 2AB 为直角三角形,在Rt △P 1AB 中,AB =√P 1B 2+P 1A 2=√32+(2+4)2=3√5,设P 2(0,a),在Rt △P 1BP 2中,BP 22=32+(a −2)2,AP 22=(a +4)2,∵AP 22=AB 2+BP 22,解得a=72,∴P2(0,72),综上所述,P1(0,2)、P2(0,72).解析:此题考查了待定系数法求一次函数解析式,求反比例函数解析式,反比例函数的应用,一次函数的应用,勾股定理,分类讨论及数形结合的思想.(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图像直接得出结论;(3)分情况进行分析,利用勾股定理或面积法建立方程求解即可得出结果.26.答案:解:(1)解法一:过点P作PG⊥AB于点G,∴易知四边形DPGA,四边形PCBG是矩形,∴AD=PG,DP=AG,GB=PC∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴PGAG =GBPG,∴PG2=AG⋅GB,即AD2=DP⋅PC;解法二:易证:△ADP∽△PCB,∴ADDP =PCCB,由于AD=CB,∴AD2=DP⋅PC;(2)∵DP//AB,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠ABP+∠PAM=∠MPB+∠APM=90°,即∠ABP=∠MPB∴PM=MB,又易证四边形PMBN是平行四边形,∴四边形PMBN是菱形;(3)由于DPAD =12,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,∵PG2=AG⋅GB,∴4=1⋅GB,∴GB=PC=4,AB=AG+GB=5,∵CP//AB,∴△PCF∽△BAF,∴CFAF =PCAB=45,∴AFAC =59,又易证:△PCE∽△MAE,AM=12AB=52∴CEAE=PCAM=452=85∴AEAC =513,∴EF=AF−AE=59AC−513AC=20117AC,∴EFAE=20117AC513AC=49解析:本题考查相似三角形的综合问题,涉及相似三角形的性质与判定,菱形的判定,直角三角形斜边上的中线的性质等知识,综合程度较高,需要学生灵活运用所学知识.(1)法一:过点P作PG⊥AB于点G,易知四边形DPGA,四边形PCBG是矩形,所以AD=PG,DP=AG,GB=PC,易证△APG∽△PBG,所以PG2=AG⋅GB,即AD2=DP⋅PC;法二:易证:△ADP∽△PCB ,结合相似比以及AD =CB 可得证.(2)DP//AB ,所以∠DPA =∠PAM ,由题意可知:∠DPA =∠APM ,所以∠PAM =∠APM ,由于∠ABP +∠PAM =∠MPB +∠APM =90°,即∠ABP =∠MPB ,从而可知PM =MB =AM ,又易证四边形PMBN 是平行四边形,所以四边形PMBN 是菱形;(3)可设DP =1,AD =2,由(1)可知:AG =DP =1,PG =AD =2,从而求出GB =PC =4,AB =AG +GB =5,由于CP//AB ,从而可证△PCF∽△BAF ,△PCE∽△MAE ,从而可得∴AF AC =59,AE AC=513,可求出EF 与AC 的等量关系,从而可得EFAE 的值.27.答案:解:(1)∵二次函数y =ax 2+bx +2的图像与x 轴相交于A(4,0)、B(2,0)两点, ∴抛物线表达式为y =a(x −2)(x −4)=a(x 2−6x +8)=ax 2−6ax +8a , ∴8a =2,解得:a =14则b =−6a =−32;(2)过点M 作MH//y 轴交CQ 于点H ,将点C 、Q 坐标代入一次函数表达式y =kx +b 得:{6=8k +b b =2解得:{k =12b =2,则直线CQ 的表达式为:y =12x +2,设点M(x,14x 2−32x +2),点H(x,12x +2),则S △MCQ =12MH ×x Q =4(12x +2−14x 2+32x −2)=−x 2+8x ,∵−1<0,故S△MCQ有最大值,当x=−82×(−1)=4时,S△MCQ有最大值为16;(3)存在,理由:过点C作CP//x轴交抛物线与点Q,过点A作AM⊥CP,∴四边形OAMC为矩形,则AM=OC=2,而AP=4,故∠APC=30°,则点Q坐标为(6,2).解析:本题主要考查的是二次函数的图象,性质和应用,矩形的判定和性质,待定系数法求一次函数的解析式,一次函数的应用,待定系数法求二次函数的解析式,三角形的面积,点的坐标的确定等有关知识.(1)用交点式抛物线表达式,即可求解;(2)利用S△MCQ=12MH×xQ,即可求解;(3)存在,四边形OAMC为矩形,则AM=OC=2,而AP=4,故∠APC=30°,即可求解.。
2024年中考第一次模拟考试(山东济南卷)数学(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.图1所示的正五棱柱,其俯视图是()A .B .C .D .2.2023年10月18日,第三届“一带一路”国际合作高峰论坛在北京举行.国家主席习近平在主旨演讲中声明:“本届高峰论坛期间举行的企业家大会达成了972亿美元的项目合作协议.”将972亿美元用科学记数法表示成元,正确的是()A .29.7210⨯B .99.7210⨯C .109.7210⨯D .119.7210⨯3.如图,直线m n ∥,点A 在直线n 上,点B 在直线m 上,连接AB ,过点A 作AC AB ⊥,交直线m 于点C .若150∠=︒,则2∠的度数为().B .C .D ..三张图片除画面不同外无其他差别,将它们从中间剪断得到三张上部图片和三张下部图片,把三张上部图片放入一个布袋,把三张下部图片放入另一个布袋,再分别从两个布袋中各随机摸取一张,则这两张小图片恰好合成一张完整图片的概率是(16B .C 19D 15.若点()(()1232,1,1,A y B y C y --、、都在反比例函数21k y x+=(k 为常数)的图象上,则23y y 、、的大小关系为()123y y y <<B .31y y <<C 213y y y <<D 312y y y <<中用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(21)(32)++-=-的计算过程,则图2.(13)(23)10-++=B .(31)(32)1-++=.(13)(23)36+++=D .(13)(23)10++-=-C.3+(a,b是常数,且abx.下列结论:第Ⅱ卷二、填空题(本大题共6个小题,每小题4分,共24分)三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤)()2213032-⎛⎫︒--+- ⎪⎝⎭.)10521x x -+><-在数轴上表示出它的解集,并求出它的正整数解.ABCD 中,BCD ∠的平分线交AD ,3EF =,求BC 的长.如图2,求遮阳棚前端B 到墙面AD 的距离;如图3,某一时刻,太阳光线与地面夹角60CFG ∠=︒,求遮阳棚在地面上的遮挡宽度的长(结果精确到1cm ).(参考数据:sin 720.951,cos 720.309,tan 72 3.078,3 1.732︒≈︒≈︒≈≈)分)近年来,网约车给人们的出行带来了便利,林林和数学兴趣小组的同学对“美团网约车司机收入频数分布表:月收入4千元5千元9千元10千元人数(个)3421根据以上信息,分析数据如表:思考问题:1,a a ⎫⎪⎭,1,R b b⎛⎫⎪⎝⎭,求直线OM 的函数解析式(用含a ,b 的代数式表示),并说明OM 上;证明:13MOB AOB ∠=∠.求c 的值及顶点M 的坐标,如图2,将矩形ABCD 沿x 轴正方向平移t 个单位()03t <<得到对应的矩形A B C ''知边C D '',A B ''分别与函数24y x x c =-+的图象交于点P ,Q ,连接PQ ,过点P 作PG 于点G .①当2t =时,求QG 的长;PGQ △1,调整菱形ABCD ,使90A ∠=︒,当点M 在菱形ABCD 外时,在射线BP 上取一点BN DM =,连接CN ,则BMC ∠=,MCMN=操作探究二2024年中考第一次模拟考试(山东济南卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.图1所示的正五棱柱,其俯视图是()A .B .C .D .【答案】A【分析】找到从上面看所得到的图形即可,注意看见的棱用实线表示.【详解】解:从上面看,是一个矩形,矩形的中间有一条纵向的实线,两条纵向的虚线.故选:A .【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.2.2023年10月18日,第三届“一带一路”国际合作高峰论坛在北京举行.国家主席习近平在主旨演讲中声明:“本届高峰论坛期间举行的企业家大会达成了972亿美元的项目合作协议.”将972亿美元用科学记数法表示成元,正确的是()A .29.7210⨯B .99.7210⨯C .109.7210⨯D .119.7210⨯【答案】C【分析】本题考查了科学记数法:把一个绝对值大于等于10的数表示成10n a ⨯的形式(a 大于或等于1且小于10,n 是正整数);n 的值为小数点向左移动的位数.根据科学记数法的定义,即可求解.【详解】解:972亿10972000000009.7210⨯=,故选:C .3.如图,直线m n ∥,点A 在直线n 上,点B 在直线m 上,连接AB ,过点A 作AC AB ⊥,交直线m 于点C .若150∠=︒,则2∠的度数为().B.C..【答案】B【分析】本题考查了轴对称图形和中心对称图形的识别.根据轴对称图形和中心对称图形的定义判断即可.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】解:A、是轴对称图形,不是中心对称图形,本选项不符合题意;、是轴对称图形,也是中心对称图形,本选项符合题意;、不是轴对称图形,是中心对称图形,本选项不符合题意;、不是轴对称图形,是中心对称图形,本选项不符合题意;.三张图片除画面不同外无其他差别,将它们从中间剪断得到三张上部图片和三张下部图片,把三张下部图片放入另一个布袋,再分别从两个布袋中各随机摸第Ⅱ卷二、填空题(本大题共6个小题,每小题4分,共24分)【答案】2或3/3或2【分析】过点M 作MF ⊥直线l ,交y 轴于点F ,交x 轴于点E ,与直线l 相交于点A ,则点E 、F 为点M 在坐标轴上的对称点,过点M 作MD x ⊥轴于点D ,设直线l 的解析式为y x b =-+,由直线l 与直线y x =-平行可得45OPA ∠=︒,即可证明MDE 与OEF 均为等腰直角三角形,进而可求出点E 、F 的坐标,根据中点坐标公式可求出MF 和ME 的中点坐标,代入y x b =-+可求出b 值,即可得点P 坐标,即可求解.【详解】如图,过点M 作MF ⊥直线l ,交y 轴于点F ,交x 轴于点E ,与直线l 相交于点A ,则点E 、F 为点M 在坐标轴上的对称点.直线l 与直线y x =-平行,∴设直线l 解析式为y x b =-+,过点M 作MD x ⊥轴于点D ,则3OD =,2MD =,直线l 的解析式为y x b =-+,45OPD ∴∠=︒,45OFE OEF ∴∠=∠=︒,MDE ∴ 与OEF 均为等腰直角三角形,2DE MD ∴==,1OE OF ==,三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤),“滴滴”网约车司机收入频数分布表:月收入4千元5千元9千元人数(个)342根据以上信息,分析数据如表:,当点G 在点Q 的下方时,(22224QG t t t t =-+--+52(在03t <<的范围内).或52.【点睛】本题考查了二次函数图象上点的坐标特点、矩形的性质以及三角形的面积等知识,掌握二次函数的图象与性质、灵活应用数形结合思想是解题的关键.2024年中考第一次模拟考试(山东济南卷)数学·参考答案第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)12345678910A C C CB BC A C B第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤),,当点G 在点Q 的下方时,(22224QG t t t t =-+--+52(在03t <<的范围内).或52.(12分)【详解】(1)解: 四边形ABCD 是正方形,CD ,90BCD ∠=︒,。
2020年山东省济南市中考数学模拟试卷一.选择题(共12小题,满分48分,每小题4分)1.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣52.下列几何体中,从正面看(主视图)是长方形的是()A.B.C.D.3.用科学记数法表示:0.000000109是()A.1.09×10﹣7B.0.109×10﹣7C.0.109×10﹣6D.1.09×10﹣64.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.5.下列运算正确的是()A.a6÷a3=a2B.3a2﹣2a2=2aC.(a3)2=a6D.(a﹣b)2=a2﹣b26.如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()A.65°B.70°C.75°D.80°7.小聪在学校举行的“弘扬中华传统文化读书月”活动结束后,对班级里30位同学阅读书籍的数量情况做了调查,并绘制成条形统计图如右图所示,则同学们阅读书籍数量的众数和中位数分别是()A.3,2B.3,3C.3,2.5D.2,28.不等式组的解集为()A.﹣4<x<﹣1B.﹣4≤x<﹣1C.﹣4≤x≤﹣1D.﹣4<x≤﹣1 9.如图,一个梯子靠在垂直水平地面的墙上,梯子AB的长是2米.若梯子与地面的夹角为α,则梯子顶端到地面的距离(BC的长)为()A.2sinα米B.2cosα米C.米D.米10.如图,反比例函数y1=与二次函数y1=ax2+bx+c图象相交于A、B、C三个点,则函数y=ax2+bx﹣+c的图象与x轴交点的个数是()A.0B.1C.2D.311.如图,直径AB为3的半圆,绕A点逆时针旋转60°,此时点B到了点B′处,则图中阴影部分的面积是()A.3πB.C.6πD.24π12.直线y1=k1x与双曲线y2=分别交于第一,三象限A、B两点,其中点A的横坐标为1,当y1<y2时,x的取值范围是()A.x<﹣1或x>1B.﹣1<x<1且x≠0C.x<﹣1或0<x<1D.﹣1<x<0或x>1二.填空题(共6小题,满分24分,每小题4分)13.因式分解:ab2﹣2ab+a=.14.一个多边形的内角和与外角和的差是180°,则这个多边形的边数为.15.方程=的解是.16.某市规定了每月用水不超过18立方米和超过18立方米两种不同的收费标准,该市用户每月应交水费y(元)是用水x(立方米)的函数,其图象如图所示.已知小丽家3月份交了水费102元,则小丽家这个月用水量为立方米.17.如图,正方形ABCD的边长为1,AC,BD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG,则下列结论:①DE 平分∠ADB;②BE=2﹣;③四边形AEGF是菱形;④BC+FG=1.5.其中结论正确的序号是.18.如图,正方形ABCD中边长为6,E为BC上一点,且BE=1.5,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.三.解答题(共9小题,满分78分)19.(6分)计算:()﹣2﹣+(﹣4)0﹣cos45°.20.(6分)解不等式组:21.(6分)已知:如图,菱形ABCD中,点E,F分别在AB,AD边上,AE=AF,连接CE,CF.求证:∠AEC=∠AFC.22.(8分)某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成:若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲乙两队合作完成该工程需要多少天?23.(8分)在⊙O中,直径AB⊥弦CD于点F,点E是弧AD上一点,连BE交CD于点N,点P在CD的延长线上,PN=PE.(1)求证:PE是⊙O的切线;(2)连接DE,若DE∥AB,OF=3,BF=2,求PN的长.24.(10分)如图,在3×3正方形方格中,有3个小正方形涂成了黑色,所形成的图案如图所示,图中每块小正方形除颜色外完全相同.(1)一个小球在这个正方形方格上自由滚动,那么小球停在黑色小正方形的概率是多少?(2)现将方格内空白的小正方形(A、B、C、D、E、F)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是中心对称图形的概率.25.(10分)如图,在直角坐标系中,点B的坐标为(2,1),过点B分别作x轴、y轴的垂线,垂足分别是C,A,反比例函数y=(x>0)的图象交AB,BC分别于点E,F.(1)求直线EF的解析式;(2)求四边形BEOF的面积;(3)若点P在y轴上,且△POE是等腰三角形,请直接写出点P的坐标.26.(12分)已知,如图1,在△ABC中,AB⊥BC,AB=2,AC=10,若D为AC的中点,DG⊥AC交BC与点G.(1)求CG的长;(2)如图2,E点为射线BA上一动点,连接DE,线段DE绕点D顺时针旋转90°交直线BC与点F;④若AE=时,求CF的长;②如图3,连接EF交直线DG与点M,当△EDM为等腰三角形时,求GF的长.27.(12分)如图,在平面直角标系中,抛物线C:y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点D为y轴正半轴上一点.且满足OD =OC,连接BD,(1)如图1,点P为抛物线上位于x轴下方一点,连接PB,PD,当S△PBD最大时,连接AP,以PB为边向上作正△BPQ,连接AQ,点M与点N为直线AQ上的两点,MN=2且点N位于M点下方,连接DN,求DN+MN+AM的最小值(2)如图2,在第(1)问的条件下,点C关于x轴的对称点为E,将△BOE绕着点A 逆时针旋转60°得到△B′O′E′,将抛物线y=沿着射线P A方向平移,使得平移后的抛物线C′经过点E,此时抛物线C′与x轴的右交点记为点F,连接E′F,B′F,R为线段E’F上的一点,连接B′R,将△B′E′R沿着B′R翻折后与△B′E′F重合部分记为△B′RT,在平面内找一个点S,使得以B′、R、T、S为顶点的四边形为矩形,求点S的坐标.2020年山东省济南市中考数学模拟试卷参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣5【分析】利用平方根的定义得出a,b的值,进而利用ab的符号得出a,b异号,即可得出a﹣b的值.【解答】解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.2.下列几何体中,从正面看(主视图)是长方形的是()A.B.C.D.【分析】主视图是分别从物体正面看,所得到的图形.【解答】解:圆锥的主视图是等腰三角形,圆柱的主视图是长方形,圆台的主视图是梯形,球的主视图是圆形,故选:B.3.用科学记数法表示:0.000000109是()A.1.09×10﹣7B.0.109×10﹣7C.0.109×10﹣6D.1.09×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:用科学记数法表示:0.000000109是1.09×10﹣7.故选:A.4.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念,对各选项分析判断即可得解.【解答】解:A、是轴对称图形,也是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项错误;D、是轴对称图形,但不是中心对称图形,故本选项正确.故选:D.5.下列运算正确的是()A.a6÷a3=a2B.3a2﹣2a2=2aC.(a3)2=a6D.(a﹣b)2=a2﹣b2【分析】分别根据同底数幂的除法法则,合并同类项法则,幂的乘方运算法则以及完全平方公式逐一判断即可.【解答】解:A.a6÷a3=a3,故本选项不合题意;B.3a2﹣2a2=a2,故本选项不合题意;C.(a3)2=a6,正确,故本选项符合题意;D.(a﹣b)2=a2﹣22a+b2,故本选项不合题意.故选:C.6.如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()A.65°B.70°C.75°D.80°【分析】由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.【解答】解:∵AB∥CD,∴∠C=∠1=45°,∵∠3是△CDE的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D.7.小聪在学校举行的“弘扬中华传统文化读书月”活动结束后,对班级里30位同学阅读书籍的数量情况做了调查,并绘制成条形统计图如右图所示,则同学们阅读书籍数量的众数和中位数分别是()A.3,2B.3,3C.3,2.5D.2,2【分析】根据众数和中位数的定义求解.【解答】解:由条形图知共调查学生5+11+12+2=30人,其中读3本书的人数最多,∴众数为3,中位数为第15、16个数据的平均数,则中位数为=2,故选:A.8.不等式组的解集为()A.﹣4<x<﹣1B.﹣4≤x<﹣1C.﹣4≤x≤﹣1D.﹣4<x≤﹣1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+5≥1得x≥﹣4,解不等式>,得:x<﹣1,则不等式组的解集为﹣4≤x<﹣1,故选:B.9.如图,一个梯子靠在垂直水平地面的墙上,梯子AB的长是2米.若梯子与地面的夹角为α,则梯子顶端到地面的距离(BC的长)为()A.2sinα米B.2cosα米C.米D.米【分析】直接利用锐角三角函数关系得出sinα==,进而得出答案.【解答】解:由题意可得:sinα==,故BC=2sinα(米).故选:A.10.如图,反比例函数y1=与二次函数y1=ax2+bx+c图象相交于A、B、C三个点,则函数y=ax2+bx﹣+c的图象与x轴交点的个数是()A.0B.1C.2D.3【分析】当y1=y2时,得到方程ax2+bx﹣+c=0,方程的解即反比例函数y1=与二次函数y1=ax2+bx+c图象交点的横坐标,于是得到函数y=ax2+bx﹣+c的图象与x轴交点即是ax2+bx﹣+c=0的解,即可得到结论.【解答】解:当y1=y2时,得=ax2+bx+c,即ax2+bx﹣+c=0,∵方程的解即反比例函数y1=与二次函数y1=ax2+bx+c图象交点的横坐标,∵反比例函数y1=与二次函数y1=ax2+bx+c图象相交于A、B、C三个点,∴函数y=ax2+bx﹣+c的图象与x轴交点即是ax2+bx﹣+c=0的解,∴函数y=ax2+bx﹣+c的图象与x轴交点的个数是3个,故选:D.11.如图,直径AB为3的半圆,绕A点逆时针旋转60°,此时点B到了点B′处,则图中阴影部分的面积是()A.3πB.C.6πD.24π【分析】根据阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB 为直径的半圆的面积.即求阴影部分的面积就等于求扇形ABB′的面积.【解答】解:阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB 为直径的半圆的面积=扇形ABB′的面积.则阴影部分的面积是:=π.故选:B.12.直线y1=k1x与双曲线y2=分别交于第一,三象限A、B两点,其中点A的横坐标为1,当y1<y2时,x的取值范围是()A.x<﹣1或x>1B.﹣1<x<1且x≠0C.x<﹣1或0<x<1D.﹣1<x<0或x>1【分析】根据对称性判断出点B的横坐标为﹣1,利用图象法:寻找直线的图象在反比例函数的图象下方的对应的自变量的取值,即可解决问题;【解答】解:∵点A的横坐标为1,根据对称性可知,点B的横坐标为﹣1,∴观察图象可知:当y1<y2时,x的取值范围是x<﹣1或0<x<1,故选:C.二.填空题(共6小题,满分24分,每小题4分)13.因式分解:ab2﹣2ab+a=a(b﹣1)2.【分析】原式提取a,再运用完全平方公式分解即可.【解答】解:原式=a(b2﹣2b+1)=a(b﹣1)2;故答案为:a(b﹣1)2.14.一个多边形的内角和与外角和的差是180°,则这个多边形的边数为5.【分析】根据多边形的内角和公式(n﹣2)•180°与外角和定理列式求解即可.【解答】解:设这个多边形的边数是n,则(n﹣2)•180°﹣360°=180°,解得n=5.故答案为:5.15.方程=的解是x=30.【分析】观察可得最简公分母为x(70﹣x),方程两边同时乘以最简公分母,把分式方程转化为整式方程求解.【解答】解:方程的两边同时乘以x(70﹣x),得:3(70﹣x)=4x解得x=30.检验:把x=30代入x(70﹣x)≠0∴原方程的解为:x=30.16.某市规定了每月用水不超过18立方米和超过18立方米两种不同的收费标准,该市用户每月应交水费y(元)是用水x(立方米)的函数,其图象如图所示.已知小丽家3月份交了水费102元,则小丽家这个月用水量为30立方米.【分析】根据题意和函数图象中的数据可以求得当x>18时对应的函数解析式,根据102>54可知,小丽家用水量超过18立方米,从而可以解答本题.【解答】解:设当x>18时的函数解析式为y=kx+b,,得,即当x>18时的函数解析式为y=4x﹣18,∵102>54,∴当y=102时,102=4x﹣18,得x=30,故答案为:30.17.如图,正方形ABCD的边长为1,AC,BD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG,则下列结论:①DE 平分∠ADB;②BE=2﹣;③四边形AEGF是菱形;④BC+FG=1.5.其中结论正确的序号是①②③.【分析】依据Rt△AED≌Rt△GED(HL),即可得到∠ADE=∠GDE,进而得出DE平分∠ADB;依据四边形AEGF为平行四边形,以及AE=GE,即可得到平行四边形AEGF 是菱形;依据HA=﹣1,∠H=45°,可得AE=﹣1,进而得到BE=2﹣;根据四边形AEGF是菱形,可得FG=AE=﹣1,进而得到BC+FG=1+﹣1=;即可得出结论.【解答】解:∵正方形ABCD的边长为1,∴∠BCD=∠BAD=90°,∠CBD=45°,BD==,AD=CD=1.由旋转的性质可知:∠HGD=BCD=90°,∠H=∠CBD=45°,BD=HD,GD=CD,∴HA=BG=﹣1,∠H=∠EBG=45°,∠HAE=∠BGE=90°,∴△HAE和△BGE均为直角边为﹣1的等腰直角三角形,∴AE=GE.在Rt△AED和Rt△GED中,,∴Rt△AED≌Rt△GED(HL),∴∠AED=∠GED=(180°﹣∠BEG)=67.5°,AE=GE,∠ADE=∠GDE,∴∠AFE=180°﹣∠EAF﹣∠AEF=180°﹣45°﹣67.5°=67.5°=∠AEF,∴DE平分∠ADB,故①正确;∵HA=﹣1,∠H=45°,∴AE=﹣1,∴BE=1﹣(﹣1)=2﹣,故②正确;∵AE=AF,AE=GE,AF⊥BD,EG⊥BD,∴AF=GE且AF∥GE,∴四边形AEGF为平行四边形,∵AE=GE,∴平行四边形AEGF是菱形,故③正确;∵四边形AEGF是菱形,∴FG=AE=﹣1,∴BC+FG=1+﹣1=,故④错误.故答案为:①②③.18.如图,正方形ABCD中边长为6,E为BC上一点,且BE=1.5,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.【分析】由题意分析可知,点F为主动点,G为从动点,所以以点E为旋转中心构造全等关系,得到点G的运动轨迹,之后通过垂线段最短构造直角三角形获得CG最小值.【解答】解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上作CM⊥HN,则CM即为CG的最小值作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC==故答案为:.三.解答题(共9小题,满分78分)19.(6分)计算:()﹣2﹣+(﹣4)0﹣cos45°.【分析】直接利用零指数幂的性质以及特殊角的三角函数值和负指数幂的性质分别化简得出答案.【解答】解:原式=4﹣3+1﹣×=2﹣1=1.20.(6分)解不等式组:【分析】分别解两个不等式得到x>2和x>﹣3,然后根据同大取大确定不等式组的解集.【解答】解:解①得x>2,解②得x>﹣3,所以不等式组的解集为x>2.21.(6分)已知:如图,菱形ABCD中,点E,F分别在AB,AD边上,AE=AF,连接CE,CF.求证:∠AEC=∠AFC.【分析】由菱形的性质可得∠BAC=∠DAC,由“SAS”可证△AEC≌△AFC,可得结论.【解答】证明:连接AC,∵四边形ABCD是菱形,∴∠BAC=∠DAC,∵AC=AC,AE=AF,∴△AEC≌△AFC(SAS)∴∠AEC=∠AFC.22.(8分)某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成:若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲乙两队合作完成该工程需要多少天?【分析】(1)设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x天完工,根据甲队完成的工作量+乙队完成的工作量=总工作量(单位1),即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由(1)可求出甲、乙单独施工所需天数,再利用两队合作完工所需时间=总工作量÷(甲队一天完成的工作量+乙队一天完成的工作量),即可求出结论.【解答】解:(1)设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x天完工,依题意,得:+=1,解得:x=30,经检验,x=30是原方程的解,且符合题意.答:这项工程的规定时间是30天.(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,1÷(+)=18(天).答:甲乙两队合作完成该工程需要18天.23.(8分)在⊙O中,直径AB⊥弦CD于点F,点E是弧AD上一点,连BE交CD于点N,点P在CD的延长线上,PN=PE.(1)求证:PE是⊙O的切线;(2)连接DE,若DE∥AB,OF=3,BF=2,求PN的长.【分析】(1)连接OE,由等腰三角形的性质得出∠PEN=∠PNE=∠BNF,∠OEB=∠OBE.证出∠OEB+∠PEN=90°,即PE⊥OE,即可得出结论;(2)连接CE,证出CE为⊙O的直径.由垂径定理得出CF=DF,得出DE=2OF=6.求出OC=OB=5,CE=10,由勾股定理得出CD=8.设PD=x,则PC=x+8.在Rt△PDE 和Rt△PCE中,由勾股定理得出方程,解方程求出PD=,由勾股定理即可得出答案.【解答】(1)证明:连接OE,如图1所示:∵PN=PE,∴∠PEN=∠PNE=∠BNF,∵OE=OB,∴∠OEB=∠OBE.∵AB⊥CD,∴∠OBE+∠BNF=90°,∴∠OEB+∠PEN=90°,即∠OEP=90°,∴PE⊥OE,∴PE是⊙O的切线.(2)解:连接CE,如图2所示:∵DE∥AB,AB⊥CD,∴∠EDC=90°∴CE为⊙O的直径.∵AB⊥CD,∴CF=DF,∴DE=2OF=6.∵OF=3,BF=2,∴OC=OB=5,CE=10,∴CD===8,由(1)知PE⊥CE.设PD=x,则PC=x+8.在Rt△PDE和Rt△PCE中,由勾股定理,得:PD2+DE2=PE2=PC2﹣CE2,即x2+62=(x+8)2﹣102,解得:x=,∴PD=.∴PE===,∴PN=PE=.24.(10分)如图,在3×3正方形方格中,有3个小正方形涂成了黑色,所形成的图案如图所示,图中每块小正方形除颜色外完全相同.(1)一个小球在这个正方形方格上自由滚动,那么小球停在黑色小正方形的概率是多少?(2)现将方格内空白的小正方形(A、B、C、D、E、F)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是中心对称图形的概率.【分析】(1)根据题意和图形,可以求得小球停在黑色小正方形的概率;(2)根据题意可以花花粗相应的表格,从而可以求得相应的概率.【解答】解:(1)由题意可得,小球停在黑色小正方形的概率是=,即小球停在黑色小正方形的概率是;(2)中心对称的情况是:(BE)、(CD)、(AF),(EB),(DC),(F A),则新图案是中心对称图形的概率是:,即新图案是中心对称图形的概率是.25.(10分)如图,在直角坐标系中,点B的坐标为(2,1),过点B分别作x轴、y轴的垂线,垂足分别是C,A,反比例函数y=(x>0)的图象交AB,BC分别于点E,F.(1)求直线EF的解析式;(2)求四边形BEOF的面积;(3)若点P在y轴上,且△POE是等腰三角形,请直接写出点P的坐标.【分析】(1)分别求出点E,点F坐标,由待定系数法可求解析式;(2)由反比例函数图象的点的坐标特征可求△AOE,△OCF的面积,即可求解;(3)分三种情况讨论,由等腰三角形的性质可求解.【解答】解:(1)∵点B的坐标为(2,1),过点B分别作x轴、y轴的垂线,垂足分别是C,A,∴点A,点E纵坐标为1,点C,点F的横坐标为2,∵点E,点F在反比例函数y=(x>0)的图象上,∴点E(1,1),点F(2,),设直线EF的解析式的解析式为:y=kx+b,∴∴∴直线EF的解析式的解析式为:y=﹣x+;(2)∵四边形BEOF的面积=S四边形ABCO﹣S△AOE﹣S△OCF,∴四边形BEOF的面积=2﹣﹣=1;(3)∵点E(1,1),∴OE=,若OE=OP=,则点P(0,)或(0,﹣),若OE=EP,且AE⊥AO,∴OA=AP=1,∴点P(0,2)若OP=PE,∴点P在OE的垂直平分线上,即点P(0,1),综上所述:当点P(0,)或(0,﹣)或(0,2)或(0,1)时,△POE是等腰三角形.26.(12分)已知,如图1,在△ABC中,AB⊥BC,AB=2,AC=10,若D为AC的中点,DG⊥AC交BC与点G.(1)求CG的长;(2)如图2,E点为射线BA上一动点,连接DE,线段DE绕点D顺时针旋转90°交直线BC与点F;④若AE=时,求CF的长;②如图3,连接EF交直线DG与点M,当△EDM为等腰三角形时,求GF的长.【分析】(1)先判断出△ACB∽△GCD,得出比例式,再求出CD,BG,即可得出结论;(2)①Ⅰ、当点E在线段AB上时,利用三角形的中位线即可得出结论;Ⅱ、先求出DG==,再判断出△FDG∽△EDA,得出,进而求出FG,即可得出结论;②先判断出∠FED=∠ACB,进而判断出△MED∽△FDC,得出△FCD是等腰三角形,再分三种情况,利用等腰三角形的性质即可得出结论.【解答】解:(1)∵AB⊥AC,DG⊥AC,∴∠B=∠CDG=90°,∵∠ACB=∠GCD,∴△ACB∽△GCD,∴,∵点D是AC的中点,∴CD=AC=5,根据勾股定理得,BC=4,∴,∴CG=;(2)①Ⅰ、当点E在线段AB上时,∵AB=,AB=2,∴点E是AB的中点,∵点D是AC的中点,∴DE∥BC,∵AB⊥BC,DE⊥DF,∴DF⊥BC,∴BF∥AB,∵点D是AC中点,∴点F是BC的中点,∴CF=BC=2;Ⅱ、当点E在BA的延长线上时,如图1,∵点D是AC的中点,AC=10,∴AD=AC=5,由(1)知,△BAC∽△DGC,∴∠CGD=∠CAB,,∴DG==,∠FGD=∠EAD,∵GD⊥AC,ED⊥DF,∴∠FDG=∠EDA,∴△FDG∽△EDA,∴,∴FG==,∴CF=CG+FG=3;②由①知,△FDG∽△EDA,∴=,∴tan∠FED=,∵tan∠ACB==,∴∠FED=∠ACB,∵DE⊥DF,DG⊥AC,∴∠ADG=∠EDF=90°,∴∠MDE=∠FDC,∴△MED∽△FDC,∵△EDM是等腰三角形,∴△FCD是等腰三角形,Ⅰ、当FD=FC时,点E在AB的延长线上,不符合题,舍去,Ⅱ、当CD=CF时,CF=CD=5,∴GF=CG﹣CF=﹣5;当CD=DF时,DF=CD=5,∴DF=AC,∴点F与点B重合,∴GF=BC﹣CG=;27.(12分)如图,在平面直角标系中,抛物线C:y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点D为y轴正半轴上一点.且满足OD =OC,连接BD,(1)如图1,点P为抛物线上位于x轴下方一点,连接PB,PD,当S△PBD最大时,连接AP,以PB为边向上作正△BPQ,连接AQ,点M与点N为直线AQ上的两点,MN=2且点N位于M点下方,连接DN,求DN+MN+AM的最小值(2)如图2,在第(1)问的条件下,点C关于x轴的对称点为E,将△BOE绕着点A 逆时针旋转60°得到△B′O′E′,将抛物线y=沿着射线P A方向平移,使得平移后的抛物线C′经过点E,此时抛物线C′与x轴的右交点记为点F,连接E′F,B′F,R为线段E’F上的一点,连接B′R,将△B′E′R沿着B′R翻折后与△B′E′F重合部分记为△B′RT,在平面内找一个点S,使得以B′、R、T、S为顶点的四边形为矩形,求点S的坐标.【分析】(1)由抛物线解析式求点A、B、C坐标,由OD=OC求点D坐标.设点P 横坐标为t,可用待定系数法求得用t表示的直线PB解析式,即能用t表示PB与y轴交点G的坐标,进而用t表示DG的长.以DG为界把△PBD分成左右两边的△PDG与△BDG,则以DG为底计算易求得△PBD面积与t的二次函数关系式,求对称轴即得到△PBD最大时t的值,进而得到点P坐标.求得∠ABP=30°,即x轴平分∠PBQ,故点P、Q关于x轴对称,得到点Q坐标,进而得到直线AQ解析式,发现∠QAB=∠P AB=60°.作直线AP,可得直线AQ与AP夹角为60°,过点M作MH⊥AP于H,即构造出特殊Rt △MAN,得到MH=AM.把点D平移到D',使DD'∥MN且DD'=MN,构造平行四边形MNDD',故DN=D'M.所以DN+MN+AM可转化为MN+D'M+MH.易得当点D'、M、H在同一直线上时,线段和会最短,即过D'作D'K⊥AP于K,D'K的值为所求.根据平移性质求D'坐标,求直线D'K与直线AP解析式,联立方程组求得K的坐标,即求得D'K的长.(2)抛物线平移不改变开口方向和大小,再求得点E坐标和点A坐标,可用待定系数法求平移后的解析式,进而求得点F.由旋转性质可得△ABB'与△AEE'为等边三角形,求出点E'、B'坐标,B'F⊥x轴且△B'E'F为含30°的直角三角形.把点R从E'移动到F的过程,发现∠RB'T一定小于90°,不可能成为矩形内角,故只能是∠B'RT或∠B'TR=90°.点T可以在E'F上,也可以在B'F上,画出图形,根据含30°的直角三角形三边关系计算各线段长,即能求点S坐标.【解答】解:(1)如图1,过点D作DD'∥MN,且DD'=MN=2,连接D'M;过点D'作D'J⊥y轴于点J;作直线AP,过点M作MH⊥AP于点H,过点D'作D'K⊥AP于点K∵y==0解得:x1=﹣3,x2=1∴A(﹣3,0),B(1,0)∵x=0时,y==﹣∴C(0,﹣),OC=∴OD=OC=,D(0,)设P(t,t2+t﹣)(﹣3<t<1)设直线PB解析式为y=kx+b,与y轴交于点G∴解得:∴直线PB:y=(t+)x﹣t﹣,G(0,﹣t﹣)∴DG=﹣(﹣t﹣)=t+∴S△BPD=S△BDG+S△PDG=DG•x B+DG•|x P|=DG•(x B﹣x P)=(t+)(1﹣t)=﹣(t2+4t﹣5)∴t=﹣=﹣2时,S△BPD最大∴P(﹣2,﹣),直线PB解析式为y=x﹣,直线AP解析式为y=﹣x﹣3∴tan∠ABP==∴∠ABP=30°∵△BPQ为等边三角形∴∠PBQ=60°,BP=PQ=BQ∴BA平分∠PBQ∴PQ⊥x轴,PQ与x轴交点I为PQ中点∴Q(﹣2,)∴Rt△AQI中,tan∠QAI=∴∠QAI=∠P AI=60°∴∠MAH=180°﹣∠P AI﹣∠QAI=60°∵MH⊥AP于点H∴Rt△AHM=90°,sin∠MAH=∴MH=AM∵DD'∥MN,DD'=MN=2∴四边形MNDD'是平行四边形∴D'M=DN∴DN+MN+AM=2+D'M+MH∵D'K⊥AP于点K∴当点D'、M、H在同一直线上时,DN+MN+AM=2+D'M+MH=2+D'K最短∵DD'∥MN,D(0,)∴∠D'DJ=30°∴D'J=DD'=1,DJ=DD'=∴D'(1,)∵∠P AI=60°,∠ABP=30°∴∠APB=180°﹣∠P AI﹣∠ABP=90°∴PB∥D'K设直线D'K解析式为y=x+d,把点D'代入得:+d=解得:d=∴直线D'K:y=x+把直线AP与直线D'K解析式联立得:解得:∴K(﹣,)∴D'K=∴DN+MN+AM的最小值为(2)连接B'A、BB'、EA、E'A、EE',如图2∵点C(0,﹣)关于x轴的对称点为E∴E(0,)∴tan∠EAB=∴∠EAB=30°∵抛物线C'由抛物线C平移得到,且经过点E∴设抛物线C'解析式为:y=x2+mx+,∵A(﹣3,0),P(﹣2,﹣),E(0,),B(1,0),∴BE∥P A,BE=P A,∴抛物线C'经过点A(﹣3,0),∴×9﹣3m+=0解得:m=∴抛物线C'解析式为:y=x2+x+∵x2+x+=0,解得:x1=﹣3,x2=﹣1∴F(﹣1,0)∵将△BOE绕着点A逆时针旋转60°得到△B′O′E′∴∠BAB'=∠EAE'=60°,AB'=AB=1﹣(﹣3)=4,AE'=AE=∴△ABB'、△AEE'是等边三角形∴∠E'AB=∠E'AE+∠EAB=90°,点B'在AB的垂直平分线上∴E'(﹣3,2),B'(﹣1,2)∴B'E'=2,∠FB'E'=90°,E'F=∴∠B'FE'=30°,∠B'E'F=60°①如图3,点T在E'F上,∠B'TR=90°过点S作SW⊥B'E'于点W,设翻折后点E'的对应点为E''∴∠E'B'T=30°,B'T=B'E'=∵△B′E′R翻折得△B'E''R∴∠B'E''R=∠B'E'R=60°,B'E''=B'E'=2∴E''T=B'E''﹣B'T=2﹣∴Rt△RTE''中,RT=E''T=2﹣3∵四边形RTB'S是矩形∴∠SB'T=90°,SB'=RT=2﹣3∴∠SB'W=∠SB'T﹣∠E'B'T=60°∴B'W=SB'=﹣,SW=SB'=3﹣∴x S=x B'﹣B'W=,y S=y B'+SW=3+∴S(,3+)②如图4,点T在E'F上,∠B'RT=90°过点S作SX⊥B'F于点X∴E'R=B'E'=1,点E'翻折后落在E'F上即为点T∴B'S=RT=E'R=1∵∠SB'X=90°﹣∠RB'F=30°∴XS=B'S=,B'X=B'S=∴x S=x B'+XS=﹣,y S=y B'﹣B'X=∴S(﹣,)③如图5,点T在B'F上,∠B'TR=90°∴RE''∥E'B',∠E''=∠B'E'R=60°∴∠E'BE''=∠E'RE''=120°∴四边形B'E'RE''是平行四边形∵E'R=E''R∴▱B'E'RE''是菱形∴B'E'=E'R∴△B'E'R是等边三角形∵∠B'SR=90°,即RS⊥B'E'∴点S为B'E'中点∴S(﹣2,2)综上所述,使得以B′、R、T、S为顶点的四边形为矩形的点S坐标为(,3+)或(﹣,)或(﹣2,2).。
最新山东省济南市中考数学一模试卷一、选择题(共15小题,每小题3分,满分45分)1.2016的相反数是()A.B.﹣2016 C.﹣D.20162.中国移动数据中心IDC项目近日在高新区正式开工建设,该项目规划建设规模12.6万平方米,建成后将成为山东省最大的数据业务中心.其中12.6万用科学记数法表示应为()A.1.26×106B.12.6×104C.1.26×105D.0.126×1063.如图所示几何体的左视图是()A. B.C.D.4.2016年4月14日,永远的科比狂砍60分完美谢幕,打破NBA球员退役战得分纪录,成为NBA 历史单场60+年纪最大的球员,其中罚球12罚10中,命中率大约是83.3%,下列说法错误的是()A.科比罚球投篮12次,不一定全部命中B.科比罚球投篮120次,一定命中100次C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小5.如图,将直尺和直角三角板按如图方式摆放,已知∠1=35°,则∠2的大小是()A.35° B.45° C.55°D.65°6.下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6 C.a6+a2=a3D.﹣3a+2a=﹣a7.在下列手机软件图标中是轴对称图形的是()A.B.C.D.8.计算的结果是()A.0 B.1 C.﹣1 D.x9.下列命题正确的是()A.对角线互相垂直的四边形是菱形B.一组对边相等,另一组对边平行的四边形是平行四边形C.对角线相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>311.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的正弦值是()A.B.C.D.12.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);②g(a,b)=(b,a).如:g(1,3)=(3,1);③h(a,b)=(﹣a,﹣b).如,h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(h(2,﹣3)))=f(g(﹣2,3))=f(3,﹣2)=(﹣3,﹣2),那么f(g(h(﹣3,5)))等于()A.(﹣5,﹣3) B.(5,3) C.(5,﹣3)D.(﹣5,3)13.如图,已知A、B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P纵坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y 轴,垂足分别为M、N.设四边形OMPN的面积为S,点P运动的时间为t,则S关于t的函数图象大致为()A.B.C.D.14.已知二次函数的图象如右图,则下列结论中,正确的结论有()①a+b+c>0 ②a﹣b+c<0 ③abc<0 ④b=2a ⑤b>0.A.5个B.4个C.3个D.2个15.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①点G是BC的中点;②FG=FC;③AG∥CF;④S△FGC=.其中正确结论是()A.①② B.②④C.①②③D.①③④二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.分解因式:x3﹣4x= .17.若代数式和的值相等,则x= .18.等腰三角形的周长为16,其一边长为6,则该等腰三角形的底边长为.19.据调查,2016年1月济南市的房价均价为8300元/m2,2016年3月达到8700元/m2,假设这两个月济南市房价的平均增长率为x,根据题意,所列方程为.20.如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处.若AE=BE,则长AD 与宽AB的比值是.21.直线y=﹣x﹣1与反比例函数y=(x<0)的图象交于点A,与x轴相交于点B,过点B作x 轴垂线交双曲线于点C,若AB=AC,则k的值为.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)22.化简:﹣()﹣1﹣|1﹣|+2sin30°.23.(2016•高新区一模)解不等式组:,并把它的解集在数轴上表示出来.24.已知:如图,点E,A,C在同一直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.25.(2016•高新区一模)如图,在⊙O中,过直径AB延长线上的点C做⊙O的一条切线,切点为D,若CD=4,CB=2.求:⊙O的半径.26.苏州某旅行社组织甲、乙两个旅游团分别到西安、北京旅行,已知这两旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团各有多少人?27.为进一步推广“阳光体育”大课间活动,高新中学对已开设的A实心球,B立定跳远,C跑步,D排球四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;(2)随机抽取了3名喜欢“跑步”的学生,其中有2名男生,1名女生,现从这3名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到一男生一女生的概率.28.如图,将透明三角形纸片PAB的直角顶点P落在第二象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥y轴于点C,PA⊥x轴于点D,AB分别与x轴、y轴相交于点E、F.已知B(1,3).(1)k= ;(2)试说明AE=BF;(3)当四边形ABCD的面积为4时,直接写出点P的坐标.29.如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(﹣4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).(1)∠PBD的度数为,点D的坐标为(用t表示);(2)当t为何值时,△PBE为等腰三角形?(3)探索△POE周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.30.如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过A、C两点,与AB边交于点D.(1)求抛物线的函数表达式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式,并求出m为何值时,S取得最大值;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上若存在点F,使△FDQ为直角三角形?若存在,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.2016的相反数是()A.B.﹣2016 C.﹣D.2016【考点】相反数.【专题】推理填空题;实数.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:2016的相反数是﹣2016.故选:B.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.中国移动数据中心IDC项目近日在高新区正式开工建设,该项目规划建设规模12.6万平方米,建成后将成为山东省最大的数据业务中心.其中12.6万用科学记数法表示应为()A.1.26×106B.12.6×104C.1.26×105D.0.126×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将12.6万用科学记数法表示为:1.26×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图所示几何体的左视图是()A. B.C.D.【考点】简单组合体的三视图.【分析】根据左视图就是从物体的左边进行观察,得出左视图有1列,小正方形数目为2.【解答】解:如图所示:.故选:A.【点评】此题主要考查了三视图的画法中左视图画法,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4.2016年4月14日,永远的科比狂砍60分完美谢幕,打破NBA球员退役战得分纪录,成为NBA 历史单场60+年纪最大的球员,其中罚球12罚10中,命中率大约是83.3%,下列说法错误的是()A.科比罚球投篮12次,不一定全部命中B.科比罚球投篮120次,一定命中100次C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小【考点】概率的意义.【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.【解答】解:科比罚球投篮120次,一定命中100次错误,故选:B.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.如图,将直尺和直角三角板按如图方式摆放,已知∠1=35°,则∠2的大小是()A.35° B.45° C.55°D.65°【考点】平行线的性质.【分析】先求出∠ACE的度数,根据平行线的性质得出∠2=∠ACE,即可得出答案.【解答】解:如图,∵∠ACB=90°,∠1=35°,∴∠ACE=90°﹣35°=55°,∵MN∥EF,∴∠2=∠ACE=55°,故选C.【点评】本题考查了平行线的性质的应用,能熟记平行线的性质是解此题的关键.6.下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6 C.a6+a2=a3D.﹣3a+2a=﹣a【考点】幂的乘方与积的乘方;合并同类项.【分析】合并同类项法则,积的乘方分别求出每个式子的值,再判断即可.【解答】解:A、2a和3b不能合并,故本选项错误;B、结果是9a6,故本选项错误;C、a6和a2不能合并,故本选项错误;D、结果是﹣a,故本选项正确;故选D.【点评】本题考查了同类项,合并同类项,积的乘方的应用,能正确运用法则进行计算是解此题的关键,难度不是很大.7.在下列手机软件图标中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得答案.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.计算的结果是()A.0 B.1 C.﹣1 D.x【考点】分式的加减法.【专题】计算题.【分析】原式利用同分母分式的减法法则计算,变形后约分即可得到结果.【解答】解:原式==﹣=﹣1.故选C【点评】此题考查了分式的加减法,分式的加减运算关键是通分,通分的关键是找最简公分母.9.下列命题正确的是()A.对角线互相垂直的四边形是菱形B.一组对边相等,另一组对边平行的四边形是平行四边形C.对角线相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形【考点】命题与定理.【分析】根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案.【解答】解:A、对角线互相垂直的四边形不一定是菱形,故本选项错误;B、一组对边相等,另一组对边平行的四边形不一定是平行四边形,也可能是等腰梯形,故本选项错误;C、对角线相等的四边形不一定是矩形,例如等腰梯形,故本选项错误;D、对角线互相垂直平分且相等的四边形是正方形,故本选项正确.故选D.【点评】本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的性质,此题难度不大.10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>3【考点】一次函数与一元一次不等式.【分析】先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A 的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.【解答】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选A.【点评】此题考查的是用图象法来解不等式,充分理解一次函数与不等式的联系是解决问题的关键.11.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的正弦值是()A.B.C.D.【考点】圆周角定理;勾股定理;锐角三角函数的定义.【分析】根据同弧所对的圆周角相等得到∠ABC=∠AED,在直角三角形ABC中,利用锐角三角函数定义求出sin∠ABC的值,即为sin∠AED的值.【解答】解:∵∠AED与∠ABC都对,∴∠AED=∠ABC,在Rt△ABC中,AB=2,AC=1,根据勾股定理得:BC=,则sin∠AED=sin∠ABC==,故选C.【点评】本题考查了圆周角定理,锐角三角函数定义,以及勾股定理,熟练掌握圆周角定理是解本题的关键.12.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);②g(a,b)=(b,a).如:g(1,3)=(3,1);③h(a,b)=(﹣a,﹣b).如,h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(h(2,﹣3)))=f(g(﹣2,3))=f(3,﹣2)=(﹣3,﹣2),那么f(g(h(﹣3,5)))等于()A.(﹣5,﹣3) B.(5,3) C.(5,﹣3)D.(﹣5,3)【考点】点的坐标.【专题】新定义.【分析】根据f(a,b)=(﹣a,b).g(a,b)=(b,a).h(a,b)=(﹣a,﹣b),可得答案.【解答】解:f(g(h(﹣3,5)))=f(g(3,﹣5)=f(﹣5,3)=(5,3),故选:B.【点评】本题考查了点的坐标,利用f(a,b)=(﹣a,b).g(a,b)=(b,a).h(a,b)=(﹣a,﹣b)是解题关键.13.如图,已知A、B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P纵坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y 轴,垂足分别为M、N.设四边形OMPN的面积为S,点P运动的时间为t,则S关于t的函数图象大致为()A.B.C.D.【考点】动点问题的函数图象.【分析】通过两段的判断即可得出答案,①点P在AB上运动时,此时四边形OMPN的面积不变,可以排除B、D;②点P在BC上运动时,S减小,S与t的关系为一次函数,从而排除C.【解答】解:①点P在AB上运动时,此时四边形OMPN的面积S=K,保持不变,故排除B、D;②点P在BC上运动时,设路线O→A→B→C的总路程为l,点P的速度为a,则S=OC×CP=OC ×(l﹣at),因为l,OC,a均是常数,所以S与t成一次函数关系.故排除C.故选A【点评】本题考查了动点问题的函数图象,解答此类题目并不需要求出函数解析式,只要判断出函数的增减性,或者函数的性质即可,注意排除法的运用.14.已知二次函数的图象如右图,则下列结论中,正确的结论有()①a+b+c>0 ②a﹣b+c<0 ③abc<0 ④b=2a ⑤b>0.A.5个B.4个C.3个D.2个【考点】二次函数图象与系数的关系.【专题】计算题.【分析】根据图象,当x=1时,y>0,当x=﹣1时,y<0,可判断①②;根据图象与y轴的交点位置可知c>0,根据对称轴x=﹣>0,可判断ab的符号,可判断③;根据对称轴x=﹣=1可判断④;由抛物线开口向下可知a<0,又知对称轴x=﹣>0,可判断b的符号.【解答】解:根据图象,当x=1时,y=a+b+c>0,当x=﹣1时,y=a﹣b+c<0,可知①②正确;根据图象与y轴的交点位置可知c>0,根据对称轴x=﹣>0,且抛物线开口向下,a<0,可知b>0,abc<0,故③⑤正确;根据对称轴x=﹣=1得b=﹣2a,可知④错误.正确的是①②③⑤4个,故选B.【点评】本题考查了二次函数图象与系数的关系.关键是明确图象的位置与系数之间的关系.15.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①点G是BC的中点;②FG=FC;③AG∥CF;④S△FGC=.其中正确结论是()A.①② B.②④C.①②③D.①③④【考点】正方形的性质;全等三角形的判定与性质;翻折变换(折叠问题).【分析】由正方形和折叠的性质得出AF=AB,∠B=∠AFG=90°,由HL即可证明Rt△ABG≌Rt△AFG,得出BG=FG,设BG=x,则CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2,由勾股定理求出x=3,得出①正确;②不正确;由等腰三角形的性质和外角关系得出∠AGB=∠FCG,证出平行线,得出③正确;求出△FGC的面积=,得出④正确;即可得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=AD=DC=3,∠B=D=90°,∵CD=3DE,∴DE=1,∵△ADE沿AE折叠得到△AFE,∴DE=EF=1,AD=AF,∠D=∠AFE=∠AFG=90°,∴AF=AB,在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),∴BG=FG,∠AGB=∠AGF,设BG=x,则CG=BC﹣BG=3﹣x,GE=GF+EF=BG+DE=x+1,在Rt△ECG中,由勾股定理得:CG2+CE2=EG2,∵CG=3﹣x,CE=2,EG=x+1,∴(3﹣x)2+22=(x+1)2解得:x=1.5,∴BG=GF=CG=1.5,①正确;②不正确;∴∠CFG=∠FCG,∵∠BGF=∠CFG+∠FCG,又∵∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF,∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG,∴AG∥CF,③正确;∵△CFG和△CEG中,分别把FG和GE看作底边,则这两个三角形的高相同.∴===,∵S△GCE=×1.5×2=1.5,∴S△CFG=×1.5=,④正确;正确的结论是①③④,故选:D.【点评】本题考查了正方形性质、折叠性质、全等三角形的性质和判定、等腰三角形的性质和判定、平行线的判定等知识点的运用;主要考查学生综合运用性质进行推理论证与计算的能力,有一定难度.二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.分解因式:x3﹣4x= x(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.17.若代数式和的值相等,则x= 7 .【考点】解分式方程.【专题】计算题;转化思想.【分析】根据题意列出分式方程,求出分式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:根据题意得:=,去分母得:2x+1=3x﹣6,解得:x=7,经检验x=7是分式方程的解.故答案为:x=7.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.等腰三角形的周长为16,其一边长为6,则该等腰三角形的底边长为6或4 .【考点】等腰三角形的性质;三角形三边关系.【分析】此题分为两种情况:6是等腰三角形的底边或6是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析能否构成三角形.【解答】解:当腰为6时,则底边4,此时三边满足三角形三边关系;当底边为6时,则另两边长为5、5,此时三边满足三角形三边关系;故答案为:6或4.【点评】本题考查了等腰三角形的性质及三角形的三边关系,解题的关键是能够分类讨论,难度不大.19.据调查,2016年1月济南市的房价均价为8300元/m2,2016年3月达到8700元/m2,假设这两个月济南市房价的平均增长率为x,根据题意,所列方程为8300(1+x)2=8700 .【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】2016年3月的房价8700=2016年1月的房价8300×(1+年平均增长率)2,把相关数值代入即可.【解答】解:2016年2月的房价为8300×(1+x),2016年3月的房价为8300(1+x)(1+x)=8300(1+x)2,即所列的方程为8300(1+x)2=8700.故答案为:8300(1+x)2=8700.【点评】本题考查了从实际问题中抽出一元二次方程,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.20.如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处.若AE=BE,则长AD 与宽AB的比值是.【考点】翻折变换(折叠问题);勾股定理;矩形的性质.【专题】数形结合;转化思想.【分析】由AE=BE,可设AE=2k,则BE=3k,AB=5k.由四边形ABCD是矩形,可得∠A=∠ABC=∠D=90°,CD=AB=5k,AD=BC.由折叠的性质可得∠EFC=∠B=90°,EF=EB=3k,CF=BC,由同角的余角相等,即可得∠DCF=∠AFE.在Rt△AEF中,根据勾股定理求出AF==k,由cos∠AFE=cos∠DCF得出CF=3k,即AD=3k,进而求解即可.【解答】解:∵AE=BE,∴设AE=2k,则BE=3k,AB=5k.∵四边形ABCD是矩形,∴∠A=∠ABC=∠D=90°,CD=AB=5k,AD=BC.∵将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处,∴∠EFC=∠B=90°,EF=EB=3k,CF=BC,∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE,∴cos∠AFE=cos∠DCF.在Rt△AEF中,∵∠A=90°,AE=2k,EF=3k,∴AF==k,∴=,即=,∴CF=3k,∴AD=BC=CF=3k,∴长AD与宽AB的比值是=.故答案为:.【点评】此题考查了折叠的性质,矩形的性质,勾股定理以及三角函数的定义.解此题的关键是数形结合思想与转化思想的应用.21.直线y=﹣x﹣1与反比例函数y=(x<0)的图象交于点A,与x轴相交于点B,过点B作x 轴垂线交双曲线于点C,若AB=AC,则k的值为﹣4 .【考点】反比例函数与一次函数的交点问题.【分析】过A作AD⊥BC于D,先求出直线=﹣x﹣1与x轴交点B的坐标(﹣2,0),则得到C 点的横坐标为﹣2,由于C点在反比例函数y=的图象上,可表示出C点坐标为(﹣2,﹣),利用等腰三角形的性质,由AC=AB,AD⊥BC,得到DC=DB,于是D点坐标为(﹣2,﹣),则可得到A点的纵坐标为﹣,利用点A在函数y=的图象上,可表示出点A的坐标为(﹣4,﹣),然后把A(﹣4,﹣)代入y=﹣x﹣1得到关于k的方程,解方程即可求出k的值.【解答】解:过A作AD⊥BC于D,如图,∵y=﹣x﹣1,令y=0,则﹣x﹣1=0,解得x=﹣2,∴B点坐标为(﹣2,0),∵CB⊥x轴,∴C点的横坐标为﹣2,∵y=,令x=﹣2,则y=﹣,∴C点坐标为(﹣2,﹣),∵AC=AB,AD⊥BC,∴DC=DB,∴D点坐标为(﹣2,﹣),∴A点的纵坐标为﹣,而点A在函数y=的图象上,把y=﹣代入y=,得x=﹣4,∴点A的坐标为(﹣4,﹣),把A(﹣4,﹣)代入y=﹣x﹣1,得﹣=﹣×(﹣4)﹣1,∴k=﹣4.故答案为﹣4.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两个函数的解析式.也考查了与x轴垂直的直线上所有点的横坐标相同以及等腰三角形的性质.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)22.化简:﹣()﹣1﹣|1﹣|+2sin30°.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用二次根式性质,负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2﹣2﹣+1+2×=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.23.(2016•高新区一模)解不等式组:,并把它的解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x≤4,∴不等式组的解集为:﹣2<x≤4,在数轴上表示为:.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,能根据不等式的解集求出不等式组的解集是解此题的关键.24.已知:如图,点E,A,C在同一直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.【考点】全等三角形的判定与性质.【专题】证明题.【分析】首先由AB∥CD,根据平行线的性质可得∠BAC=∠ECD,再有条件AB=CE,AC=CD可证出△BAC和△ECD全等,再根据全等三角形对应边相等证出CB=ED.【解答】证明:∵AB∥CD,∴∠BAC=∠ECD,在△BAC和△ECD中,∴△BAC≌△ECD(SAS),∴CB=ED.【点评】此题主要考查了全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.25.(2016•高新区一模)如图,在⊙O中,过直径AB延长线上的点C做⊙O的一条切线,切点为D,若CD=4,CB=2.求:⊙O的半径.【考点】切线的性质.【分析】连接OD,根据切线的性质,∠ODC=90°,设OD=r,在RT△ODC中利用勾股定理即可解决.【解答】解:连接OD.∵CD是⊙O切线,∴OD⊥CD,∴∠ODC=90°,设半径为r,在RT△ODC中,∵OD=r,OC=r+2,CD=4,∴OD2+CD2=OC2,∴r2+42=(r+2)2,∴r=3,∴⊙O的半径为3.【点评】本题考查切线的性质、勾股定理等知识,解题的关键是利用勾股定理,把问题转化为方程解决,属于中考常考题型.26.苏州某旅行社组织甲、乙两个旅游团分别到西安、北京旅行,已知这两旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团各有多少人?【考点】二元一次方程组的应用.【分析】设甲、乙两个旅游团个有x人、y人,根据题意可得等量关系:甲团+乙团=55人;甲团人数=乙团人数×2﹣5,根据等量关系列出方程组,再解即可.【解答】解:设甲、乙两个旅游团各有x人、y人,由题意得:,解得,答:甲、乙两个旅游团各有35人、20人.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,抓住题目中的关键语句,找出等量关系,列出方程组.27.为进一步推广“阳光体育”大课间活动,高新中学对已开设的A实心球,B立定跳远,C跑步,D排球四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;(2)随机抽取了3名喜欢“跑步”的学生,其中有2名男生,1名女生,现从这3名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到一男生一女生的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【专题】计算题.【分析】(1)用A类的人数除以它所占百分比得到调查的总人数,然后用总人数分别减去其它各组人数可得C类人数,用C类人数除以总人数得到C类所占百分比,再补全统计图;(2)画树状图展示所有6种等可能的结果数,再找出一男生一女生的结果数,然后根据概率公式求解.【解答】解:(1)调查的纵人数=15÷10%=150,所以喜欢“跑步”的学生人数=150﹣15﹣45﹣30=60(人),它所占的百分比=×100%=40%;如图,(2)画树状图为:共有6种等可能的结果数,其中一男生一女生的结果数为4,所以刚好抽到一男生一女生的概率==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.28.如图,将透明三角形纸片PAB的直角顶点P落在第二象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥y轴于点C,PA⊥x轴于点D,AB分别与x轴、y轴相交于点E、F.已知B(1,3).(1)k= 3 ;(2)试说明AE=BF;(3)当四边形ABCD的面积为4时,直接写出点P的坐标.【考点】反比例函数综合题.【专题】综合题.【分析】(1)把B坐标代入反比例解析式求出k的值即可;(2)由题意表示出P,D,C,A的坐标,求出两对应边之比,再由夹角相等,利用两边对应边对应成比例且夹角相等的三角形相似得到三角形PDC与三角形PAB相似,进而得出四边形ADCF与四边形DEBC都是平行四边形,利用平行四边形的对边相等即可得证;(3)由四边形ABCD面积等于三角形PAB面积减去三角形PCD面积,列出关于m的方程,求出方程的解得到m的值,即可确定出P的坐标.【解答】解:(1)把B(1,3)代入反比例解析式得:k=3;故答案为:3;(2)根据题意得:P(m,3),D(m,0),C(0,3),A(m,),。
绝密★启用前2020年高新区第一次学考模拟测试数学试题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为48分;第Ⅱ卷共4页,满分为102分.本试题共6页,满分为150分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I卷(选择题共48分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.9的平方根等于()A.3 B.﹣9 C.±9 D.±32.如图是一个由5个相同的小正方体组成的一个立体图形,其左视图是()A.B.C.D.3.2019年12月17日下午,我国第一艘国产航空母舰﹣﹣山东舰在海南三亚某军港交付海军,据了解山东舰的满载排水量为50000吨.将50000用科学记数法表示为()A.5×103B.5×104C.5×105D.0.5×1054.如图,直线l分别与直线AB、CD相交于点E、F,EG平分∠BEF交直线CD于点G,若∠1=∠BEF=68°,则∠EGF的度数为()A.34°B.36°C.38°D.68°5.下列算式中,正确的是()A.a4•a4=2a4B.a6÷a3=a2C.(a﹣b)2=a2﹣b2D.(﹣3a2b)2=9a4b26.校国旗班男生的身高如表:身高(cm)175 178 180 181 182人数(名) 4 6 5 3 2则这个国旗班20名男生身高的众数和中位数分别是()A.178cm,179cm B.178cm,178cmC.182cm,179cm D.179cm,179cm7.计算44212-++x x 的结果是( ) A .21-x B .21--x C .21+-x D .21+x 8.如图,一艘轮船以每小时20海里的速度沿正北方航行,在A 处测得灯塔C 在北偏西30°方向上,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向上,当轮船到达灯塔C 的正东方向D处时,则轮船航程AD 的距离是( )A .20海里B .40海里C .60海里D .80海里9.周末,小明带200元去图书大厦,下表记录了他全天的所有支出,其中小零食支出的金额不小心被涂黑了,如果每包小零食的售价为15元,那么小明可能剩下多少元?( )支出早餐 购买书籍 公交车票 小零食 金额(元) 20 140 5A .5B .10C .15D .3010.如图,已知在△AOB 中A (0,4),B (﹣2,0),点M 从点(4,1)出发向左平移,当点M 平移到AB 边上时,平移距离为( )A .4.5B .5C .5.5D .5.75第10题图 第11题图 11.如图,将一个大三角形沿虚线剪开分成一个梯形及一个小三角形,若梯形上、下底的长分别是7,14,两腰长为12,16,则剪出的小三角形的周长为( )A .23B .28C .31D .3512.抛物线y =ax 2+bx +c 的图象如图,则下列结论:①abc >0;②a +b +c =2;③a >;④b <1.其中正确的结论是( )A .①②B .②③C .②④D .③④第Ⅱ卷(非选择题共102分)注意事项:1.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:9m2﹣n2=.14.如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.第14题图第15题图15.如图所示,在Rt△ABC中,∠C=90°,∠A=15°,将△ABC翻折,是顶点A与顶点B重合,折痕为MH,已知AH=2,则BC等于.16.如图,在平面直角坐标系xOy中,已知点A(3,3)和点B(7,0),则tan∠ABO=.第16题图第17题图17.如图,等腰直角△ABC的直角边长与正方形MNPQ的边长均为5cm,AC与MN在同一直线上,开始时A点与M点重合,将△ABC向右运动,每分钟运动1cm,最后A点与N点重合.重叠部分面积y(cm2)与运动时间x(分)之间的函数关系式是(不用写出自变量x的取值范围).18.如图,点P是边长为2的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF 交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确的是.(把你认为正确结论的序号都填上)三、解答题:(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(本题6分)计算:())3(02+---1-96-20.(本题6分)先化简,再求值:(1+a)(1﹣a)+(a﹣2)2,其中a.21.(本题6分)如图,AB∥CF,E为DF的中点,若AB=7,CF=5,求BD的长度.22.(本题8分)广州中学在“读书日”期间购进一批图书,需要用大小两种规格的纸箱来装运.1个大纸箱和1个小纸箱一次可以装50,本书2个大纸箱和3个小纸箱一次可以装120本书.(1)一个大纸箱和一个小纸箱分别可以装多少本书?(2)如果一共购入100本书,每个纸箱恰好装满,分别需要用多少个大、小纸箱?23.(本题8分)如图,BD是⊙O的直径,BA是⊙O的弦,过点A的切线交BD的延长线于点C,OE⊥AB于E,且AB=AC.(1)求证:r2;OE=(2)若OE=1,求CD的长度.24.(本题10分)文化是一个国家、一个民族的灵魂,近年来,央视推出《中国诗词大会》、《中国成语大会》、《朗读者》、《经曲咏流传》等一系列文化栏目.为了解学生对这些栏目的喜爱情况,某学校组织学生会成员随机抽取了部分学生进行调查,被调查的学生必须从《经曲咏流传》(记为A)、《中国诗词大会》(记为B)、《中国成语大会》(记为C)、《朗读者》(记为D)中选择自己最喜爱的一个栏目,也可以不选以上四类而写出一个自己最喜爱的其他文化栏目(这时记为E).根据调查结果绘制成如图所示的两幅不完整的统计图.请根据图中信息解答下列问题:(1)在这项调查中,共调查了名学生;(2)最喜爱《朗读者》的学生有名;(3)扇形统计图中“B”所在扇形圆心角的度数为;(4)选择“E”的学生中有2名女生,其余为男生,现从选择“E”的学生中随机选出两名学生参加座谈,求刚好选到一名男生和一名女生的概率是多少.25.(本小题满分10分)正方形ABCD 的顶点A (1,1),点C (3,3),反比例函数x k y =(x >0). (1)如图1,双曲线经过点D 时求反比例函数xk y =(x >0)的关系式; (2(x ①求② 图1 图2 图326.(本题12分)已知△ABC 中∠ABC =90°,点D 、E 分别在边BC 、边AC 上,连接DE ,DF ⊥DE ,点F 、点C 在直线DE 同侧,连接FC ,且k DFDE BC AB ==. (1)点D 与点B 重合时,①如图1,k =1时,AE 和FC 的数量关系是 ,位置关系是 ;②如图2,k =2时,猜想AE 和FC 的关系,并说明理由;图1 图2(2)BD =2CD 时,③如图3,k =1时,若AE =2,6=∆CDF S ,求FC 的长度; ④如图2,k =2时,点M 、N 分别为E F 和AC 的中点,若AB =10,直接写出MN 的最小值.A CA图3 图427.(本题12分)已知二次函数32++=bx ax y 的图象与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于C 点,点M 在直线BC 上,横坐标为m .(1)确定二次函数32++=bx ax y 的解析式;(2)如图1,0<m <3时,MD ⊥BC 交二次函数32++=bx ax y 的图象于点D ,△BCD 的面积记作S ,m 为何值时S 的值最大,并求出S 的最大值;。
2020年山东省济南市中考数学模拟卷第I卷(选择题)一、单选题1()A.0与1B.1与2C.2与3D.3与42.下面关于正六棱柱的视图(主视图、左视图、俯视图)中,画法错误的是()A.B.C.D.3.数据130000可用科学记数法表示为()A.13×104B.1.3×105C.0.13×106D.1.3×1044.下列计算正确的是()A.a2+a2=a4B.2(a(b(=2a(b C.a3•a2=a5D.((b2(3=(b5 5.如图,l1∥l2,∠1=56°,则∠2的度数为()A.34°B.56°C.124°D.146°6.下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+1 7.某车间20名工人日加工零件数如表所示:这些工人日加工零件数的众数、中位数、平均数分别是()A.5(6(5B.5(5(6C.6(5(6D.5(6(68.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()A.304015x x=-B.304015x x=-C.304015x x=+D.304015x x=+9.如图,若△ABC内接于半径为R的(O,且∠A=60°,连接OB、OC,则边BC的长为()A B R C D10.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.B.C.6D.11.如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F 为半圆的中点,连接AF(EF,图中阴影部分的面积是()A.18+36πB.24+18πC.18+18πD.12+18π12.如图,已知正方形ABCD ,点M 是边BA 延长线上的动点(不与点A 重合),且AM <AB ,△CBE 由△DAM 平移得到.若过点E 作EH ⊥AC ,H 为垂足,则有以下结论: ①点M 位置变化,使得∠DHC =60°时,2BE =DM ;②无论点M 运动到何处,都有DM HM ;③无论点M 运动到何处,∠CHM 一定大于135°.其中正确结论的序号为( )A .①③B .①②C .②③D .①②③第II 卷(非选择题)二、填空题13.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b |,则2☆(﹣3)=_____. 14.因式分解:16x 4﹣y 4=_____.15.随意的抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全相同),那么这粒豆子落在黑色方格中的可能性是_____.16.一组按规律排列的式子:234525101726,,,,a a a a a--,···,第n 个式子是_____.(用含n 的式子表示,n 为正整数). 17.如图,反比例函数y =kx(x <0)的图象经过点A (﹣2,2),过点A 作AB ⊥y 轴,垂足为B ,在y 轴的正半轴上取一点P (0,t ),过点P 作直线OA 的垂线l ,以直线l 为对称轴,点B 经轴对称变换得到的点B ′在此反比例函数的图象上,则t 的值是________.18.如图,四边形ABCD是菱形,AB=2,且∠ABC=∠ABE=60°,M为对角线BD(不含B 点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则AM+BM+CM的最小值为_________.三、解答题19.某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;(2)求出图中a的值;(3)下表是该小学的作息时间,若同学们希望在上午第一节下课8:20时能喝到不超过40℃的开水,已知第一节下课前无人接水,请直接写出生活委员应该在什么时间或时间段接通饮水机电源.(不可以用上课时间接通饮水机电源)20.计算:111()2sin302---+21.如图,点E (F 在AB 上,CE 与DF 交于点H (AD =BC (∠A =∠B (AE =BF .求证:GE =GF (22.在直角墙角AOB (OA ⊥OB ,且OA (OB 长度不限)中,要砌20m 长的墙,与直角墙角AOB 围成地面为矩形的储仓,且地面矩形AOBC 的面积为96m 2( (1)求这地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为50元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?23.九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将条形统计图补充完整;(4)如果全市有6000名九年级学生,那么在试卷评讲课中,“独立思考”的约有多少人?24.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.(1)请直接写出袋子中白球的个数.(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)25.如图,一次函数y=kx+b与反比例函数y=ax的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求一次函数y=kx+b和y=ax的表达式;(2)已知点C在x轴上,且△ABC的面积是8,求此时点C的坐标;(3)反比例函数y=ax(1≤x≤4)的图象记为曲线C1,将C1向右平移3个单位长度,得曲线C2,则C1平移至C2处所扫过的面积是_________.(直接写出答案)26.(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB(AC为腰作了两个等腰直角三角形ABD(ACE,分别取BD(CE(BC的中点M(N(G,连接GM(GN.小明发现了:线段GM与GN的数量关系是__________;位置关系是__________((2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB(AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD(ACE,其它条件不变,试判断△GMN的形状,并给与证明.27.如图,已知抛物线y=13x2+bx+c经过△ABC的三个顶点,其中点A(0(1),点B(-9(10((AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB(AC分别交于点E(F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C(P(Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.参考答案1.C 2.A 3.B 4.C 5.C 6.C 7.D 8.C 9.D 10.C 11.C 12.D 13.114.(4x 2+y 2)(2x +y )(2x -y ) 15.1316.()2111n n n a++-⋅17.18.19.(1(当0≤x ≤8时,y =10x +20( 当8(x ≤a 时,800y x=((2(a =40((3)在7(20或7(38(7(45时打开饮水机. 20.2.21.22.(1)这底面矩形的较长的边为12米;(2(选用规格为1.00×1.00(单位:m)的地板砖费用较少.23.24.(1)袋子中白球有2个;(2).25.(1(12yx=(25y x=-((2(点C的坐标为1(,0)2或9(,0)2((3(27.26.(1(MG=NG( MG⊥NG((2)成立,MG=NG(MG⊥NG((3)27.(1) 抛物线的解析式为y=13x2+2x+1,(2) 四边形AECP的面积的最大值是814,点P(9-2((54(((3) Q(-4,1)或(3(1(.2020年山东省济南市中考数学模拟卷试卷学校:___________姓名:___________班级:___________考号:___________20题、21题、22题、23题、24题、25题、26题、27题、。
中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.如图,点M是正方形ABCD边CD上一点,连接MM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF =1,四边形ABED的面积为6,则∠EBF的余弦值是()A 213B313C.23D13解析:B【解析】【分析】首先证明△ABF≌△DEA得到BF=AE;设AE=x,则BF=x,DE=AF=1,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到12•x•x+•x×1=6,解方程求出x得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE,最后利用余弦的定义求解.【详解】∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF 和△DEA 中BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABF≌△DEA(AAS ),∴BF=AE ;设AE =x ,则BF =x ,DE =AF =1,∵四边形ABED 的面积为6, ∴111622xx x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去), ∴EF=x ﹣1=2,在Rt△BEF 中,222313BE =+=,∴313cos 13BF EBF BE ∠===. 故选B .【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形.2.如图,点A 是反比例函数y=k x的图象上的一点,过点A 作AB⊥x 轴,垂足为B .点C 为y 轴上的一点,连接AC ,BC .若△ABC 的面积为3,则k 的值是( )A .3B .﹣3C .6D .﹣6解析:D【解析】 试题分析:连结OA ,如图,∵AB⊥x 轴,∴OC∥AB,∴S △OAB =S △CAB =3,而S △OAB =|k|,∴|k|=3,∵k<0,∴k=﹣1.故选D .考点:反比例函数系数k的几何意义.3.下列现象,能说明“线动成面”的是()A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹解析:B【解析】【分析】本题是一道关于点、线、面、体的题目,回忆点、线、面、体的知识;【详解】解:∵A、天空划过一道流星说明“点动成线”,∴故本选项错误.∵B、汽车雨刷在挡风玻璃上刷出的痕迹说明“线动成面”,∴故本选项正确.∵C、抛出一块小石子,石子在空中飞行的路线说明“点动成线”,∴故本选项错误.∵D、旋转一扇门,门在空中运动的痕迹说明“面动成体”,∴故本选项错误.故选B.【点睛】本题考查了点、线、面、体,准确认识生活实际中的现象是解题的关键.点动成线、线动成面、面动成体. 4.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.2DE=EB C.3DE=DO D.DE=OB解析:D【解析】【详解】解:连接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故选D.54的平方根是( )A.2 B2C.±2D2解析:D【解析】【分析】4,然后再根据平方根的定义求解即可.【详解】4,22,42故选D.【点睛】4正确化简是解题的关键,本题比较容易出错.6.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米解析:A【解析】【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△C DN,求出CN,DN,再根据tan24°=AMEM,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=AM EM,∴0.45=866AB +,∴AB=21.7(米),故选A.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.。
中考数学一模试卷题号一二三总分得分一、选择题(本大题共12小题,共48.0分)1.2019的倒数等于( )A. B. -2019 C. - D. 20192.下列几何体是由5个相同的小正方体搭成的,它的左视图是( )A.B.C.D.3.港珠澳大桥2018年10月24日上午9时正式通车,这座大桥跨越怜仃洋,东接香港,西接广东珠海和澳门,总长约55000m,集桥、岛、隧于一体,是世界最长的跨海大桥,数据55000用科学记数法表示为( )A. 5.5×105B. 55×104C. 5.5×106D. 5.5×1044.如图,直线AB∥CD,CE平分∠ACD,交AB于点E,∠ACE=20°,点F在AC的延长线上,则∠BAF的度数为( )A. 20°B. 30°C. 40°D. 50°5.实数m、n在数轴上对应点的位置如图所示,则下列判断正确的是( )A. |m|≤1B. 1-m>1C. mn>0D. m+1>06.下列图案中是中心对称图形但不是轴对称图形的是( )A. B. C. D.7.化简-的结果是( )A. B. C. D.8.2017年11月30日,河北省402爱心社的志愿者们走进正定五中,为品学兼优的家庭困难学生捐献爱心,共捐赠资金7000元.该资金由25名志愿者捐献,捐献统计情况如下表,则他们捐款金额的中位数和平均数分别是( )金额/元100200300400500人数211543A. 200,200B. 200,280C. 300,300D. 300,2809.下图中反比例函数y =与一次函数y =kx -k 在同一直角坐标系中的大致图象是()A. B.C. D.10.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A. 200米B. 200米C. 220米D.米11.如图,在△ABC 中,AB =6,将△ABC 绕点A 逆时针旋转40°后得到△ADE ,点B 经过的路径为.则图中阴影部分的面积是( )A. 4πB. πC. πD. 条件不足,无法计算12.求二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,其对称轴为直线x =-1,与x 轴的交点为(x 1,0)、(x 2,0),其中0<x 1<1,有下列结论:①abc >0;②-3<x 2<-2;③4a -2b +c <-1;④a -b >am2+bm(m≠-1);⑤a>;其中,正确的结论有( )A. 5B. 4C. 3D. 2二、填空题(本大题共6小题,共24.0分)13.分解因式:x2-xy=______.14.在一个有15万人的小镇,随机调查了1000人,其中200人会在日常生活中进行垃圾分类,那么在该镇随机挑一个人,会在日常生活中进行垃圾分类的概率是______.15.若一个多边形的内角和与外角和之和是900°,则该多边形的边数是______.16.若a+2b=8,3a+4b=18,则a+b的值为______.17.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地,两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示根据图象信息知,点A的坐标是______.18.如图,矩形纸片ABCD中,AB=6,BC=9,将矩形纸片ABCD折叠,使C与点A重合,则折痕EF的长为______.三、解答题(本大题共9小题,共78.0分)19.计算:|1-2cos30°|+-(-)-1-(5-π)020.解不等式组,并写出该不等式组的所有整数解.21.如图,AB=DE,BF=EC,∠B=∠E,求证:AC∥DF.22.在某体育用品商店,购买3根跳绳和6个毽子共用72元,购买5根跳绳和20个毽子共用160元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五•四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买10根跳绳和10个毽子只需180元,该店的商品按原价的几折销售?23.如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,⊙O的半径为2,求线段EC的长度.24.某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表.校本课程 频数 频率A360.45B 0.25C16bD8 合计a1请您根据图表中提供的信息回答下列问题:(1)统计表中的a=______,b=______;(2)“D”对应扇形的圆心角为______度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.25.如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),交y轴于点E,过点C作x轴的垂线BC交反比例函数图象于点B.(1)求k的值与B点的坐标;(2)将直线EC向右平移,当点E正好落在反比例函数图象上的点E'时,直线交x 轴于点F.请判断点B是否在直线EF上并说明理由;(3)在平面内有点M,使得以A、B、F、M四点为顶点的四边形为平行四边形,请直接写出符合条件的所有M点的坐标.26.如图1.在Rt△ABC中,∠A=90°,AB=AC,点D、E分别在边AB、AC上,AD=AE.连接DC,点M、P、N分别为DE、DC、BC的中点.(1)图1中,线段PM与PN的数量关系是______,位置关系是______;(2)把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,判断△PMN的形状,并说明理由;(3)把△ADE绕点A在平面内自由旋转,若DE=2,BC=6,请直接写出△PMN面积的最大值.27.已知抛物线y=ax2+bx+3经过点A(1,0)和点B(-3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为______,抛物线的顶点坐标为______;(2)如图1,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.(3)如图2,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(4)如图3,点E的坐标为(0,-1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标.答案和解析1.【答案】A【解析】解:2019的倒数是.故选:A.直接利用倒数的定义进而得出答案.此题主要考查了倒数,正确把握倒数的定义是解题的关键.2.【答案】B【解析】解:从左面可看到2列小正方形的个数从左到右分别为2,1.故选:B.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.【答案】D【解析】解:55000=5.5×104.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于55000有5位,所以可以确定n=5-1=4.此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.【答案】C【解析】解:∵∠ACE=20°,CE平分∠ACD,∴∠ACD=2∠ACE=40°,∵AB∥CD,∴∠BAF=∠ACD,∴∠BAF=40°,故选:C.根据角平分线的性质和平行线的性质,可以求得∠BAF的值,本题得以解决.本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.5.【答案】B【解析】解:A.由数轴知|m|≥1,此选项错误;B.由m<0知1-m>1,此选项正确;C.由m<0<n知mn<0,此选项错误;D.由m<0且|m|≥1知m+1≤0,此选项错误;故选:B.根据数轴知m<0<1<n且|m|≥1,利用有理数的减法、乘法和加法法则逐一判断即可得.本题主要考查实数与数轴,解题的关键是根据实数在数轴上的位置得出其大小关系及有理数的乘法、加法、减法法则及绝对值的性质.6.【答案】C【解析】解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、不是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.【答案】A【解析】解:原式=-=-=,故选:A.先将第1个分式化简,再利用分式的加减法求解可得.本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则.8.【答案】B【解析】解:因为共有25个数据,所以中位数为第13个数据,即中位数为200元,捐款金额的平均数为=280(元),故选:B.根据中位数和平均数的定义分别求解可得.本题考查平均数和中位数的意义.平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.9.【答案】B【解析】解:(1)当k>0时,一次函数y=kx-k经过一、三、四象限,反比例函数经过一、三象限,如图所示:(2)当k<0时,一次函数y=kx-k经过一、二、四象限,反比例函数经过二、四象限.如图所示:故选:B.由于本题不确定k的符号,所以应分k>0和k<0两种情况分类讨论,针对每种情况分别画出相应的图象,然后与各选择比较,从而确定答案.本题考查了反比例函数、一次函数的图象.灵活掌握反比例函数的图象性质和一次函数的图象性质是解决问题的关键,在思想方法方面,本题考查了数形结合思想、分类讨论思想.10.【答案】D【解析】解:∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故选:D.在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.11.【答案】A【解析】解:由题意可知,△ABC≌△ADE,故△ABC和△ADE的面积相等,∵在△ABC中,AB=6,将△ABC绕点A逆时针旋转40°后得到△ADE,∴阴影部分的面积是:=4π,故选:A.根据旋转的性质可知,△ABC≌△ADE,从而可以得到△ABC和△ADE的面积相等,再根据图形可知,阴影部分的面积=扇形ABD的面积+△ADE的面积-△ABC的面积,然后代入数据计算即可解答本题.本题考查扇形面积的计算、旋转的性质,解答本题的关键是明确题意,利用扇形面积的计算公式和数形结合的思想解答.12.【答案】C【解析】解:①对称轴在y轴右侧,则ab同号,c<0,故abc<0,故错误;②对称轴为直线x=-1,0<x1<1,则-3<x2<-2,正确;③对称轴为直线x=-1,则b=2a,4a-2b+c=c<-1,故正确;④x=-1时,y=ax2+bx+c=a-b+c,为最小值,故a-b+c<am2+bm+c,故错误;⑤x=1时,y=a+b+c=3a+c>0,即3a>-c,而c<-1,故a>,正确;故选:C.①对称轴在y轴右侧,则ab同号,c<0,即可求解;②对称轴为直线x=-1,0<x1<1,即可求解;③对称轴为直线x=-1,则b=2a,即可求解;⑤x=1时,y=a+b+c=3a+c>0,即3a>-c,即可求解.主要考查了利用图象求出a,b,c的范围,以及特殊值的代入能得到特殊的式子.13.【答案】x(x-y)【解析】解:x2-xy=x(x-y).根据观察可知公因式是x,因此提出x即可得出答案.此题考查的是对公因式的提取.通过观察可以得出公因式,然后就可以解题.观察法是解此类题目常见的办法.14.【答案】【解析】解:在该镇随机挑一个人,会在日常生活中进行垃圾分类的概率是=,故答案为:.用所抽样本中会进行垃圾分类的人数除以抽取的总人数即可得.本题考查概率公式和用样本估计总体,概率计算一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.【答案】5【解析】解:∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,∴多边形的内角和是900-360=540°,∴多边形的边数是:540°÷180°+2=3+2=5.故答案为:5.本题需先根据已知条件以及多边形的外角和是360°,解出内角和的度数,再根据内角和度数的计算公式即可求出边数.本题主要考查了多边形内角与外角,在解题时要根据外角和的度数以及内角和度数的计算公式解出本题即可.16.【答案】5【解析】解:法一:∵a+2b=8,3a+4b=18,则a=8-2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.法二:a+2b=8 ①,3a+4b=18 ②,②-①,得2a+2b=10,因此,a+b=5.故答案为:5.直接利用已知条件,解方程组或者根据所需条件对原式进行变形都可得出答案.此题主要考查了解二元一次方程组和代数式求值,正确选用解题方法是解题关键.17.【答案】(40,800)【解析】解:2400÷60=40米/分,2400÷24=100米/分,100-40=60米/分,2400÷60=40分,(60-40)×40=800米,因此点A的坐标为(40,800)故答案为:(40,800).由图象可知,学校和图书馆之间的距离为2400米,甲走完全程由60分,因此甲的速度为2400÷60=40米/分;甲、乙二人经过24分钟相遇,甲乙的速度和2400÷24=100米/分,乙的速度为100-40=60米/分,因此乙走完全程用时2400÷60=40分,当乙到目的地时,两人距离(60-40)×40=800米,可以得出A的坐标.考查一次函数的图象和性质,明确函数图象上点的坐标表示的实际意义是解决问题的关键.18.【答案】2【解析】解:连接AC交EF于点O,由折叠可知,EF垂直平分AC,易证Rt△AOE≌Rt△COF,∴OE=OF,在Rt△ABC中,AC===3∴OA=OC=,设AE=x,则EG=ED=(9-x),在Rt△AGE中,由勾股定理得:62+(9-x)2=x2,解得:x=在Rt△AOE中,OE==∴EF=2OE=2故答案为:2.折叠即有全等形,根据对称的性质,可得OA=OC,EF⊥AC,进而通过三角形全等,看得出OE=OF,根据折叠和勾股定理可求出AE,进而求出OE,计算出EF.考查折叠的性质、全等三角形的判定和性质、勾股定理等知识,根据折叠轴对称,得出直角三角形和相等的线段和角是解决问题和实现问题转化的关键.19.【答案】解:原式=2×-1+2-(-2)-1=3.【解析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.【答案】解:解不等式①得:x≤3,解不等式②得:x>-1,∴不等式组的解集是-1<x≤3,∴该不等式组的所有整数解为0,1,2,3.【解析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.本题考查了解一元一次不等式组,不等式组的整数解的应用,能根据不等式的解集找出不等式组的解集是解此题的关键.21.【答案】证明:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴AC∥DF.【解析】要证明AC∥DF,只要证明∠ACB=∠DFE即可,要证明∠ACB=∠DFE,只要证明△ABC≌△DEF即可,根据题目中的条件可以证明△ABC≌△DEF,本题得以解决.本题考查全等三角形的判定与性质、平行线的判定,解答本题的关键是明确题意,找出所求问题的条件,利用数形结合的思想解答.22.【答案】解:(1)设跳绳的单价为x元,毽子的单价为y元,依题意,得:,解得:.答:跳绳的单价为16元,毽子的单价为4元.(2)设该店的商品按原价的m折销售,依题意,得:(16×10+4×10)×=180,解得:m=9.答:该店的商品按原价的9折销售.【解析】(1)设跳绳的单价为x元,毽子的单价为y元,根据“购买3根跳绳和6个毽子共用72元,购买5根跳绳和20个毽子共用160元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设该店的商品按原价的m折销售,根据现价=原价×折扣率,即可得出关于m的一元一次方程,解之即可得出结论.本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.23.【答案】解:(1)连接OA,∵AC是⊙O的切线,OA是⊙O的半径,∴OA⊥AC,∴∠OAC=90°,∵=,∠ADE=25°,∴∠AOE=2∠ADE=50°,∴∠C=90°-∠AOE=90°-50°=40°;(2)∵AB=AC,∴∠B=∠C,∵∠AOC=2∠B,∴∠AOC=2∠C,∵∠OAC=90°,∴∠AOC+∠C=90°,∴3∠C=90°,∴∠C=30°,∴OA=OC=2,∴OC=4,∵OE=2,∴CE=OC-OE=2.【解析】(1)连接OA,利用切线的性质和角之间的关系解答即可;(2)根据直角三角形的性质解答即可.本题考查了切线的性质、圆周角定理,解直角三角形,能求出∠OAC和∠AOC的度数是解此题的关键.24.【答案】解:(1)80 0.20 ;(2)36(3)估计该校2000名学生中最喜欢“数学史”校本课程的人数为:2000×0.25=500(人);(4)列表格如下:A B CA A,A B,A C,AB A,B B,B C,BC A,C B,C C,C共有9种等可能的结果,其中两人恰好选中同一门校本课程的结果有3种,所以两人恰好选中同一门校本课程的概率为:=.【解析】【分析】本题考查了列表法或树状图求概率、用样本估计总体、频数分布表、扇形统计图等知识点,能根据题意列出算式是解此题的关键.(1)根据题意列出算式,再求出即可;(2)根据题意列出算式,再求出即可;(3)根据题意列出算式,再求出即可;(4)先列出表格,再根据题意列出算式,再求出即可.【解答】解:(1)a=36÷0.45=80,b=16÷80=0.20,故答案为:80,0.20;(2)“D”对应扇形的圆心角的度数为:8÷80×360°=36°,故答案为36;(3)见答案(4)见答案25.【答案】解:(1)把点A(3,4)代入y=(x>0),得k=xy=3×4=12,故该反比例函数解析式为:y=.∵点C(6,0),BC⊥x轴,∴把x=6代入反比例函数y=,得:y==2,∴B(6,2).综上所述,k的值是12,B点的坐标是(6,2);(2)设直线A、C的表达式为:y=kx+b,则,解得:,故直线AC的表达式为:y=-x+8,令x=0,则y=8,故点E(0,8),设直线EC向右平移m个单位,则平移后直线的表达式为:y=-(x-m)+8,则点E′(m,8),∵点E′在反比例函数上,∴将点E′坐标代入反比例函数表达式得:8m=12,解得:m=,则平移后直线的表达式为:y=-(x-)+8=-x+10,令y=0,则x=,故点F(,0);当x=6时,y=-x+10=2,故点B在直线EF上;(3)设点M的坐标为(s,t),而点A、B、F的坐标分别为:(3,4)、(6,2)、(,0);①当AB是边时,点A向右平移3个单位向下平移2个单位得到B,同样点M(N)向右平移3个单位向下平移2个单位得到N(M),故或,解得:或,故点M的坐标为:(,-2)或(,2);②当AB是对角线时,由中点公式得:,解得:,故点M的坐标为(,6);综上,点M的坐标为:(,-2)或(,2)或(,6).【解析】(1)将A点的坐标代入反比例函数y=求得k的值,然后将x=6代入反比例函数解析式求得相应的y的值,即得点B的坐标;(2)确定平移后直线的表达式即可求解;(3)分AB为平行四边形的边、对角线两种情况,分别求解即可.本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、函数的平移等,其中(3),要注意分类求解,避免遗漏.26.【答案】PM=PN PM⊥PN【解析】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由:如图2,连接CE,BD,由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)若DE=2,BC=6,在Rt△ABC中,AB=AC,BC=6,∴AB=BC=3,同理:AD=由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=4,∴PM=2,∴S△PMN最大=PM2=(2)2=4.(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可得出结论.本题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大.27.【答案】y=-x2-2x+3 (-1,4)【解析】解:(1)函数的表达式为:y=a(x-1)(x+3)=a(x2+2x-3),即:-3a=3,解得:a=-1.故抛物线的表达式为:y=-x2-2x+3.顶点坐标为(-1,4);故答案是:y=-x2-2x+3;(-1,4);(2)不存在,理由:如答图1,连接BC,过点P作y轴的平行线交BC于点H,直线BC的表达式为:y=x+3,设点P(x,-x2-2x+3),点H(x,x+3),则S四边形BOCP=S△OBC+S△PBC=×3×3+(-x2-2x+3-x-3)×3=8,整理得:3x2+9x+7=0,解得:△<0,故方程无解,则不存在满足条件的点P;(3)∵OB=OC,∴∠CBO=45°,∵S△CPD:S△BPD=1:2,∴BD=BC=×3=2,y D=BD sin∠CBO=2,则点D(-1,2);(4)如答图2,设直线PE交x轴于点H,∵∠OGE=15°,∠PEG=2∠OGE=30°,∴∠OHE=45°,∴OH=OE=1,则直线HE的表达式为:y=-x-1,联立方程,得解得:x=(舍去正值),故点P(,).(1)函数的表达式为:y=a(x-1)(x+3)=a(x2+2x-3),即可求解;(2)利用S四边形BOCP=S△OBC+S△PBC=8,即可求解;(3)S△CPD:S△BPD=1:2,则BD=BC=×3=2,即可求解;(4)∠OGE=15°,∠PEG=2∠OGE=30°,则∠OHE=45°,故OH=OE=1,即可求解.本题考查的是二次函数综合运用,涉及到一次函数、一元二次方程应用、图象的面积计算等,难度不大.。